Exercises for Theory and Numerics of Partial Differential Equations

http://www.math.uni-konstanz.de/numerik/personen/beermann/en/teaching

Sheet 12

Deadline: Thursday, 09/02, 3:30pm

Exercise 12.1 $(Theory)^1$

Consider the following Semi-linear Parabolic Problem:

$$\begin{cases} y_t - \Delta y = f(x, t, y) \text{ for all } (x, t) \in Q = \Omega \times (0, T) \\ \frac{\partial y}{\partial n} = 0 \text{ for all } x \in \partial \Omega , t \in (0, T) \\ y(x, 0) = y_0(x) \end{cases}$$
(1)

where $\Omega \subset \mathbb{R}^2$, and $f: Q \times \mathbb{R} \to \mathbb{R}$ satisfies the *Carathéodory Condition*². The so-called Nemytskii Operator is a function $N_f: L^{\infty}(Q) \to L^{\infty}(Q)$ defined as follows:

$$[N_f(y)](x,t) = f(x,t,y(x,t))$$
(2)

Suppose, moreover, that f(x, t, y) satisfies the following properties:

- i) There exists a constant K > 0 such that $|f(x, t, 0)| \le K$ for almost $(x, t) \in Q$,
- ii) f(x, t, y) is locally Lipschitz continuous in y, i.e. for all constants M > 0 there exists a constant L(M) > 0 such that for almost $(x, t) \in Q$ and for all $y, z \in [-M, M]$ the following inequality holds:

$$|f(x,t,y) - f(x,t,z)| \le L(M)|y-z|$$
(3)

Prove that:

1. The Nemytskii Operator is locally Lipschitz continuous in $L^{\infty}(Q)$:

$$||N_f(y) - N_f(z)||_{L^{\infty}(Q)} \le L(M)||y - z||_{L^{\infty}(Q)}$$

for all $y, z \in L^{\infty}(Q)$, with $||y||_{L^{\infty}} \leq M$ and $||z||_{L^{\infty}} \leq M$,

2. If f(x, t, y) is differentiable in y and f_y satisfies i) and ii), then the Nemytskii Operator N_f is Fréchetdifferentiable in $L^{\infty}(Q)$ and for all $h \in L^{\infty}(Q)$ satisfies $[N'_f(y)h](x,t) = f_y(x,t,y(x,t))h(x,t)$ for almost every $(x,t) \in Q$.³

(10 points)

¹Notice that we put the theory before the programming part only for this sheet, because it is important that you make first this exercise to understand the Matlab one.

²A function $f: \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies the *Carathéodory Condition* if f(x, t, y) is a continuous function of y for almost all $(x, t) \in Q$ and a measurable function of (x, t) for all $y \in \mathbb{R}$.

³With f_y we indicate the derivative of f respect to y: $\frac{\partial f}{\partial y}$.

Please follow the *programming guidelines* that can be download under the above url.

Using MATLAB PDE Toolbox, solve the following Semiparabolic Problem:

$$\begin{cases} y_t - \Delta y = f(x, t, y) \text{ for all } (x, t) \in Q = \Omega \times (0, T) \\ \frac{\partial y}{\partial n} = 0 \text{ for all } x \in \partial \Omega , t \in (0, T) \\ y(x, 0) = y_0(x) \end{cases}$$
(4)

where $f: Q \times \mathbb{R} \to \mathbb{R}$ satisfies the properties of Exercise 12.1 and $\Omega \subset \mathbb{R}^2$ is given by the interior of the blue line, that depends on the parameter a > 0 in \mathbb{R} as shown in figure:

As in the previous Sheet, declare a as global parameter in your main script and make it available in each function. In order to solve the problem follow these steps:

1. Geometry Implementation: Write a function geometryFunction.m to describe the geometry of Ω by using a suitable analytical boundary representation. Especially focus on the various way that this function will be called by the PDE toolbox (0,1,2 inputs, bs scalar or a vector,...) Then use the command pdegplot('geometryFunction') to test your results.

The following two points should be solved in a script. **Do not use point-and-click for these!**

- 2. **PDE specification:** Specify the PDE coefficients in (4) and generate a mesh with maximum element size 0.05. Visualize the mesh.
- 3. **PDE solving:** Solve the problem for the following choices of f(x, t, y) and $y_0(x)$:
 - $f(x,t,y) = -y^3$, $y_0(x) = 10^{-1}(x_1 + x_2)$ with $x = (x_1, x_2) \in \Omega$;
 - $f(x,t,y) = -e^y t$, $y_0(x) = 2\pi(\cos(2\pi x_1) + \sin(2\pi x_2));$
 - $f(x,t,y) = -\cos(y) 2\pi\sin(2\pi x_1)\cos(2\pi x_2), y_0(x) = a;$

Write a function **solve_semiparabolic_problem** where the problem is solved with the following step:

- (a) Specify the boundary condition and the PDE coefficients,
- (b) Generate the FE matrices with the command assembleFEMatrices for the linear part,
- (c) Derive the weak formulation of the non-linear part,
- (d) In each time step, solve the resulting problem with *Newton's Method*, where for time discretization we choose *Implicit Euler Scheme*,

(e) Plot the time evolution of the solution y(x,t) with $t \in [0,1]$ and $x \in \Omega$.

In order to clarify the exercise, we clarify the steps (c) and (d):

(c) For computing the weak formulation of the non-linear part, we need to go back to the theory. Let be V_h the FE space with dim $(V_h) = l$ and $\{\phi_1, ..., \phi_l\}$ a basis of V_h , so we can decompose f(x, t, y) in V_h as:

$$f(x,t,y) = \sum_{i=1}^{l} f_i(t,y)\phi_i(x)$$

where $f_i(t, y)$ is the corresponding coefficient of the base ϕ_i .⁴ In order to have the coefficient Nlw_j of the weak formulation of non-linear part we have to compute:

$$Nlw_j = \int_{\Omega} f(x,t,y)\phi_j(x)dx = \sum_{i=1}^{l} f_i(t,y) \int_{\Omega} \phi_i(x)\phi_j(x)$$

so we have, for the numeric part, that Nlw= M*Nl where M is the mass matrix and Nl is the vector of the coefficient $f_i(t, y)$.

(d) Because of the non-linear part, we need to use the *Newton Method* for computing the solution of the FE system. Also think about what a good initial guess for the method could be.

⁴Numerically speaking, $f_i(t, y)$ is the values of f(x, t, y) computed on the i-th node of the FE mesh