Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Roberta Mancini, Sabrina Rogg

Numerische Verfahren der restringierten Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 5

Deadline for hand-in: 15.01.2015 at lecture

Exercise 13

Let $\bar{x} \in \mathbb{R}^{n}$ be given, and let x^{*} be the solution of the projection problem

$$
\min \|x-\bar{x}\|^{2} \quad \text { subject to } \quad l \leq x \leq u
$$

For simplicity, assume that $-\infty<l_{i}<u_{i}<\infty$ for all $i=1,2, \ldots, n$. Show that the solution of this problem coincides with the projection formula given by

$$
P(x, l, u)_{i}=\left\{\begin{array}{lll}
l_{i} & \text { if } & x_{i}<l_{i}, \\
x_{i} & \text { if } & x_{i} \in\left[l_{i}, u_{i}\right], \\
u_{i} & \text { if } & x_{i}>u_{i},
\end{array}\right.
$$

that is, show that $x^{*}=P(\bar{x}, l, u)$.

Exercise 14

Consider the quadratic optimization problem given by

$$
\min f(x):=\frac{1}{2} x^{\top} Q x+x^{\top} d+c,
$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric and positive definite. Let x^{*} be the minimizer of f and define the energy norm as $\|x\|_{Q}:=\left(x^{\top} Q x\right)^{1 / 2}$. Show that the following equality holds:

$$
f(x)=\frac{1}{2}\left\|x-x^{*}\right\|_{Q}^{2}+f\left(x^{*}\right) .
$$

Exercise 15

Consider the nonlinear optimization problem

$$
\begin{equation*}
\min J(x) \quad \text { subject to } e(x)=0, g(x) \leq 0 \tag{1}
\end{equation*}
$$

for which the Lagrangian function is given by

$$
L(x, \lambda, \mu)=J(x)+\lambda^{\top} e(x)+\mu^{\top} g(x) \quad \text { for }(x, \lambda, \mu) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p}
$$

The dual problem to (1) is defined by

$$
\begin{equation*}
\sup _{\lambda \in \mathbb{R}^{m}, \mu \in \mathbb{R}_{+}^{p}} d(\lambda, \mu), \tag{2}
\end{equation*}
$$

where $d(\lambda, \mu):=\inf _{x \in \mathbb{R}^{n}} L(x, \lambda, \mu)$ denotes the dual objective function. In this context we refer to the original problem (1) as the primal problem.
Show that the following weak duality result holds: For any \tilde{x} feasible for (1) and any $(\tilde{\lambda}, \tilde{\mu}) \in \mathbb{R}^{m} \times \mathbb{R}_{+}^{p}$, we have

$$
d(\tilde{\lambda}, \tilde{\mu}) \leq f(\tilde{x})
$$

Consequently, the optimal value of the dual problem gives a lower bound on the optimal objective value for the primal problem (1).
Derive the dual problem to the linear programming problem

$$
\min c^{\top} x \quad \text { subject to } A x=b, x \geq 0 .
$$

