Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Sabrina Rogg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 6

Deadline for hand-in: 27.06.2016 at lecture

Exercise 16 (Scaled gradient method)
(4 Points)
Consider the quadratic function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
f(x)=\frac{1}{2} x^{\top}\left(\begin{array}{cc}
100 & -1 \\
-1 & 2
\end{array}\right) x+\left(\begin{array}{ll}
1 & 1
\end{array}\right) x+3
$$

Implement the gradient-like method where the update is

$$
x^{k+1}=x^{k}+t_{k} d^{k} \quad \text { with } d^{k}=M^{-1}\left(-\nabla f\left(x^{k}\right)\right)
$$

and with the exact stepsize t^{k} (Exercise 4). M is one of the following matrices:

$$
M=\operatorname{Id}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad M=\nabla^{2} f=\left(\begin{array}{cc}
100 & -1 \\
-1 & 2
\end{array}\right), \quad M=\left(\begin{array}{cc}
f_{x x} & 0 \\
0 & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
100 & 0 \\
0 & 2
\end{array}\right) .
$$

As basis use the gradient method you implemented for the first program sheet. Determine the number of steps required for finding the minimum of f with the different matrices M and initial value $\mathrm{x} 0=[1.5 ; 0.6]$ (use $\epsilon=10^{-9}$). How close are the computed points to the exact analytical minimum? For $M=\nabla^{2} f$ compute t_{k} exactly. What can you conclude? Explain your results.

Trust Region Method

Exercise 17

We consider the function

$$
\begin{equation*}
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=x^{3}+2 x^{2}-11 x-12 \tag{1}
\end{equation*}
$$

We take a look at one step in the trust region algorithm for different points $x_{a} \in \mathbb{R}$. For every x_{a} below build the quadratic model m_{a} of f around x_{a} with $H_{a}=\nabla^{2} f\left(x_{a}\right)$ and plot the function f together with the quadratic model m_{a} (you can use Matlab).

1. $x_{a}=3$. Determine the global minimum \tilde{x}_{V} of m_{a}. Compute $\rho=\operatorname{ared}_{a} / \operatorname{pred}_{a}$ for \tilde{x}_{V}. Interprete the value of ρ.
2. $x_{a}=-0.5$. Determine the global minimum \tilde{x}_{V} of m_{a}. Then, start with $\Delta=\tilde{x}_{V}-x_{a}$ and divide Δ by two until the trial point x_{V},

$$
\begin{equation*}
x_{V}=\arg \min m_{a}(x) \quad \text { subject to } \quad\left|x-x_{a}\right| \leq \Delta \tag{2}
\end{equation*}
$$

satisfies $\rho>0.2$ (you can use Matlab).
3. $x_{a}=-1$. What is different here compared to point 1. and 2.? Which point solves always the trust region subproblem (2)?

