Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Stefan Volkwein Sabrina Rogg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/rogg/de/teaching/

Sheet 2

Tutorial: 12th May

Exercise 4

Consider the quadratic function $f : \mathbb{R}^n \to \mathbb{R}$,

$$f(x) = \frac{1}{2} \langle x, Qx \rangle + \langle c, x \rangle + \gamma$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric, $c \in \mathbb{R}^n$, $\gamma \in \mathbb{R}$ and where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product in \mathbb{R}^n .

Show directly, i.e. without using any theorem from the scriptum, that the following holds:

f is convex $\Leftrightarrow Q$ is positive semidefinite.

Exercise 5

Consider the quadratic function $f : \mathbb{R}^n \to \mathbb{R}$,

$$f(x) = \frac{1}{2} \langle x, Qx \rangle + \langle c, x \rangle + \gamma$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, $c \in \mathbb{R}^n$ and $\gamma \in \mathbb{R}$. Let $x^k \in \mathbb{R}^n$ be arbitrary and $d^k \in \mathbb{R}^n$ an arbitrary descent direction of f in x^k .

Find the (exact) step size s^* in direction d^k such that the decreasing of $f(x^k + s^*d^k)$ is maximal.

Exercise 6

Consider the unconstrained optimization problem

$$\min_{x \in \mathbb{R}^2} f(x) := -e^{-((x_1 - \pi)^2 + (x_2 - \pi)^2)},\tag{1}$$

with $f : \mathbb{R}^2 \to \mathbb{R}$. Show that f has only one stationary point and that $x^* = (\pi, \pi)^{\top}$ is the global solution to problem (1). We modify the objective functional as follows:

$$\tilde{f}(x) = f(x) + \alpha \sin(x_1) \cos(x_2 + \frac{\pi}{2}),$$

with $\alpha = 0.1$. Visualize the function \tilde{f} using Matlab. What do you observe concerning local and global minima?