Universitat Konstanz Sommersemester 2015
Fachbereich Mathematik und Statistik

Prof. Dr. Stefan Volkwein

Sabrina Rogg

Optimierung
http://www.math.uni-konstanz.de /numerik /personen /rogg/de/teaching/

Program 2 (6 Points)

Submission by E-Mail: 2015/06/08, 10:00 h

Optimization with boundary constraints

Implementation of the Gradient Projection Algorithm

So far we looked for (local) minimizer z* € R™ of a sufficiently smooth and real valued
function f : R™ — R in an open set () C R™:

x* = argminf(x).
e

The first order necessary optimality condition is V f(z*) = 0.

If Q is given as the closed and bounded domain

Q:H[al,bz] :{CL'ERTL ‘ Vizl,...,n: aigxi Sbl, ai,bi ER, ai<bi},

i=1

the above condition must be changed to admit the possibility that a (local) minimizer is
located on the boundary of the domain. In Exercise 11 we prove the following modified

first order condition:
Vi) (z—2%)>0 foralzcq. (1)

The canonical projection of x € R™ on the closed set € is given by P : R" — Q,

a; if xZ; S a;

It can be shown:
x” satisfies condition (1) < 2" = P(z* — AV f(z")) forall A >0

The gradient projection algorithm (using the normalized gradient as descent direction)

works as follows: Given a current iterate z*. Let d* := — Hgﬁig\\' The next iterate is set

to

" = P(aF + tpdb), (2)

where ¢, is a step length satisfying the following modified Armijo rule (compare Exercise

12):

JE) = faf) < =t -t
k

As termination criterion we use

lz* = P(a" = Vf(=")ll <e

Part 1: Write a file projection.m for the function

function [px] = projection(x, a, b)

(3)

with the current point x € R", lower bound a € R" and upper bound b € R" as input
arguments. The function returns the (pointwise) projected point px € R™ according to
the canonical projection P. Note that this function can be implemented in one line.
Test your function for the rectangular 2-D domain defined by the lower bound (lower left
corner) a = (—1;—1)" and the upper bound (upper right corner) b = (1;1)": compute
the projection P(x) of points x = y + td € R? with y € R? as given in the table below,
direction d = (1.5;1.5)7 € R?, step sizes t = 0 and ¢t = 1. For validation compare your
results to the projections given in the table:

=
~

0] P(x) fort=1|

| Points y: || P(x) fo

=) L-1) | (—05 05
(—1;-1) (—1;-1) (0.5;0.5)
(—05,05) | (—0.5,0.5) 1;1)
(2;0.5) (1;0.5) (1;1)
(1;-0.5) (1;-0.5) (1;1)

Table 1: Testing points and their projections with respect to ¢

Part 2: Write a function

function [t] =

for the Armijo step size strategy with termination condition (3).

are as follows:

fhandle: function handle

x: current point

d: descent direction

t0: initial step size

modarmijo(fhandle, x, d, tO, alpha, beta, amax, a, b)

The input arguments

alpha, beta: parameters for the Armijo rule, the backtracking strategy

amax : maximum number of iterations

a, b: projection bounds

Part 3: Implement the gradient projection algorithm as described above. Generate a file
gradproj.m for the function

function [X] = gradproj(fhandle, x0O, epsilon, nmax, tO, alpha, beta, amax, a, b)
with input parameters:

e fhandle: function handle

e x0: initial point

e epsilon: for the termination condition.

e nmax: maximum number of iteration steps

e alpha, beta, amax: parameters for the Armijo algorithm

e a, b: projection bounds

The program should return a matrix X = [x0, x1, x2, ...] containing the whole iter-
ations.

Part 4: Call the function gradproj from a main file main.m to test your program for the
Rosenbrock function
function [f,g] = rosenbrock(x)

with input argument x € R? and output arguments the corresponding function value f
€ R and gradient g € R?. Use the parameters epsilon=1.0e-2, nmax=1.5e+3, t0=1,
alpha=1.0e-2, beta=0.5, amax = 30. Take the following initial values and bounds:

1. x0=[1;-0.5], a=[-1;-1] and b=[2;2]
2. x0=[-1;-0.5], a=[-2;-2] and b=[2;0]
3. x0=[-2;2], a=[-2;-2] and b=[2;2]

Visualize the results in suitable plots and write your observations in the written report.

