Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Roberta Mancini, Sabrina Rogg, Stefan Trenz

Numerische Verfahren der restringierten Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Program 1 (6 Points)

Submission by E-Mail: 14.11.2014, 18:00 h

Note:

- Work in groups of 2 to 3 members!
- Do not forget to write name and email adress of the authors in each file and document your code well!
- Only running programs will be considered!
- Stick to the given function and parameter definitions as described below! You should not modify them in name or concerning the input and output arguments.

Consider the domain $\Omega=(0,10)$ and the following Poisson problem

$$
\left\{\begin{array}{l}
\Delta \mathrm{y}(x)=\mathrm{b}(x) \quad \text { in } \Omega \\
\mathrm{y}(0)=\mathrm{g}(0) \\
\mathrm{y}(10)=\mathrm{g}(10)
\end{array}\right.
$$

Once one discretizes the domain Ω with n points, using the stepsize $h=1 /(n+1)$, the problem can be numerically solved by solving, only for the inner points $A y=b$, with b the discretization of $\mathrm{b}, b, y \in \mathbb{R}^{n}$ and A

$$
A=\frac{1}{h^{2}}\left(\begin{array}{rrrrr}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

the resulting matrix of the discretization of the Laplace operator with central differences. Let us now consider the following optimization problem

$$
\min J(x)=\frac{1}{2} y^{\top} Q y+y^{\top} d \quad \text { s.t } \quad A y=b,
$$

with $Q \in \mathbb{R}^{n \times n}, d \in \mathbb{R}^{n}$. Implement the following Matlab function
[y,lambda]=myquadprog(Q,d,A,b,flag)
for solving the quadratic program via direct solve of the system, where y and lambda are column vectors and $f \operatorname{lag} \in\{1,2,3\}$ should set the system solver of the function, according to the following association: 1 for the QR, 2 for LU and 3 (default) backslash (use the appropriate Matlab functions for the matrix decomposition).
Implementing a mymain file which will define all the necessary matrices, calls myquadprog and plots the results, using the following setting:

$$
\mathrm{b}(x)=2 \frac{\cos x}{e^{x}}, \quad \mathrm{~g}(x)=\frac{\sin x}{e^{x}}
$$

and d the vector with the evaluations of the function

$$
\mathrm{d}(x)=\frac{\sin 0.2}{e^{0.2}}+(x-0.2)\left(e^{-x} \cos x-e^{-x} \sin x\right)
$$

in the discretized domain Ω. Test your program with $Q=I \in \mathbb{R}^{n}$ and solve the quadratic program using the three solvers for $n \in\left\{1 \cdot 10^{2}, 500,1 \cdot 10^{3}\right\}$.
Put in your written report the plots of the solutions and your observations.

