Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Sabrina Rogg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/rogg/de/teaching/

Sheet 6

Tutorial: 7th July

Exercise 17 (Scaled gradient method)
Consider the quadratic function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
f(x)=\frac{1}{2} x^{\top}\left(\begin{array}{cc}
100 & -1 \\
-1 & 2
\end{array}\right) x+\left(\begin{array}{ll}
1 & 1
\end{array}\right) x+3
$$

Implement a modified version of the Gradient Method where the update is

$$
x^{k+1}=x^{k}+t_{k} d^{k} \text { with } d^{k}=M^{-1}\left(-\nabla f\left(x^{k}\right)\right)
$$

and with the exact stepsize t^{k} (Exercise 5). M is one of the following matrices:

$$
M=\mathrm{Id}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad M=\nabla^{2} f=\left(\begin{array}{cc}
100 & -1 \\
-1 & 2
\end{array}\right), \quad M=\left(\begin{array}{cc}
f_{x x} & 0 \\
0 & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
100 & 0 \\
0 & 2
\end{array}\right) .
$$

As basis you can use the Gradient Method you implemented for the first program sheet. Determine the number of gradient steps required for finding the minimum of f with the different matrices M and initial value $\mathrm{x} 0=[1.5 ; 0.6]$ (use $\epsilon=10^{-9}$). How close is the computed point to the exact analytical minimum? Explain your observations.

Exercise 18 (Cauchy-step property)
The Cauchy step is defined as $s_{a}^{C P}=-t_{a} \nabla f\left(x_{a}\right)$, where t_{a} is given by (see the lecture notes)

$$
t_{a}= \begin{cases}\frac{\Delta_{a}}{\left\|\nabla f\left(x_{a}\right)\right\|} & \text { if } \nabla f\left(x_{a}\right)^{\top} H_{a} \nabla f\left(x_{a}\right) \leq 0, \\ \min \left(\frac{\Delta_{a}}{\left\|\nabla f\left(x_{a}\right)\right\|}, \frac{\left\|\nabla f\left(x_{a}\right)\right\|^{2}}{\nabla f\left(x_{a}\right)^{\top} H_{a} \nabla f\left(x_{a}\right)}\right) & \text { if } \nabla f\left(x_{a}\right)^{\top} H_{a} \nabla f\left(x_{a}\right)>0 .\end{cases}
$$

Once the Cauchy point $x_{a}^{C P}=x_{a}+s_{a}^{C P}$ is computed, show that there is a sufficient decreasing in the quadratic model, i.e, the Cauchy point satisfies

$$
m_{a}\left(x_{a}\right)-m_{a}\left(x_{a}^{C P}\right) \geq \frac{1}{2}\left\|\nabla f\left(x_{a}\right)\right\| \min \left(\Delta_{a}, \frac{\left\|\nabla f\left(x_{a}\right)\right\|}{1+\left\|H_{a}\right\|}\right) .
$$

Exercise 19 (Dogleg strategy)
Let us consider the quadratic model of the function f in x_{a}

$$
m_{a}(x)=f\left(x_{a}\right)+\nabla f\left(x_{a}\right)^{\top}\left(x-x_{a}\right)+\frac{1}{2}\left(x-x_{a}\right)^{\top} B_{a}\left(x-x_{a}\right),
$$

with B_{a} positive definite (Hessian matrix in x_{a} or an approximation of it). In the trustregion subproblem we approximately solve

$$
\begin{equation*}
\min _{\left\|x-x_{a}\right\|<\Delta_{a}} m_{a}(x) \tag{1}
\end{equation*}
$$

If the trust region is big enough, i.e as if there is no constraint $\left\|x-x_{a}\right\|<\Delta_{a}$, the exact (global) solution to (1) is the (quasi-)Newton point

$$
x_{a}^{Q N}=x_{a}-B_{a}^{-1} \nabla f\left(x_{a}\right)
$$

The idea of the dogleg method is as follows: Minimize m_{a} along a path consisting of two straight lines: one from the current point x_{a} to the Cauchy point $x_{a}^{C P}$ and the other one from $x_{a}^{C P}$ to the (quasi-)Newton point $x_{a}^{Q N}$. This path is described as

$$
x(\tau)= \begin{cases}x_{a}+\tau\left(x_{a}^{C P}-x_{a}\right) & \tau \in[0,1] \\ x_{a}^{C P}+(\tau-1)\left(x_{a}^{Q N}-x_{a}^{C P}\right) & \tau \in(1,2]\end{cases}
$$

Show that $h(\tau):=m_{a}(x(\tau))$ is a decreasing function of τ.
Hint: consider m_{a} on the two straight lines separately.

