Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Roberta Mancini, Sabrina Rogg

Numerische Verfahren der restringierten Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 3

Deadline for hand-in: 27.11.2014 at lecture

Exercise 7

(2 Points)
Consider the following linear program, similar to (2.1) in the lecture notes, but with new variables y :

$$
\min c^{\top} x+d^{\top} y \quad \text { subject to } \quad A_{1} x+A_{2} y=b, x \geq 0
$$

Write down optimality conditions for this problem in an analogous fashion to (2.3) and derive the functional matrix that you get in this specific case (see defnition in the lecture notes, Chapter 2).

Exercise 8

Verify, that

$$
r_{b}^{k+1}=\left(1-\alpha_{k}^{\text {prim }}\right) r_{b}^{k} \quad \text { and } \quad r_{c}^{k+1}=\left(1-\alpha_{k}^{\text {dual }}\right) r_{c}^{k}
$$

holds for the steplength $\alpha_{k}^{\text {prim }}$ and $\alpha_{k}^{\text {dual }}$, and the residuals $r_{b}^{k}=A x^{k}-b$ and $r_{c}^{k}=A^{\top} \lambda^{k}+$ $\mu^{k}-c$.

Exercise 9

Prove that the coefficient matrix in (2.7) is nonsingular if and only if A has full row rank.

