Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Sabrina Rogg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/rogg/de/teaching/

Program 2 (6 Points)

Submission by E-Mail: 2015/06/08, 10:00 h

Optimization with boundary constraints
 Implementation of the Gradient Projection Algorithm

So far we looked for (local) minimizer $x^{*} \in \mathbb{R}^{n}$ of a sufficiently smooth and real valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in an open set $\Omega \subseteq \mathbb{R}^{n}$:

$$
x^{*}=\underset{x \in \Omega}{\operatorname{argmin}} f(x) .
$$

The first order necessary optimality condition is $\nabla f\left(x^{*}\right)=0$.
If Ω is given as the closed and bounded domain

$$
\Omega=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]=\left\{x \in \mathbb{R}^{n} \mid \forall i=1, \ldots, n: a_{i} \leq x_{i} \leq b_{i}, a_{i}, b_{i} \in \mathbb{R}, a_{i}<b_{i}\right\},
$$

the above condition must be changed to admit the possibility that a (local) minimizer is located on the boundary of the domain. In Exercise 11 we prove the following modified first order condition:

$$
\begin{equation*}
\nabla f\left(x^{*}\right)^{\top}\left(x-x^{*}\right) \geq 0 \quad \text { for all } x \in \Omega \tag{1}
\end{equation*}
$$

The canonical projection of $x \in \mathbb{R}^{n}$ on the closed set Ω is given by $P: \mathbb{R}^{n} \rightarrow \Omega$,

$$
(P(x))_{i}:= \begin{cases}a_{i} & \text { if } x_{i} \leq a_{i} \\ x_{i} & \text { if } x_{i} \in\left(a_{i}, b_{i}\right) \\ b_{i} & \text { if } x_{i} \geq b_{i}\end{cases}
$$

It can be shown:

$$
x^{*} \text { satisfies condition }(1) \quad \Leftrightarrow \quad x^{*}=P\left(x^{*}-\lambda \nabla f\left(x^{*}\right)\right) \text { for all } \lambda \geq 0
$$

The gradient projection algorithm (using the normalized gradient as descent direction) works as follows: Given a current iterate x^{k}. Let $d^{k}:=-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}$. The next iterate is set to

$$
\begin{equation*}
x^{k+1}=P\left(x^{k}+t_{k} d^{k}\right), \tag{2}
\end{equation*}
$$

where t_{k} is a step length satisfying the following modified Armijo rule (compare Exercise 12):

$$
\begin{equation*}
f\left(x^{k+1}\right)-f\left(x^{k}\right) \leq \frac{-\alpha}{t_{k}}\left\|x^{k}-x^{k+1}\right\|^{2} \tag{3}
\end{equation*}
$$

As termination criterion we use

$$
\left\|x^{k}-P\left(x^{k}-\nabla f\left(x^{k}\right)\right)\right\|<\epsilon
$$

Part 1: Write a file projection.m for the function

$$
\text { function }[p x]=\operatorname{projection}(x, a, b)
$$

with the current point $\mathrm{x} \in \mathbb{R}^{n}$, lower bound $\mathrm{a} \in \mathbb{R}^{n}$ and upper bound $\mathrm{b} \in \mathbb{R}^{n}$ as input arguments. The function returns the (pointwise) projected point $\mathrm{px} \in \mathbb{R}^{n}$ according to the canonical projection P. Note that this function can be implemented in one line. Test your function for the rectangular 2-D domain defined by the lower bound (lower left corner) $a=(-1 ;-1)^{\top}$ and the upper bound (upper right corner) $b=(1 ; 1)^{\top}$: compute the projection $P(x)$ of points $x=y+t d \in \mathbb{R}^{2}$ with $y \in \mathbb{R}^{2}$ as given in the table below, direction $d=(1.5 ; 1.5)^{\top} \in \mathbb{R}^{2}$, step sizes $t=0$ and $t=1$. For validation compare your results to the projections given in the table:

Points $y:$	$P(x)$ for $t=0$	$P(x)$ for $t=1$
$(-2 ;-2)$	$(-1 ;-1)$	$(-0.5 ;-0.5)$
$(-1 ;-1)$	$(-1 ;-1)$	$(0.5 ; 0.5)$
$(-0.5 ; 0.5)$	$(-0.5 ; 0.5)$	$(1 ; 1)$
$(2 ; 0.5)$	$(1 ; 0.5)$	$(1 ; 1)$
$(1 ;-0.5)$	$(1 ;-0.5)$	$(1 ; 1)$

Table 1: Testing points and their projections with respect to t

Part 2: Write a function

```
function [t] = modarmijo(fhandle, x, d, t0, alpha, beta, amax, a, b)
```

for the Armijo step size strategy with termination condition (3). The input arguments are as follows:

- fhandle: function handle
- x: current point
- d: descent direction
- t0: initial step size
- alpha, beta: parameters for the Armijo rule, the backtracking strategy
- amax : maximum number of iterations
- a, b: projection bounds

Part 3: Implement the gradient projection algorithm as described above. Generate a file gradproj.m for the function
function $[\mathrm{X}]=$ gradproj(fhandle, x 0 , epsilon, $\mathrm{nmax}, \mathrm{t} 0$, alpha, beta, amax, a, b)
with input parameters:

- fhandle: function handle
- x0: initial point
- epsilon: for the termination condition.
- nmax: maximum number of iteration steps
- alpha, beta, amax: parameters for the Armijo algorithm
- a, b: projection bounds

The program should return a matrix $\mathrm{X}=[\mathrm{x} 0, \mathrm{x} 1, \mathrm{x} 2, \ldots]$ containing the whole iterations.

Part 4: Call the function gradproj from a main file main.m to test your program for the Rosenbrock function

$$
\text { function }[f, g]=\text { rosenbrock }(x)
$$

with input argument $x \in \mathbb{R}^{2}$ and output arguments the corresponding function value f $\in \mathbb{R}$ and gradient $g \in \mathbb{R}^{2}$. Use the parameters epsilon=1.0e-2, nmax $=1.5 \mathrm{e}+3, \mathrm{t} 0=1$, alpha=1.0e-2, beta=0.5, amax $=30$. Take the following initial values and bounds:

1. $\mathrm{x} 0=[1 ;-0.5], \mathrm{a}=[-1 ;-1]$ and $\mathrm{b}=[2 ; 2]$
2. $\mathrm{x} 0=[-1 ;-0.5], \mathrm{a}=[-2 ;-2]$ and $\mathrm{b}=[2 ; 0]$
3. $\mathrm{x} 0=[-2 ; 2], \mathrm{a}=[-2 ;-2]$ and $\mathrm{b}=[2 ; 2]$

Visualize the results in suitable plots and write your observations in the written report.

