Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Sabrina Rogg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/rogg/de/teaching/

Sheet 2

Tutorial: 12th May

Exercise 4

Consider the quadratic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f(x)=\frac{1}{2}\langle x, Q x\rangle+\langle c, x\rangle+\gamma
$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric, $c \in \mathbb{R}^{n}, \gamma \in \mathbb{R}$ and where $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{n}.

Show directly, i.e. without using any theorem from the scriptum, that the following holds:

$$
f \text { is convex } \Leftrightarrow Q \text { is positive semidefinite. }
$$

Exercise 5

Consider the quadratic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f(x)=\frac{1}{2}\langle x, Q x\rangle+\langle c, x\rangle+\gamma
$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, $c \in \mathbb{R}^{n}$ and $\gamma \in \mathbb{R}$. Let $x^{k} \in \mathbb{R}^{n}$ be arbitrary and $d^{k} \in \mathbb{R}^{n}$ an arbitrary descent direction of f in x^{k}.
Find the (exact) step size s^{*} in direction d^{k} such that the decreasing of $f\left(x^{k}+s^{*} d^{k}\right)$ is maximal.

Exercise 6

Consider the unconstrained optimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{2}} f(x):=-e^{-\left(\left(x_{1}-\pi\right)^{2}+\left(x_{2}-\pi\right)^{2}\right)} \tag{1}
\end{equation*}
$$

with $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Show that f has only one stationary point and that $x^{*}=(\pi, \pi)^{\top}$ is the global solution to problem (1). We modify the objective functional as follows:

$$
\tilde{f}(x)=f(x)+\alpha \sin \left(x_{1}\right) \cos \left(x_{2}+\frac{\pi}{2}\right)
$$

with $\alpha=0.1$. Visualize the function \tilde{f} using Matlab. What do you observe concerning local and global minima?

