Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Sabrina Rogg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/rogg/de/teaching/

Sheet 4

Tutorial: 9th June

Exercise 11

Consider the domain

$$
\Omega=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]=\left\{x \in \mathbb{R}^{n} \mid \forall i=1, \ldots, n: a_{i} \leq x_{i} \leq b_{i}, a_{i}, b_{i} \in \mathbb{R}, a_{i}<b_{i}\right\}
$$

Let $f: \Omega \rightarrow \mathbb{R}$ and $f \in \mathcal{C}^{0}(\bar{\Omega}) \cap \mathcal{C}^{1}\left(\Omega^{\circ}\right), \nabla f$ continuously expandable on $\bar{\Omega}$. Further, let $x^{*} \in \Omega$ be a local minimizer of f, i.e.

$$
\exists \epsilon>0: \forall x \in B_{\epsilon}\left(x^{*}\right) \cap \Omega: \quad f\left(x^{*}\right) \leq f(x) .
$$

Show that the following modified first order condition holds:

$$
\forall x \in \Omega:\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0
$$

Any x^{*} that fulfills this condition is called stationary point of f.

Exercise 12

For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ let L be the Lipschitz constant of the gradient ∇f. The canonical projection of $x \in \mathbb{R}^{n}$ on the closed set $\Omega=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]$ is given by $P: \mathbb{R}^{n} \rightarrow \Omega$,

$$
(P(x))_{i}:= \begin{cases}a_{i} & \text { if } x_{i} \leq a_{i} \\ x_{i} & \text { if } x_{i} \in\left(a_{i}, b_{i}\right) . \\ b_{i} & \text { if } x_{i} \geq b_{i}\end{cases}
$$

Further we define

$$
x(\lambda):=P(x-\lambda \nabla f(x)) .
$$

Prove that the following modified Armijo condition holds for all $\lambda \in\left(0, \frac{2(1-\alpha)}{L}\right]$:

$$
f(x(\lambda))-f(x) \leq-\frac{\alpha}{\lambda}\|x-x(\lambda)\|^{2}
$$

Hints: The following ansatz with the fundamental theorem of calculus may be helpful:

$$
f(x(\lambda))-f(x)=\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t} f(x-t(x-x(\lambda))) \mathrm{d} t .
$$

You can use the following formula without proof:

$$
\forall x, y \in \Omega:(y-x(\lambda))^{\top}(x(\lambda)-x+\lambda \nabla f(x)) \geq 0
$$

Exercise 13

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex and differentiable and $C \subseteq \mathbb{R}^{n}$ a closed and non-empty convex set. Show in the following order that:

1. $\quad x^{*} \in C$ minimizes f over $C \Leftrightarrow\left\langle\nabla f\left(x^{*}\right), c-x^{*}\right\rangle \geq 0 \forall c \in C$.

Hint: It might be helpful to use the inequality $f(b) \geq f(a)+\nabla f(a)^{\top}(b-a), a, b \in C$, known from the lecture.
2. Let $x \in \mathbb{R}^{n}$ arbitrary and $c^{*}=P(x)$. Then, c^{*} is the solution to

$$
\min _{c \in C} f(c)=\min _{c \in C} \frac{1}{2}\|c-x\|^{2} .
$$

Prove the inequality

$$
\langle c-P(x), P(x)-x\rangle \geq 0 \quad \forall c \in C .
$$

3. $\quad x^{*} \in C$ minimizes f over $C \quad \Leftrightarrow \quad x^{*}=P\left(x^{*}-\gamma \nabla f\left(x^{*}\right)\right)$ for all $\gamma \geq 0$

Hint: It might be helpful to use (without proof) that $\langle x-P(x-\gamma \nabla f(x)), P(x-\gamma \nabla f(x))-x+$ $\gamma \nabla f(x)\rangle \geq 0$.

