Exercises for
 Theory and Numerics of Partial Differential Equations

http://www.math.uni-konstanz.de/numerik/personen/beermann/teaching

Sheet 7

Deadline: Thursday, 22/12, in the lecture

Exercise 7.1 (Matlab)

Assorted files: main71.m and plot_grid.m

Please follow the programming guidelines available under the above url.
The task is to write a program which generates a two-dimensional Finite-Differences (FD) grid of a set $\Omega \subset \mathbb{R}^{2}$. This is supposed to be done by calling a function

```
grid = compute_fd_grid(box, indFunc)
```

which takes two arguments

1. box is a variable of the type struct and contains information about a square $\left[\underline{x}_{1}, \bar{x}_{1}\right] \times\left[\underline{x}_{2}, \bar{x}_{2}\right] \subset \mathbb{R}^{2}$, which is a superset of the original set: $\Omega \subset\left[\underline{x}_{1}, \bar{x}_{1}\right] \times\left[\underline{x}_{2}, \bar{x}_{2}\right]$. From the input within box, two vectors x 1 , x 2 are supposed to be generated which represent equidistant discretizations of the two dimensions. The function should be able to handle two combinations of input: ${ }^{1}$
(a) Input of the corner points of the square in a matrix range, of the shape

$$
\text { range }=\left[\begin{array}{ll}
\underline{x}_{1} & \bar{x}_{1} \\
\underline{x}_{2} & \bar{x}_{2}
\end{array}\right]
$$

Additional input of a 2 x 1 vector Nx such that x 1 will be an equidistant discretization of $\left[\underline{x}_{1}, \bar{x}_{1}\right] \subset \mathbb{R}$ with Nx (1) points. Same for x2.
(b) Input of range from above and a 2 x 1 vector dx such that x 1 is an equidistant discretization of $\left[\underline{x}_{1}, \bar{x}_{1}\right] \subset \mathbb{R}$ with the step width $\mathrm{dx}(1)$. Same for x 2 .

From x 1 and x 2 and by use of the Matlab comand ndgrid, generate two matrices X 1 and X 2 which represent the square numerically. Based on these, build a coordinate list p such that $\mathrm{p}(:, i)$ contains the $\left(x_{1}, x_{2}\right)$-coordinates of the i-th grid point and $\operatorname{size}(\mathrm{p}, 2)$ is identical to the total number of grid points in the discretized square $\left[\underline{x}_{1}, \bar{x}_{1}\right] \times\left[\underline{x}_{2}, \bar{x}_{2}\right]$.
2. indFunc stands for a function $\mathbb{1}_{\Omega}: \mathbb{R}^{2} \rightarrow\{0,1\}$ which indicates for every point $x \in \mathbb{R}^{2}$ if it is contained in Ω or not, meaning that it holds for all $x \in \mathbb{R}^{2}: \mathbb{1}_{\Omega}(x)=1 \Leftrightarrow x \in \Omega$. indFunc is of the class function_handle and has the form ind $=\operatorname{indFunc}(x 1, x 2)$, expecting two vectors x 1 , x 2 of same length and returning a logical vector ind of same size such that ind(i) indicates if the point with the coordinates $x 1$ (i) and x 2 (i) lies in Ω. Now, walk over the already computed rectangle points in p and check by using indFunc if they are part of the set Ω. If not, eliminate them from p. ${ }^{2}$

[^0]The output variable grid is supposed to be a struct containing the fields range, $\mathrm{X} 1, \mathrm{X} 2, \mathrm{p}$ and Np (Number of grid points). Test your generated function by calling the script main71.m.

Exercise 7.2 (Theory)

(6 points)
Let $\Omega \subset \mathbb{R}^{n}, n \in \mathbb{N}$, be a bounded domain with C^{1}-Boundary $\partial \Omega$. The scalar product between two functions $u, v \in C^{0}(\bar{\Omega})$ is defined as:

$$
\langle u, v\rangle=\int_{\Omega} u v \mathrm{~d} x .
$$

For a function $\psi \in C(\partial \Omega)$, let be

$$
D_{\psi}=\left\{u \in C^{1}(\bar{\Omega}) \text { s.t. } u(x)=\psi(x) \text { for } x \in \partial \Omega\right\}
$$

and consider the Differential Operator L :

$$
L: C^{2}(\Omega) \cap D_{0} \rightarrow C(\Omega), L u=-\Delta u
$$

Prove that:
i) $\langle L u, v\rangle=\langle u, L v\rangle$ for all $u, v \in C^{2}(\Omega) \cap D_{0}$,
ii) L is a positive-definite operator.

Exercise 7.3 (Theory)

Let $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ be a succession of functions $u_{n}: \bar{\Omega} \rightarrow \mathbb{R}$, where Ω is a bounded domain of \mathbb{R}^{d}. Each function u_{n} is the solution of a Laplace Problem of this type:

$$
\left\{\begin{array}{l}
\Delta u_{n}=0 \quad \text { in } \Omega \tag{1}\\
u_{n}=\frac{1}{n} \sin (|x|) \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $|\cdot|$ denotes the Euclidean Norm. Answer ${ }^{3}$ the following questions:
i) Is problem (1) solvable and what is the lowest regularity you expect from solutions? (i.e. in what spaces does u_{n} live in?)
ii) Which is the value, for all $x \in \bar{\Omega}$, of the following limit ${ }^{4}$:

$$
\lim _{n \rightarrow \infty} u_{n}(x)=?
$$

[^1]
[^0]: ${ }^{1}$ This means that the function should check the fields of box to determine what type of input is passed: If the variables a and b form a valid input combination, box should contain the fields box.a and box.b. If a box is passed that contains invalid input, the function should be terminated. Useful Matlab commands: isfield and error. To familiarize yourself with the possible inputs, call the main1.m script first to see the produced input types.
 ${ }^{2}$ Hint: By iterating over the points in p in reverse order - i.e. from $p(:$, end) to $p(:, 1)$ - you can eliminate the appropriate columns directly by the command $p(:, i)=[]$. This would not be possible in forward order (why?).

[^1]: ${ }^{3}$ As ever in mathematics the proof is the main part of an answer.
 ${ }^{4}$ This limit is called Pointwise limit.

