Exercises for
 Theory and Numerics of Partial Differential Equations

http://www.math.uni-konstanz.de/numerik/personen/beermann/en/teaching

Sheet 12

Deadline: Thursday, 09/02, 3:30pm

Exercise 12.1 (Theory) ${ }^{1}$

(10 points)
Consider the following Semi-linear Parabolic Problem:

$$
\left\{\begin{array}{l}
y_{t}-\Delta y=f(x, t, y) \text { for all }(x, t) \in Q=\Omega \times(0, T) \tag{1}\\
\frac{\partial y}{\partial n}=0 \text { for all } x \in \partial \Omega, t \in(0, T) \\
y(x, 0)=y_{0}(x)
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{2}$, and $f: Q \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Carathéodory Condition ${ }^{2}$. The so-called Nemytskii Operator is a function $N_{f}: L^{\infty}(Q) \rightarrow L^{\infty}(Q)$ defined as follows:

$$
\begin{equation*}
\left[N_{f}(y)\right](x, t)=f(x, t, y(x, t)) \tag{2}
\end{equation*}
$$

Suppose, moreover, that $f(x, t, y)$ satisfies the following properties:
i) There exists a constant $K>0$ such that $|f(x, t, 0)| \leq K$ for almost $(x, t) \in Q$,
ii) $f(x, t, y)$ is locally Lipschitz continuous in y, i.e. for all constants $M>0$ there exists a constant $L(M)>0$ such that for almost $(x, t) \in Q$ and for all $y, z \in[-M, M]$ the following inequality holds:

$$
\begin{equation*}
|f(x, t, y)-f(x, t, z)| \leq L(M)|y-z| \tag{3}
\end{equation*}
$$

Prove that:

1. The Nemytskii Operator is locally Lipschitz continuous in $L^{\infty}(Q)$:

$$
\left\|N_{f}(y)-N_{f}(z)\right\|_{L^{\infty}(Q)} \leq L(M)\|y-z\|_{L^{\infty}(Q)}
$$

for all $y, z \in L^{\infty}(Q)$, with $\|y\|_{L^{\infty}} \leq M$ and $\|z\|_{L^{\infty}} \leq M$,
2. If $f(x, t, y)$ is differentiable in y and f_{y} satisfies i) and ii), then the Nemytskii Operator N_{f} is Fréchetdifferentiable in $L^{\infty}(Q)$ and for all $h \in L^{\infty}(Q)$ satisfies $\left[N_{f}^{\prime}(y) h\right](x, t)=f_{y}(x, t, y(x, t)) h(x, t)$ for almost every $(x, t) \in Q .{ }^{3}$

[^0]Please follow the programming guidelines that can be download under the above url.
Using Matlab PDE Toolbox, solve the following Semiparabolic Problem:

$$
\left\{\begin{array}{l}
y_{t}-\Delta y=f(x, t, y) \text { for all }(x, t) \in Q=\Omega \times(0, T) \tag{4}\\
\frac{\partial y}{\partial n}=0 \text { for all } x \in \partial \Omega, t \in(0, T) \\
y(x, 0)=y_{0}(x)
\end{array}\right.
$$

where $f: Q \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the properties of Exercise 12.1 and $\Omega \subset \mathbb{R}^{2}$ is given by the interior of the blue line, that depends on the parameter $a>0$ in \mathbb{R} as shown in figure:

As in the previous Sheet, declare a as global parameter in your main script and make it available in each function. In order to solve the problem follow these steps:

1. Geometry Implementation: Write a function geometryFunction.m to describe the geometry of Ω by using a suitable analytical boundary representation. Especially focus on the various way that this function will be called by the PDE toolbox ($0,1,2$ inputs, bs scalar or a vector, \ldots) Then use the command pdegplot('geometryFunction') to test your results.

The following two points should be solved in a script.
Do not use point-and-click for these!
2. PDE specification: Specify the PDE coefficients in (4) and generate a mesh with maximum element size 0.05 . Visualize the mesh.
3. PDE solving: Solve the problem for the following choices of $f(x, t, y)$ and $y_{0}(x)$:

- $f(x, t, y)=-y^{3}, y_{0}(x)=10^{-1}\left(x_{1}+x_{2}\right)$ with $x=\left(x_{1}, x_{2}\right) \in \Omega ;$
- $f(x, t, y)=-e^{y}-t, y_{0}(x)=2 \pi\left(\cos \left(2 \pi x_{1}\right)+\sin \left(2 \pi x_{2}\right)\right)$;
- $f(x, t, y)=-\cos (y)-2 \pi \sin \left(2 \pi x_{1}\right) \cos \left(2 \pi x_{2}\right), y_{0}(x)=a$;

Write a function solve_semiparabolic_problem where the problem is solved with the following step:
(a) Specify the boundary condition and the PDE coefficients,
(b) Generate the FE matrices with the command assembleFEMatrices for the linear part,
(c) Derive the weak formulation of the non-linear part,
(d) In each time step, solve the resulting problem with Newton's Method, where for time discretization we choose Implicit Euler Scheme,
(e) Plot the the time evolution of the solution $y(x, t)$ with $t \in[0,1]$ and $x \in \Omega$.

In order to clarify the exercise, we clarify the steps (c) and (d):
(c) For computing the weak formulation of the non-linear part, we need to go back to the theory. Let be V_{h} the FE space with $\operatorname{dim}\left(V_{h}\right)=l$ and $\left\{\phi_{1}, \ldots, \phi_{l}\right\}$ a basis of V_{h}, so we can decompose $f(x, t, y)$ in V_{h} as:

$$
f(x, t, y)=\sum_{i=1}^{l} f_{i}(t, y) \phi_{i}(x)
$$

where $f_{i}(t, y)$ is the corresponding coefficient of the base $\phi_{i} \cdot{ }^{4}$ In order to have the coefficient $N l w_{j}$ of the weak formulation of non-linear part we have to compute:

$$
N l w_{j}=\int_{\Omega} f(x, t, y) \phi_{j}(x) d x=\sum_{i=1}^{l} f_{i}(t, y) \int_{\Omega} \phi_{i}(x) \phi_{j}(x)
$$

so we have, for the numeric part, that $\mathrm{Nlw}=\mathrm{M} * \mathrm{Nl}$ where M is the mass matrix and Nl is the vector of the coefficient $f_{i}(t, y)$.
(d) Because of the non-linear part, we need to use the Newton Method for computing the solution of the FE system. Also think about what a good initial guess for the method could be.

[^1]
[^0]: ${ }^{1}$ Notice that we put the theory before the programming part only for this sheet, because it is important that you make first this exercise to understand the Matlab one.
 ${ }^{2}$ A function $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Carathéodory Condition if $f(x, t, y)$ is a continuous function of y for almost all $(x, t) \in Q$ and a measurable function of (x, t) for all $y \in \mathbb{R}$.
 ${ }^{3}$ With f_{y} we indicate the derivative of f respect to $y: \frac{\partial f}{\partial y}$.

[^1]: ${ }^{4}$ Numerically speaking, $f_{i}(t, y)$ is the values of $f(x, t, y)$ computed on the i-th node of the FE mesh

