Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Stefan Volkwein Sabrina Rogg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 6

Deadline for hand-in: 27.06.2016 at lecture

Exercise 16 (Scaled gradient method) Consider the quadratic function $f : \mathbb{R}^2 \to \mathbb{R}$,

$$f(x) = \frac{1}{2}x^{\top} \begin{pmatrix} 100 & -1 \\ -1 & 2 \end{pmatrix} x + \begin{pmatrix} 1 & 1 \end{pmatrix} x + 3.$$

Implement the gradient-like method where the update is

$$x^{k+1} = x^k + t_k d^k$$
 with $d^k = M^{-1}(-\nabla f(x^k))$

and with the exact stepsize t^k (Exercise 4). M is one of the following matrices:

$$M = \text{Id} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad M = \nabla^2 f = \begin{pmatrix} 100 & -1 \\ -1 & 2 \end{pmatrix}, \quad M = \begin{pmatrix} f_{xx} & 0 \\ 0 & f_{yy} \end{pmatrix} = \begin{pmatrix} 100 & 0 \\ 0 & 2 \end{pmatrix}.$$

As basis use the gradient method you implemented for the first program sheet. Determine the number of steps required for finding the minimum of f with the different matrices M and initial value $\mathbf{x0} = [1.5; 0.6]$ (use $\epsilon = 10^{-9}$). How close are the computed points to the exact analytical minimum? For $M = \nabla^2 f$ compute t_k exactly. What can you conclude? Explain your results.

Trust Region Method

Exercise 17

We consider the function

$$f : \mathbb{R} \to \mathbb{R}, \quad f(x) = x^3 + 2x^2 - 11x - 12.$$
 (1)

We take a look at one step in the trust region algorithm for different points $x_a \in \mathbb{R}$. For every x_a below build the quadratic model m_a of f around x_a with $H_a = \nabla^2 f(x_a)$ and plot the function f together with the quadratic model m_a (you can use Matlab).

1. $x_a = 3$. Determine the global minimum \tilde{x}_V of m_a . Compute $\rho = \operatorname{ared}_a/\operatorname{pred}_a$ for \tilde{x}_V . Interpret the value of ρ .

(4 Points)

(5 Points)

2. $x_a = -0.5$. Determine the global minimum \tilde{x}_V of m_a . Then, start with $\Delta = \tilde{x}_V - x_a$ and divide Δ by two until the trial point x_V ,

$$x_V = \arg\min m_a(x)$$
 subject to $|x - x_a| \le \Delta$, (2)

satisfies $\rho > 0.2$ (you can use Matlab).

3. $x_a = -1$. What is different here compared to point 1. and 2.? Which point solves always the trust region subproblem (2)?