Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Sabrina Rogg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/rogg/de/teaching/

Sheet 5

Tutorial: 23 June

Exercise 14 (Classical Newton method)
Consider the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=x^{3}-2 x+2 \text { and } g(x)=\sin (x)
$$

(1) Show that for the starting point $x_{0}=0$, the classical Newton iteration of f has two accumulation points which are both not roots of f.
(2) Find a starting point x_{0} such that the Newton iteration is of the form $x_{k}=x_{0}+k \pi$, $k \in \mathbb{N}_{>0}$.
(3) Generate suitable plots (Matlab) for (1) and (2).

Exercise 15 (Damped Newton)
Consider to use the classical Newton method for finding the root of $g(x)=\arctan (x)$. Let $x_{k}=5$. Compute the next iteration point x_{k+1} according to the Newton algorithm

$$
\begin{aligned}
g^{\prime}\left(x_{k}\right) \Delta x_{k} & =-g\left(x_{k}\right) ; \\
x_{k+1} & =x_{k}+\Delta x_{k} .
\end{aligned}
$$

The damped Newton algorithm is defined as

$$
\begin{aligned}
g^{\prime}\left(x_{k}\right) \Delta x_{k} & =-g\left(x_{k}\right) \\
x_{k+1} & =x_{k}+\alpha_{k} \Delta x_{k},
\end{aligned}
$$

with $\alpha_{k} \in(0,1)$ computed by a line search procedure such that

$$
\left|g\left(x_{k}+\alpha_{k} \Delta x_{k}\right)\right| \leq\left(1-\delta \alpha_{k}\right)\left|g\left(x_{k}\right)\right|, \quad \delta \in(0,1)
$$

Let $\delta=0.5$. We start from $\alpha=1$ in the line search procedure and divide it by 2 every time the condition is not satisfied. Compute the point x_{k+1} using the damped Newton algorithm and compare it to the one returned by the classical Newton method. What do you conclude?

Exercise 16

Let $f \in \mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ be the quadratic function

$$
f(x)=\frac{1}{2}\langle x, Q x\rangle+\langle c, x\rangle+\gamma,
$$

with $Q \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $c \in \mathbb{R}^{n}$ and $\gamma \in \mathbb{R}$. Let $x^{0} \in \mathbb{R}^{n}$ and H be a symmetric positive definite matrix.
Define $\tilde{f}(x):=f\left(H^{-\frac{1}{2}} x\right)$ and $\tilde{x}^{0}:=H^{\frac{1}{2}} x^{0}$. Let $\left(\tilde{x}^{k}\right)_{k \in \mathbb{N}}$ be a sequence generated by the steepest descent method,

$$
\tilde{x}^{k+1}=\tilde{x}_{k}+\tilde{t}_{k} \tilde{d}^{k} \text { with } \tilde{d}^{k}=-\nabla \tilde{f}\left(\tilde{x}_{k}\right)
$$

and $\tilde{t}_{k}=t\left(\tilde{d}^{k}\right)$ the optimal stepsize choice as determined in Exercise $5($ for $\tilde{f})$.
Let $\left(x^{k}\right)_{k \in \mathbb{N}}$ be generated by the gradient-like method with preconditioner H,

$$
x^{k+1}=x^{k}+t_{k} d^{k} \text { with } d^{k}=H^{-1}\left(-\nabla f\left(x^{k}\right)\right)
$$

and $t_{k}=t\left(d^{k}\right)$ the optimal stepsize choice as determined in Exercise 5.
Show (by induction) that the two optimization methods are equivalent, i.e., for all $k \in \mathbb{N}$ it holds:

$$
x^{k}=H^{-\frac{1}{2}} \tilde{x}^{k} .
$$

