Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Stefan Volkwein Sabrina Rogg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 2

Deadline for hand-in: 2.05.2016 at lecture

Exercise 4

Consider the quadratic function $f : \mathbb{R}^n \to \mathbb{R}$,

$$f(x) = \frac{1}{2} \langle x, Qx \rangle + \langle c, x \rangle + \gamma$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, $c \in \mathbb{R}^n$ and $\gamma \in \mathbb{R}$. Let $x^k \in \mathbb{R}^n$ be arbitrary and $d^k \in \mathbb{R}^n$ an arbitrary descent direction of f in x^k .

Find the (exact) step size s^* in direction d^k , i.e.

$$s^* = \operatorname*{argmin}_{s>0} f(x^k + sd^k).$$

Exercise 5

- 1. Let $X \subset \mathbb{R}^n$ convex and $f: X \to \mathbb{R}$ convex with $f(X) \subset I$ for some open interval $I \subset \mathbb{R}$. Let $g: I \to \mathbb{R}$ be a convex and monotone increasing function.
 - a) Show that $h: X \to \mathbb{R}$ defined by $h := g \circ f$ is convex.
 - b) Is a) still true when the function g is not monotone increasing?
- 2. Is the product of two convex functions convex?

Exercise 6

Consider the unconstrained optimization problem

$$\min_{x \in \mathbb{R}^2} f(x) := -e^{-((x_1 - \pi)^2 + (x_2 - \pi)^2)},\tag{1}$$

with $f : \mathbb{R}^2 \to \mathbb{R}$. Show that f has only one stationary point and that $x^* = (\pi, \pi)^{\top}$ is the global solution to problem (1). We modify the objective functional as follows:

$$\tilde{f}(x) = f(x) + c\sin(x_1)\cos(x_2 + \frac{\pi}{2}),$$

with c = 0.1. Visualize the functions f and \tilde{f} using Matlab. What do you observe concerning local and global minima?

(2 Points)

(3 Points)

(3 Points)