Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Stefan Volkwein Sabrina Rogg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/rogg/de/teaching/

Sheet 5

Tutorial: 23 June

Exercise 14 (Classical Newton method) Consider the functions $f, g : \mathbb{R} \to \mathbb{R}$ given by

 $f(x) = x^3 - 2x + 2$ and $g(x) = \sin(x)$.

- (1) Show that for the starting point $x_0 = 0$, the classical Newton iteration of f has two accumulation points which are both not roots of f.
- (2) Find a starting point x_0 such that the Newton iteration is of the form $x_k = x_0 + k\pi$, $k \in \mathbb{N}_{>0}$.
- (3) Generate suitable plots (Matlab) for (1) and (2).

Exercise 15 (Damped Newton)

Consider to use the classical Newton method for finding the root of $g(x) = \arctan(x)$. Let $x_k = 5$. Compute the next iteration point x_{k+1} according to the Newton algorithm

$$g'(x_k)\Delta x_k = -g(x_k);$$

 $x_{k+1} = x_k + \Delta x_k.$

The damped Newton algorithm is defined as

$$g'(x_k)\Delta x_k = -g(x_k);$$

$$x_{k+1} = x_k + \alpha_k \Delta x_k$$

with $\alpha_k \in (0, 1)$ computed by a line search procedure such that

$$|g(x_k + \alpha_k \Delta x_k)| \le (1 - \delta \alpha_k) |g(x_k)|, \quad \delta \in (0, 1).$$

Let $\delta = 0.5$. We start from $\alpha = 1$ in the line search procedure and divide it by 2 every time the condition is not satisfied. Compute the point x_{k+1} using the damped Newton algorithm and compare it to the one returned by the classical Newton method. What do you conclude?

Exercise 16

Let $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$ be the quadratic function

$$f(x) = \frac{1}{2} \langle x, Qx \rangle + \langle c, x \rangle + \gamma,$$

with $Q \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $c \in \mathbb{R}^n$ and $\gamma \in \mathbb{R}$. Let $x^0 \in \mathbb{R}^n$ and H be a symmetric positive definite matrix.

Define $\tilde{f}(x) := f(H^{-\frac{1}{2}}x)$ and $\tilde{x}^0 := H^{\frac{1}{2}}x^0$. Let $(\tilde{x}^k)_{k \in \mathbb{N}}$ be a sequence generated by the steepest descent method,

$$\tilde{x}^{k+1} = \tilde{x}_k + \tilde{t}_k \tilde{d}^k$$
 with $\tilde{d}^k = -\nabla \tilde{f}(\tilde{x}_k)$

and $\tilde{t}_k = t(\tilde{d}^k)$ the optimal stepsize choice as determined in Exercise 5 (for \tilde{f}).

Let $(x^k)_{k\in\mathbb{N}}$ be generated by the gradient-like method with preconditioner H,

$$x^{k+1} = x^k + t_k d^k$$
 with $d^k = H^{-1}(-\nabla f(x^k))$

and $t_k = t(d^k)$ the optimal stepsize choice as determined in Exercise 5.

Show (by induction) that the two optimization methods are equivalent, i.e., for all $k \in \mathbb{N}$ it holds:

$$x^k = H^{-\frac{1}{2}} \tilde{x}^k.$$