Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Sabrina Rogg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 4

Deadline for hand-in: 30.05.2016 at lecture

Exercise 10 (Newton's method for finding roots)
(3 Points)
Consider the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=x^{3}-2 x+2 \text { and } g(x)=\sin (x) .
$$

(1) We apply Newton's method to the function f with starting point $x_{0}=0$. Show that the Newton iteration has two accumulation points which are both not roots of f.
(2) Find a starting point x_{0} such that the Newton iteration for the funtion g is of form $x_{k}=x_{0}+k \pi, k \in \mathbb{N}_{>0}$.
(3) Generate suitable plots (Matlab) for illustrating the non-convergence in (1) and (2).

Optimal control problem

We consider the following optimization problem:

$$
\begin{equation*}
\min J(y, u) \quad \text { subject to } \quad A y=B u \tag{1}
\end{equation*}
$$

with $J: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}, A \in \mathbb{R}^{n \times n}$ invertible and $B \in \mathbb{R}^{n \times m}$.
So far, we have only considered optimization problems where the unknowns play similar roles. Since the matrix A^{-1} exists this is different here. For each $u \in \mathbb{R}^{m}$ ("arbitrarily chosen") there exists an associated solution $y \in \mathbb{R}^{n}$ to $A y=B u$ by

$$
\begin{equation*}
y=A^{-1} B u \tag{2}
\end{equation*}
$$

This is why we call u the control and y the associated state.
We can introduce the reduced cost functional $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
f(u):=J\left(A^{-1} B u, u\right), \tag{3}
\end{equation*}
$$

which depends only on the control variable. This gives the unconstrained optimization problem

$$
\begin{equation*}
\min _{u \in \mathbb{R}^{m}} f(u) \tag{4}
\end{equation*}
$$

In the following we consider the quadratic cost functional

$$
\begin{equation*}
J(y, u)=\frac{1}{2}\left\|y-y_{d}\right\|_{2}^{2}+\frac{\lambda}{2}\|u\|_{2}^{2}, \tag{5}
\end{equation*}
$$

where $\lambda>0$.

Exercise 11

- Write down the reduced cost functional for (5) and compute the reduced gradient $\nabla f(u)$.
- We derive an optimality system from the necessary condition $\nabla f\left(u^{*}\right)=0$. It consists of three equations containing no inverse matrices.
Let $u^{*} \in \mathbb{R}^{m}$ with $\nabla f\left(u^{*}\right)=0$. Perform the following steps:

1. The first equation is $A y^{*}=B u^{*}$. Reinsert the state y^{*} into the formula for $\nabla f\left(u^{*}\right)$.
2. We introduce an additional variable: The adjoint state $p^{*} \in \mathbb{R}^{n}$ solving

$$
\begin{equation*}
A^{T} p^{*}=\left(y^{*}-y_{d}\right) . \tag{6}
\end{equation*}
$$

This is the second equation of the optimality system. Now, insert p^{*} into the formula for $\nabla f\left(u^{*}\right)$.
3. Derive the third equation by solving $\nabla f\left(u^{*}\right)=0$.

Exercise 12 (Lagrange formalisme)
Define the Lagrange function by

$$
\begin{align*}
& L: \mathbb{R}^{2 n+m} \rightarrow \mathbb{R} \\
& L(y, u, p)=J(y, u)-\langle A y-B u, p\rangle_{2} . \tag{7}
\end{align*}
$$

Show that the optimality system from Exercise 11 is equivalent to

$$
\begin{equation*}
\nabla L\left(y^{*}, u^{*}, p^{*}\right)=0 \tag{8}
\end{equation*}
$$

which is the necessary optimality condition known from Analysis II.

