Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Sabrina Rogg

## Optimierung

http://www.math.uni-konstanz.de/numerik/personen/rogg/de/teaching/

## Program 3 (6 Points)

## Submission by E-Mail: 2015/06/29, 10:00 h

$\underline{\text { Implementation of a globalized (Quasi-)Newton method }}$

Write Part 1 and Part 2 together in a main file main.m.
Part 1: Implement the local Newton method for optimization known from the lecture (Algorithm 5.6 with $F=\nabla f$ ). Write a function

$$
\text { function }[\mathrm{X}]=\text { newtonmethod(fhandle, } \mathrm{x} 0 \text {, epsilon, } \mathrm{nmax} \text { ) }
$$

with input arguments

- fhandle: function handle to a function of form $[f, g, H]=$ functionname ( $x$ ) (the output values are the function value, the gradient and the Hessian matrix corresponding to the input argument x ).
- x 0 : initial point
- epsilon: tolerance for the termination condition $\left\|\nabla f\left(x^{k}\right)\right\|<\epsilon$
- nmax : maximum number of iterations

The program should return a matrix $X=[x 0, x 1, x 2, \ldots]$ containing the whole iterations.

Test your program by using the negative cosine function. Write herefore a function file ncosh.m which is of the above form. Use the parameters epsilon $=1 \mathrm{e}-5$ and $\mathrm{nmax}=50$. As initial points choose $\mathrm{x} 0=1.1655,1.1656,1.9$, $\operatorname{atan}(-\mathrm{pi})$. Explain the results you get and use suitable plots for showing X. For comparison plot also the iterates you obtain by applying the function gradmethod from Program 1 with t0 $=1$, alpha $=1 \mathrm{e}-2$, beta $=0.5$ and $\operatorname{amax}=30$.

Part 2: In this part we modify the local Newton method such that it is globally convergent. In addition, we add a switch to a globalized BFGS method if the Hessian matrix of the considered function is not given. The resulting algorithm is defined in Algorithm 1 and will be implemented in the function globalnewtonmethod. Use the Matlab function
nargout to identify if the Hessian is provided or not. Note that the inequality in Line 9 of Algorithm 1 can be interpreted as a generalized ankle condition.

```
Algorithm 1
Require: Initial point \(x^{0}\), stopping tolerance \(\varepsilon>0\), maximal iteration number \(n_{\max }\),
    \(\alpha_{1}, \alpha_{2}>0, p>0\), and (for Armijo) an initial step size \(t_{0}^{A}, \alpha^{A} \in(0,1), \beta^{A} \in(0,1)\),
    maximal iteration number \(a_{\text {max }}\)
    \(n=0\);
    if \(\nabla^{2} f\) is given then
        \(H_{n}=\nabla^{2} f\left(x^{0}\right)\)
    else
        \(H_{n}=I\)
    end if
    while \(\left\|\nabla f\left(x^{n}\right)\right\|>\varepsilon\) and \(n<n_{\max }\) do
        Compute \(d^{n}\) by solving \(H_{n} d^{n}=-\nabla f\left(x^{n}\right)\);
        if \(\nabla^{2} f\) is given and \(-\nabla f\left(x^{n}\right)^{\top} d^{n}<\min \left\{\alpha_{1}, \alpha_{2}\left\|d^{n}\right\|^{p}\right\}\left\|d^{n}\right\|^{2}\) then
            \(d^{n}=-\nabla f\left(x^{n}\right)\)
        end if
        Compute a stepsize \(t_{n}\) using Armijo rule (see Program 1);
        Set \(x^{n+1}=x^{n}+t_{n} d^{n}\);
        if \(\nabla^{2} f\) is given then
            \(H_{n+1}=\nabla^{2} f\left(x^{n+1}\right)\)
        else
            \(s^{n}=x^{n+1}-x^{n}, y^{n}=\nabla f\left(x^{n+1}\right)-\nabla f\left(x^{n}\right)\)
            if \(\left(y^{n}\right)^{\top} s^{n}>0\) then
            Set \(H_{n+1}=H_{n}+\frac{y^{n}\left(y^{n}\right)^{\top}}{\left(y^{n}\right)^{\top} s^{n}}-\frac{H_{n} s^{n}\left(H_{n} s^{n}\right)^{\top}}{\left(s^{n}\right)^{\top} H_{n} s^{n}}\)
            else
                Set \(H_{n+1}=I\)
            end if
        end if
        Set \(n=n+1\);
    end while
```

Write the function in the form

```
[X] = globalnewtonmethod(fhandle, x0, epsilon, alpha1, alpha2, p, ...
, t0, alpha, beta, nmax, amax)
```

Test your program as follows:

1. Use the negative cosine function as in Part 1 with additional parameters $p=1 / 10$ and alpha1 $=$ alpha2 $=1 \mathrm{e}-6$. Write herefore an additional function file ncos.m which only returns the function- and gradient value.
2. Use the Rosenbrock function $f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}, x=\left(x_{1}, x_{2}\right)^{\top} \in \mathbb{R}^{2}$, with the parameter setting from Program 1 but with $n \max =100$, epsilon $=1 \mathrm{e}-5$ and starting points $[1 ;-0.5]$ and $[-1.5 ;-1]$. Set alpha1 $=$ alpha2 $=1 e-6$ and
$p=1 / 10$. Use the function file rosenbrock.m from Program 1 and write a new one, rosenbrockH.m, which additionally returns the Hessian matrix computed in x.

Compare the two methods under consideration and take a look at the following: Does the Armijo algorithm have to reduce the (initial) step size 1? In case the exact Hessian is used: When is the algorithm forced to set $d^{n}=-\nabla f\left(x^{n}\right)$ (Line 10)? In case of BFGS: Is the algorithm forced to reset $H_{n+1}=I$ (Line 21)?

Comment on your observations in the written report and visualize your results in suitable plots.

