Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Jianjie Lu, Sabrina Rogg

Numerische Verfahren der restringierten Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Program 1 (6 Points)

Submission by E-Mail to sabrina.rogg@uni-konstanz.de:
29.11.2016, 10:00 h

Note:

- Do not forget to write name and email address of the authors in each file and document your code well!
- Only running programs will be considered!
- Stick to the given function and parameter definitions as described below! You should not modify them in name or concerning the input and output arguments.

Consider the domain $\Omega=\left(a_{1}, a_{2}\right)$ and the following Poisson problem

$$
\left\{\begin{array}{l}
\mathrm{y}_{x x}(x)=\mathrm{b}(x) \quad \text { in } \Omega \\
\mathrm{y}\left(a_{1}\right)=\mathrm{g}\left(a_{1}\right) \\
\mathrm{y}\left(a_{2}\right)=\mathrm{g}\left(a_{2}\right)
\end{array}\right.
$$

For numerically solving the problem we consider the discrete points $x_{i}=a_{1}+i \cdot h, i=$ $0, \ldots, n+1$, with $h=\left(a_{2}-a_{1}\right) /(n+1)$. For the inner points we obtain (by using central differences) the system $A y=b \in \mathbb{R}^{n}$, with $b=\left(\mathrm{b}\left(x_{1}\right)+\mathrm{g}\left(a_{1}\right) / h^{2}, \mathrm{~b}\left(x_{2}\right), \ldots, \mathrm{b}\left(x_{n-1}\right), \mathrm{b}\left(x_{n}\right)+\right.$ $\left.\mathrm{g}\left(a_{2}\right) / h^{2}\right)^{\top}, y \approx\left(\mathrm{y}\left(x_{1}\right), \ldots, \mathrm{y}\left(x_{n}\right)\right)^{\top}$ and

$$
A=\frac{1}{h^{2}}\left(\begin{array}{rrrrr}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

We consider the constrained optimization problem

$$
\min J(y)=\frac{1}{2} y^{\top} Q y+y^{\top} d \quad \text { subject to } \quad A y=b
$$

with $Q \in \mathbb{R}^{n \times n}$ and $d \in \mathbb{R}^{n}$. Implement the function
[y,lambda]=myquadprog(Q,d,A,b,flag)
for solving the linear-quadratic problem via direct solve of the KKT-system, where y and lambda are column vectors and flag $\in\{1,2,3\}$ should set the system solver according to the following association: 1 for the QR, 2 for LU and 3 (default) backslash (use the appropriate Matlab functions for the matrix decomposition).
Implement a mymain file which will define all the necessary matrices, calls myquadprog and plots the results, using the following setting:

$$
\mathrm{b}(x)=2 \frac{\cos x}{e^{x}}, \quad \mathrm{~g}(x)=\frac{\sin x}{e^{x}}
$$

and $d=\left(\mathrm{d}\left(x_{1}\right), \ldots, \mathrm{d}\left(x_{n}\right)\right)^{\top}$ with

$$
\mathrm{d}(x)=\frac{\sin 0.2}{e^{0.2}}+(x-0.2)\left(e^{-x} \cos x-e^{-x} \sin x\right)
$$

Test your program with $\Omega=(0,10), Q=I \in \mathbb{R}^{n \times n}$ and solve the quadratic program using the three solvers for $n \in\{1000,5000,10000\}$.
Put the plots of the solutions and your observations in the written report.

