Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Sabrina Rogg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 2

Deadline for hand-in: 2.05.2016 at lecture

Exercise 4

(2 Points)
Consider the quadratic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f(x)=\frac{1}{2}\langle x, Q x\rangle+\langle c, x\rangle+\gamma
$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, $c \in \mathbb{R}^{n}$ and $\gamma \in \mathbb{R}$. Let $x^{k} \in \mathbb{R}^{n}$ be arbitrary and $d^{k} \in \mathbb{R}^{n}$ an arbitrary descent direction of f in x^{k}.
Find the (exact) step size s^{*} in direction d^{k}, i.e.

$$
s^{*}=\underset{s>0}{\operatorname{argmin}} f\left(x^{k}+s d^{k}\right) .
$$

Exercise 5

(3 Points)

1. Let $X \subset \mathbb{R}^{n}$ convex and $f: X \rightarrow \mathbb{R}$ convex with $f(X) \subset I$ for some open interval $I \subset \mathbb{R}$. Let $g: I \rightarrow \mathbb{R}$ be a convex and monotone increasing function.
a) Show that $h: X \rightarrow \mathbb{R}$ defined by $h:=g \circ f$ is convex.
b) Is a) still true when the function g is not monotone increasing?
2. Is the product of two convex functions convex?

Exercise 6

Consider the unconstrained optimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{2}} f(x):=-e^{-\left(\left(x_{1}-\pi\right)^{2}+\left(x_{2}-\pi\right)^{2}\right)} \tag{1}
\end{equation*}
$$

with $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Show that f has only one stationary point and that $x^{*}=(\pi, \pi)^{\top}$ is the global solution to problem (1). We modify the objective functional as follows:

$$
\tilde{f}(x)=f(x)+c \sin \left(x_{1}\right) \cos \left(x_{2}+\frac{\pi}{2}\right)
$$

with $c=0.1$. Visualize the functions f and \tilde{f} using Matlab. What do you observe concerning local and global minima?

