
Universität Konstanz Sommersemester 2015
Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Sabrina Rogg

Optimierung
http://www.math.uni-konstanz.de/numerik/personen/rogg/de/teaching/

Program 3 (6 Points)

Submission by E-Mail: 2015/06/29, 10:00 h

Implementation of a globalized (Quasi-)Newton method

Write Part 1 and Part 2 together in a main file main.m.

Part 1: Implement the local Newton method for optimization known from the lecture
(Algorithm 5.6 with F = ∇f). Write a function

function [X] = newtonmethod(fhandle, x0, epsilon, nmax)

with input arguments

• fhandle: function handle to a function of form [f,g,H] = functionname(x) (the
output values are the function value, the gradient and the Hessian matrix corres-
ponding to the input argument x).

• x0: initial point

• epsilon: tolerance for the termination condition ‖∇f(xk)‖ < ε

• nmax : maximum number of iterations

The program should return a matrix X = [x0, x1, x2, ...] containing the whole iter-
ations.

Test your program by using the negative cosine function. Write herefore a function file
ncosH.m which is of the above form. Use the parameters epsilon = 1e-5 and nmax = 50.
As initial points choose x0 = 1.1655, 1.1656, 1.9, atan(-pi). Explain the results
you get and use suitable plots for showing X. For comparison plot also the iterates you ob-
tain by applying the function gradmethod from Program 1 with t0 = 1, alpha = 1e-2,
beta = 0.5 and amax = 30.

Part 2: In this part we modify the local Newton method such that it is globally conver-
gent. In addition, we add a switch to a globalized BFGS method if the Hessian matrix
of the considered function is not given. The resulting algorithm is defined in Algorithm 1
and will be implemented in the function globalnewtonmethod. Use the Matlab function



nargout to identify if the Hessian is provided or not. Note that the inequality in Line 9
of Algorithm 1 can be interpreted as a generalized ankle condition.

Algorithm 1
Require: Initial point x0, stopping tolerance ε > 0, maximal iteration number nmax,

α1, α2 > 0, p > 0, and (for Armijo) an initial step size tA0 , αA ∈ (0, 1), βA ∈ (0, 1),
maximal iteration number amax

1: n = 0;
2: if ∇2f is given then
3: Hn = ∇2f(x0)
4: else
5: Hn = I
6: end if
7: while ‖∇f(xn)‖ > ε and n < nmax do
8: Compute dn by solving Hnd

n = −∇f(xn);
9: if ∇2f is given and −∇f(xn)>dn < min{α1, α2‖dn‖p}‖dn‖2 then

10: dn = −∇f(xn)
11: end if
12: Compute a stepsize tn using Armijo rule (see Program 1);
13: Set xn+1 = xn + tnd

n;
14: if ∇2f is given then
15: Hn+1 = ∇2f(xn+1)
16: else
17: sn = xn+1 − xn, yn = ∇f(xn+1)−∇f(xn)
18: if (yn)>sn > 0 then
19: Set Hn+1 = Hn +

yn(yn)>

(yn)>sn
− Hnsn(Hnsn)>

(sn)>Hnsn

20: else
21: Set Hn+1 = I
22: end if
23: end if
24: Set n = n+ 1;
25: end while

Write the function in the form

[X] = globalnewtonmethod(fhandle, x0, epsilon, alpha1, alpha2, p, ...

, t0, alpha, beta, nmax, amax)

Test your program as follows:

1. Use the negative cosine function as in Part 1 with additional parameters p = 1/10
and alpha1 = alpha2 = 1e-6. Write herefore an additional function file ncos.m
which only returns the function- and gradient value.

2. Use the Rosenbrock function f(x) = 100(x2 − x21)2 + (1− x1)2, x = (x1, x2)
> ∈ R2,

with the parameter setting from Program 1 but with nmax=100, epsilon = 1e-5
and starting points [1;-0.5] and [-1.5; -1]. Set alpha1 = alpha2 = 1e-6 and



p = 1/10. Use the function file rosenbrock.m from Program 1 and write a new
one, rosenbrockH.m, which additionally returns the Hessian matrix computed in x.

Compare the two methods under consideration and take a look at the following: Does
the Armijo algorithm have to reduce the (initial) step size 1? In case the exact Hessian
is used: When is the algorithm forced to set dn = −∇f(xn) (Line 10)? In case of BFGS:
Is the algorithm forced to reset Hn+1 = I (Line 21)?

Comment on your observations in the written report and visualize your results in suitable
plots.


