Exercises for
 Theory and Numerics of Partial Differential Equations

http://www.math.uni-konstanz.de/numerik/personen/beermann/en/teaching

Sheet 9

Deadline: Thursday, 19/01, 5pm

Exercise 9.1 (Matlab)

(10 points)

Assorted files: plot_solution.m
Please follow the programming guidelines that can be downloaded under the above url.
In this exercise, you are supposed to write two functions that build and solve the linear system generated by the 5 -Point Finite Difference Scheme for the Laplace equation:

$$
\begin{cases}-\Delta u=f & \text { on } \Omega \\ u=g & \text { on } \partial \Omega\end{cases}
$$

The exercise is divided in two parts:

1. In the building part, the matrix and the right-hand side of the linear system have to be built. This is supposed to be done by calling a function

$$
[\mathrm{A}, \mathrm{~b}]=\text { build_linear_system(grid,f,g) }
$$

which takes three arguments:
(a) grid is the structure generated using the function compute_fd_grid from Exercise 8.1
(b) fand gelong to the class function_handle and return, respectively, the value of $f_{i j}=f(x 1(i), x 2(j))$ and $g_{i j}=g(x 1(i), x 2(j))$, where ($\left.\mathrm{x} 1(\mathrm{i}), \mathrm{x} 2(\mathrm{j})\right)$ is a node of the grid.
and gives as outputs A and b , which are, respectively, the matrix and the right-hand side of the linear system.
2. In the solving part, the system $A u=b$ has to be solved. This is supposed to be done by calling a function
u = solve_linear_system(grid, A, b, q1, q2, q3)
where $\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3 \in\{0 ; 1\}$ represent the answers to the following questions to an imaginary user:
(a) Do you want to convert the matrix A in a sparse form? Input: $1=$ yes $0=$ no.
(b) Do you want to use LU factorization for solving the system? Input: $1=$ yes $0=$ no.
(c) Do you want to use the Cholesky ${ }^{1}$ method for solving the system? Input: $1=\mathrm{yes} 0=$ no.

The function is supposed to be able to handle the user's requests. If the user does not want to solve the system in a particular way, i.e. q2 and q3 are both 0 , then it is solved with the simple $A \backslash b$ command. The function solve_linear_system also has to display the overall computational time for getting the solution, a message with the method used and if A was converted to the sparse form. For example:

[^0](a) The call $u=$ solve_linear_system ($\mathrm{A}, \mathrm{b}, 0,1,0$) has to display: "System solved with LU factorization in 3.2322 seconds."
(b) The call $u=$ solve_linear_system ($\mathrm{A}, \mathrm{b}, 1,0,0$) has to display: "System solved with $\mathrm{A} \backslash \mathrm{b}$ in 1.23212 seconds. The matrix A was converted in a sparse form."
Write your own main91.m and test all the different combinations ${ }^{2}$ of "input answers" for the following problems ${ }^{3}$:

1. Rectangular Domain:

$$
\begin{gathered}
\Omega=[0,1] \times[0,1] \\
f\left(x_{1}, x_{2}\right)=-8 \pi^{2} \sin \left(2 \pi x_{1}\right) \cos \left(2 \pi x_{2}\right) \\
g\left(x_{1}, x_{2}\right)=\sin \left(2 \pi x_{1}\right) \cos \left(2 \pi x_{2}\right)
\end{gathered}
$$

2. Elliptic Domain:

$$
\begin{gathered}
\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \frac{x_{1}^{2}}{4}+\frac{\left(x_{2}-5\right)^{2}}{9} \leq 1\right\} \\
f\left(x_{1}, x_{2}\right)=\widehat{f}(z)=\pi^{2} \sin (2 \pi z)-\frac{13}{9} \pi \cos (2 \pi z) \quad \text { with } z=\frac{x_{1}^{2}}{4}+\frac{\left(x_{2}-5\right)^{2}}{9} \\
g\left(x_{1}, x_{2}\right)=0
\end{gathered}
$$

and plot the solutions with plot_solution.m.

Exercise 9.2 (Theory)
(10 points)
Given the following Boundary Value Problem:

$$
\begin{cases}-\Delta u=f & \text { on } \Omega \tag{1}\\ u=g & \text { on } \Gamma_{1} \\ \frac{\partial u}{\partial n}=0 & \text { on } \Gamma_{2}\end{cases}
$$

where Ω is a bounded domain of \mathbb{R}^{2} with boundary $\partial \Omega=\Gamma_{1} \cup \Gamma_{2}, g \in C\left(\Gamma_{1}\right)$ and $f \in C(\bar{\Omega})$. Moreover, for a function $\psi \in C\left(\Gamma_{1}\right)$ let be

$$
D_{\psi}=\left\{u \in C(\bar{\Omega}) \mid u=\psi \text { on } \Gamma_{1}\right\}
$$

and $\bar{u} \in C^{2}(\bar{\Omega}) \cap D_{g}$.
Prove the equivalence of these three following statements:
i) \bar{u} solves the Boundary Value Problem (1)
ii) \bar{u} is a stationary point of the functional $I: V_{g} \rightarrow \mathbb{R}$,

$$
I(u)=\int_{\Omega}\left(\frac{1}{2}|\nabla u|^{2}-f u\right) \mathrm{d} x \mathrm{~d} y
$$

where $V_{\psi}=H^{1}(\Omega) \cap\left\{w \in C(\bar{\Omega}) \mid w=\psi\right.$ on $\left.\Gamma_{1}\right\}$
iii) $u=\bar{u} \in V_{g}$ satisfies

$$
\int_{\Omega}(\nabla u \cdot \nabla v-f v) \mathrm{d} x \mathrm{~d} y=0
$$

for all $v \in V_{0}$

Hints:

1. For proving the equivalence $"$ ii) \Leftrightarrow iii) $"$ compute

$$
\left.\frac{\partial}{\partial \varepsilon} I(\bar{u}+\varepsilon v)\right|_{\varepsilon=0}
$$

2. For $v \in H^{2}(\Omega)$ and $w \in H^{1}(\Omega)$ holds:

$$
\int_{\Omega} \nabla v \cdot \nabla w \mathrm{~d} x \mathrm{~d} y=-\int_{\Omega} \Delta v w \mathrm{~d} x \mathrm{~d} y+\int_{\partial \Omega} \frac{\partial v}{\partial n} w d S
$$

where n is the outward-pointing unit normal of Ω. This generalized Green formula for H^{1} function has not to be proved and can be used in the exercise.

[^1]
[^0]: ${ }^{1}$ For Cholesky method we need a positive definite matrix. For the 5-Point FD Scheme the matrix -A computed only on the internal nodes of the grid has this property. In order to do that, build the matrix A for all the nodes with build_linear_system, then in solve_linear_system restrict the matrix A and the vector b only on the internal nodes, solve the system and add later the information about solution on the boundary points.

[^1]: ${ }^{2}$ There are only 6 triplets $(q 1, q 2, q 3): q 2$ and $q 3$ can not be 1 at the same time, because the user wants to solve the linear system only with one method.
 ${ }^{3}$ The 'Rectangular Domain' and 'Elliptic Domain' are defined in main81.m of Exercise 8.1.

