Exercises for
 Theory and Numerics of Partial Differential Equations

http://www.math.uni-konstanz.de/numerik/personen/beermann/en/teaching

Sheet 10

Deadline: Thursday, 26/01, 3:30pm

Exercise 10.1 (Matlab)

(10 points)
Please follow the programming guidelines that can be download under the above url.
This exercise is intended for you to familiarize yourself with a useful Matlab application called the PDE Toolbox. It is a Finite Element (FE) package to solve some elliptic and parabolic PDEs. As an example, consider the following parameter-dependent domain:

and the elliptic PDE:

$$
\begin{equation*}
-\Delta y(x)+\lambda y(x)=b \quad \text { for all } x \in \Omega, \quad \frac{\partial y}{\partial n}(x)+\alpha y(x)=c \quad \text { for all } x \in \partial \Omega \tag{1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{2}$ is given by the interior of the blue line. It depends on the parameters $R>0, a>0$, $\lambda, b, \alpha, c \in \mathbb{R}$. For implementation purposes, declare R and a as global parameters in your main script and make them available in each function. ${ }^{1}$ We will utilize commands from the PDE Toolbox to treat (1) numerically.
0. Familiarizing: For an excellent overview of the workflow with the PDE toolbox, see
http://de.mathworks.com/help/pde/ug/solve-problems-using-pdemodel-objects.html
Familiarize yourself with the idea of how to solve these kinds of problems.

1. Geometry implementation: Write a function geometryFunction.m to describe the geometry of Ω by using a suitable analytical boundary representation. For information about how such a function should look like, see
```
http://de.mathworks.com/help/pde/ug/create-geometry-using-a-geometry-function.html
```

Especially focus on the various way that this function will be called by the PDE toolbox ($0,1,2$ inputs, bs scalar or a vector, ...). Then use the command pdegplot('geometryFunction') to test your results.

The following two points should be solved in a script.
Do not use point-and-click for these!

[^0]2. PDE specification: Specify the PDE coefficients in (1) and generate a mesh with a maximum element size of 0.05 . Visualize the mesh.
3. PDE solving: Solve the problem for various combinations of λ, b and c. Visualize the solution y and its gradient using the subplot command (y on the top, ∇y on the bottom). Do all this by writing and calling an external function solve_elliptic_problem. Write a thorough report documenting how the variation of λ, b, α and c affects the solution $y .{ }^{2}$

Exercise 10.2 (Theory)
Let $\Omega=(0,1) \subset \mathbb{R}$ be discretized in the usual equidistant manner with step size $h>0$:

$$
0=x_{0}<\ldots<x_{N+1}=1, \quad x_{i}=\operatorname{ih}(i=0, \ldots, N+1)
$$

We define the space of piecewise linear Finite Elements:

$$
X_{h}:=\left\{f:[0,1] \rightarrow \mathbb{R}, \mid f \text { continuous, }\left.f\right|_{\left[x_{i}, x_{i+1}\right]} \text { affine linear for } i=0, \ldots, N\right\}
$$

1. Show that the nodal elements given by $\phi_{i} \in X_{h}, \phi_{i}\left(x_{j}\right)=\delta_{i j}(i, j=0, \ldots, N+1)$ are well-defined and form a basis of X_{h}.
2. Show that $X_{h} \subset H^{1}(\Omega)$ by computing and proving the concrete gradients $\nabla \phi_{i}(i=0, \ldots, N+1)$.
3. Derive the Galerkin discretization of the boundary value problem

$$
\begin{align*}
-\Delta y(x) & =f(x) & & \text { for } x \in \Omega \\
\frac{\partial y}{\partial n}(x)+y(x) & =0 & & \text { for } x \in \partial \Omega \tag{2}
\end{align*}
$$

using the Finite Element space X_{h} as both test and ansatz space. Here, $f:(0,1) \rightarrow \mathbb{R}$ is a given inhomogeneity. You should end up with an algebraic system of the type $A y=b$.

[^1]
[^0]: ${ }^{1}$ For information on global variables, see https://de.mathworks.com/help/matlab/ref/global.html

[^1]: ${ }^{2}$ If you see very strange solutions for some combinations, it might not be the fault of your code ;-)

