Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Sabrina Rogg

## Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

## Sheet 1

## Deadline for hand-in: 18.04.2016 at lecture

## Exercise 1

(2 Points)
Determine and identify the local critical point(s) of the Rosenbrock function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

## Exercise 2

(2 Points)
Show that the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f\left(x_{1}, x_{2}\right)=8 x_{1}+12 x_{2}+x_{1}^{2}-2 x_{2}^{2}
$$

has only one stationary point, and that it is neither a maximum nor minimum, but a saddle point. Sketch the contour lines of $f$ (you can use Matlab).

## Exercise 3

Consider the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f\left(x_{1}, x_{2}\right)=3 x_{1}^{4}-4 x_{1}^{2} x_{2}+x_{2}^{2}
$$

Prove that $\tilde{x}=(0,0)$ is a critical point of $f$. Show further, that a restriction of $f$ on any line through $\tilde{x}$ has a strict local minimum in $\tilde{x}$. Is $\tilde{x}$ a local minimizer of $f$ ?
Hint: The restriction of $f$ on the line $\gamma$ through $\tilde{x}$ is defined as $g(t)=f(\gamma(t)), t \in \mathbb{R}$, with $\gamma(t):=\tilde{x}+t d$, where $d \in \mathbb{R}^{2} \backslash\{0\}$ is an arbitrary but fixed direction.
For the last question: Take a look at a non-straight path.

