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1 The POD method

Throughout the lecture we suppose that X is a real Hilbert space (cf. [DR12) Definition 12.15])
endowed with the inner product (-, -) x and the associated induced norm || - ||x = (-, ->}</2. Further-
more, we assume that X is separable, i.e., X has a countable dense subset; [DR12, Definition 11.3].
This implies that X possesses a countable orthonormal basis; see, e.g., [DR12, Definition 12.30].
For the POD method in complex Hilbert spaces we refer to [Vol01], for instance.

1.1 The discrete variant of the POD method

For fixed n, p € N let the so-called snapshots yf, ..., vy € X be given for 1 < k < p. To avoid
a trivial case we suppose that at least one of the yJ-k’s is nonzero. Then, we introduce the finite
dimensional, linear subspace

V”:span{yjk‘lgjgnand1§k§@}cX (1.1)

with dimension d" € {1, ..., ngp} < oco. We call the set V" snapshot subspace.

Remark 1.1. Later we will focus on the following application: Let 0 < t; < th < ... < t, < T be
a given time grid in the interval [0, T]. To simplify of the presentation, the time grid is assumed to
be equidistant with step-size At = T/(n—1), i.e., tj = (j—1)At. For nonequidistant grids we refer
the reader to [KV02al, [KV02b]. Suppose that we have trajectories y* € C([0, T]; X), 1 < k < p.
Here, the Banach space C([0, T]; X) contains all functions ¢ : [0, T] — X, which are continuous
on [0, T] with the norm

lellcqo ) = maX{Ilw(t)Hx |te[0,T]} forg e C([0, T X);

see, e.g., [Tro09, p. 114]. Let the snapshots be given as yf = y*(;) € X or y/ ~ y*(t;) € X. In
Sections [2] and [3| we will choose trajectories as solutions to evolution problems. O

In Section we consider the case, where the number n is varied. Therefore, we emphasize this
dependence by using the super index n. We distinguish two cases:
1) The separable Hilbert space X has finite dimension m. Then, X is isomorphic to R™. We set
I={1,..., m}. Clearly, we have d" < min(ng, m).
2) Since X is separable, each orthonormal basis of X has countably many elements. In this case
X is isomorphic to the set £> of sequences {x;};en of real numbers which satisfy 2,021 \x,-|2
oo; see [DR12, Beispiel 12.14-(ii)], for instance. Then, we define T = N.
The method of POD consists in choosing an orthonormal set {@b,-}le in X such that for every
Led{l,. .., d"} the mean square error between the ng elements yjk and their corresponding £¢-th
partial Fourier sum is minimized on average:

mlnzz

k=1 j=1

14
S W st ke € X and (W) =6y 1S T <8 (PY)
=1

where the ocj’-”s denote positive weighting parameters and ‘s.t.” stands for ‘subject to’. Here, the
symbol §;; denotes the Kronecker symbol satisfying ¢;; = 1 and §;; = 0 for / # j. An optimal
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solution {w” ; to is called a POD basis of rank £, which can be extended to a complete
orthonormal baS|s {Y; },e]} in the Hilbert space X. Notice that

Hyj" - Ee: Vi) Wi i

L

= (v S G 2 0 w),

i=1

l l Z
= I =22 s+ S0 ST R ) ) (i B
=1

i=1 I=1

(1.2)

J4

e Al VR SRR h

i=1

holds for any set {¢;}%_, C X satisfying (¢;,¥;)x = 6. Thus, . is equivalent with the
maximization problem

© n £
max > Sl ST w0y st {wiy C X and (W) =65 1<ij<t (P

k=1j=1 i=1

Suppose that {¥;};cr is a complete orthonormal basis in X. Since X is separable, any yjk e X,
1<j<nand 1< k< g, can be written as

vE=D) ) i (1.3)

i€l
and the (probably infinite) sum converges for all snapshots (even for all elements in X). Thus,
the POD basis {¢7}¢_, of rank £ maximizes the absolute values of the first £ Fourier coefficients

(yjk, ;) x for all ngp snapshots yjk in an average sense. Let us recall the following definition for linear
operators in Banach spaces; cf. [DR11], Definition 10.16] and [DR12, Definition 13.18].

Definition 1.2. Let By, B be two real Banach spaces. The operator T : B1 — Bo is called a
linear, bounded operator if these two conditions are satisfied:
1) T(au+pBv)=aTu+pBTv foralla, BE€R and u, v € By.

2) There exists a constant ¢ > 0 such that || T ul|s, < c|lu||ls, for all u € B;.

The set of all linear, bounded operators from By to B, is denoted by L(B1, Bo) which is a Banach
space equipped with the operator norm

1T 128y 3,) = | sup HTUHBQ for T € L(B1, Bo).

lulls, =

If By = By holds, we briefly write L(B1) instead of L(B1, B2). The dual mapping 7' : B}, — B
of an operator T € L(B1,B») is defined as

<T/f, U>'B/1,Bl = <f, TU>B/2,'BQ fOI’ a// (U, f) S Bl X ‘B/2,

where, for instance, (-, '>'B’1 ., denotes the dual pairing of the space By with its dual space B} =
L(B1,R).

Let 37 and H, denote two real Hilbert spaces. For a given T € L(3H1, H>) the adjoint operator
T* : Ho — H1 is uniquely defined by

(T*v,u)ge, = (v, Tu)g, = (Tu,v)g, forall (u,v)e I xHo.
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Let J; : H; — 3!, i = 1,2, denote the Riesz isomorphisms satisfying
(U, v)ge, = (Jiu, V)ge g, forall u, v € 3.
Then, we have

(Trv, u)ge, = (v, Tu)ge, = (Jav, Tu)w 90, = = (T Dov, u>g{/ 3
=(J T Jav, g, forall (u,v) € Hy x IHa.

Consequently, T* = J; 7" J> holds. Moreover, (T*)* =T for every T € L(H1,Ho). If T =T*
holds, 7 is said to be selfadjoint. The operator T € L(H1, H>) is called nonnegative if (T u, u)sc, >
0 for all u € Hy. Finally, T € L(H7, H>z) is called compact if for every bounded sequence {u,}nen C
H; the sequence {7 un}nen C Ho contains a convergent subsequence.

Now we turn to and . We make use of the following lemma.

Lemma 1.3. Let X be a (separable) real Hilbert space and ylk ..... y,f € X are given snapshots for
1 < k < p. Define the linear operator R" : X — X as follows:

© n
k k
R =3 > of yf) v forwex (1.4)
k=1 j=1
with positive weights o, .. ., ap. Then, R" is a compact, nonnegative and selfadjoint operator.

Proof. It is clear that R" is a linear operator. From

© n
IR Wlx < DD alliw, v | Ivfll,  for ¢ € X

k=1 j=1

and the Cauchy-Schwarz inequality [DR12, Satz 12.17]

(0. d)x| < llwlixlldllx for o, ¢ € X

we conclude that R" is bounded. Since R"y € V" holds for all 9 € X, the range of R" is finite
dimensional. Thus, R" is a finite rank operator which is compact; see [DR12, Satz 19,2-(iii)]. Next
we show that R" is nonnegative. For that purpose we choose an arbitrary element ¥ € X and

consider
RO = 303 0 () = 300 (%

k=1 j=1 k=1 j=1

Thus, R" is nonnegative. For any 1,9 € X we derive

© n
<Rn'¢1'¢x*22a Wy WD =D > al (. yf) v )
k=1 j=1 k=1 j=1
= (R". Y)x = ($. R"P)x
Thus, R" is selfadjoint. [l

Next we recall some important results from the spectral theory of operators (on infinite dimen-
sional spaces). We begin with the following definition; see [DR12, Definition 13.22].

Definition 1.4. Let 3 be a real Hilbert space and T € L(H).
1) A complex number X belongs to the resolvent set p(7) if \Z—"T is a bijection with a bounded
inverse. Here, T € L(H) stands for the identity operator. If X & p(T), then X\ is an element
of the spectrum o(T) of T.
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2) Letu # 0 be a vector with Tu = \u for some X\ € C. Then, u is said to be an eigenvector of
T . We call X\ the corresponding eigenvalue. If X is an eigenvalue, then NI —T is not injective.
This implies A € o(T). The set of all eigenvalues is called the point spectrum of T .

We will make use of the next two essential theorems for compact operators; see [RS80, p. 203]
and [DR12, Satz 19.7 and Satz 19.8].

Theorem 1.5 (Riesz-Schauder). Let 3 be a real Hilbert space and T : H — H a linear, compact
operator. Then the spectrum o(T ) is a discrete set having no limit points except perhaps 0. Fur-
thermore, the space of eigenvectors corresponding to each nonzero A € o(T) is finite dimensional.

Theorem 1.6 (Hilbert-Schmidt). Let H be a real separable Hilbert space and T : H — H a
linear, compact, selfadjoint operator. Then, there is a sequence of eigenvalues {\;}icr and of an
associated complete orthonormal basis {1;}ict C X satisfying

Ty, =Xy, and X\ —0asi— oco.

Since X is a separable real Hilbert space and R" : X — X is a linear, compact, nonnegative,
selfadjoint operator (see Lemma , we can utilize Theoremsand : There exist a complete
countable orthonormal basis {@[’},-E]I and a corresponding sequence of real eigenvalues {5\7},-611
satisfying

R = NP2 NP> > Xgn > Agny1 = ... = 0. (1.5)

The spectrum of R is a pure point spectrum except for possibly 0. Each nonzero eigenvalue of
R"™ has finite multiplicity and 0 is the only possible accumulation point of the spectrum of R".

Remark 1.7. From (|1.4)), (1.5)) and ||¢||x = 1 we infer that

ZZ(X AR <ZZa YE B Y w,>

k=1 j=1 k=1 j=1 (1'6)
= (R"P!, M) = A forany i €L
In particular, it follows that

© n

ZZ J”<yj,¢,>x—0 for all / > d". (1.7)

k=1 j=1

Since {¢"}er is a complete orthonormal basis and ||y Ix < oo holds for 1 < k< p, 1 <j<n,

we derive from and (L.7) that
e 0 5 o n .,
ZZO‘JU ”yijx = ZZO&”Z <yjk'w3>x

k=1 j=1 k=1 j=1 vel
D)) AT A e 1
vel k=1 j=1 i€l =1

By (1.8) the sum Y ;A7 is bounded. It follows from (1.2) that the objective of can be

written as
ZZ
dn
=2 o DI R 5

k=1 j=1 =1

(1.9)

which we will use in the proof of Theorem [1.8| O
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Now we can formulate the main result for and (PY)).

Theorem 1.8. Let X be a separable real Hilbert space, yf, ..., yk € X for1 < k < g and
R" : X — X be defined by (L.4). Suppose that {X;’},GH and {'ll_}F}je]I denote the nonnegative
eigenvalues and associated orthonormal eigenfunct/ons of R" satisfying . Then, for every
Ledl, ..., d"} the first £ eigenfunctions {z//” _, solve (P%) and li Moreover, the value of
the cost evaluated at the optimal solution {wn _, satisfies

¢ "
ZZ CS o an L = YA (1.10)
=1 i=0+1

and

[

[~
g
=3

© n 4
DDy Y

k=1 j=1 i=1 i=1

(1.11)

Proof. We prove the claim for . ) by finite induction over £ € {1, ..., dn}.
1) The base case: Let £ = 1 and ¥ € X with ||9||x = 1. Since {{},e1 is a complete ortho-
normal basis in X, we have the representation

Y= (WP D). (1.12)

vel

Inserting this expression for ¥ in the objective of lb we find that

g n L
SN ar <yjk'¢>§< — ZZaf<)/Jk, > (W)« ?/;3>i

k=1 j=1 k=1 j=1 vel

(2] n
=SSl SN (U B B B B )

k=1 j=1 vel pel

© n
=3 SO (0 B B B B . B )

k=1 j=1 vel pel

= (30 S e T ), 0 B0 )

vel pel N k=1 j=1

Utilizing (T.4), (T.5)) and ||47||x = 1 we find that

© n
Z Zaf (vf, 11}>f< = ZZ <(S\ZT/_&’} V) 5 (0, W) x (W, Qﬁmx)

k=1 j=1 vel pel

=X w0

vel
From A7 > N7 for all v € T and (T.6)) we infer that

DN BN <MY W BN =M 9l =X

vel vel

®
:ZZ AR
k=1

S

i.e., Y7 solves 1} for £ =1 and ({1.11) holds. This gives the base case. Notice that (|1.9))

and (L.11)) imply (1.10).
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2)

The induction hypothesis: Now we suppose that

forany £ e {1,..., d" — 1} the set {4"}%_, C X solve

NN PP (1.13)
and D> o > (i) = X
k=1j=1 =1 i=1
3) The induction step: We consider
o n 41 ,
k
maxZZafZ(yj i) (BLH)
k=1 j=1 =1 n
s.t. {'lp/}fi_% C X and (’l[),‘,’l/)j>x = 5,‘], 1</, j<4+1.
By (1.13) the elements {¢" le maximize the term
© n 2 5
DIPILTD DI
k=1j=1  i=1
Thus, (P4HY) is equivalent with
e n )
max Z Z o v/ W)
== (1.14)
st.yeXand [Py =1, (Y, ¥y =0 1<i<L.
Let 9 € X be given satisfying ||| x = 1 and (¥, 1Z,”>X =0fori=1...,£ Then, using the
representation ((1.12)) and (1), 1Z,”>X =0fori=1...,4, we derive as above
e n )
5 2 5 2
DD S = N =Y AWk
k=1 j=1 vel v>4
From A}, ; > Ap for all v > £+ 1 and (L.€]) we conclude that
EL L 2 2 2
DD WU S MY WX S A Y (D)
k=1 j=1 v>0 vel
e n )
=M 91 = M = DD ol yf D)y
k=1 j=1
Thus, 9}, solves (L.14), which implies that {97} is a solution to (P4FY) and
© n £+l e
PIPILID RTINS IR
k=1j=1 =1 i=1
Again, (T-9) and (LIT) imply (T-10).
It follows that the claim is proved. O

Remark 1.9. Theorem can also be proved by using the theory of nonlinear programming;
see [HLBR12, \Vol01], for instance. In this case 1} is considered as an equality constrained
optimization problem. Applying a Lagrangian framework it turns out that are first-order
necessary optimality conditions for . O

Prof. Dr. Stefan Volkwein



For the application of POD to concrete problems the choice of £ is certainly of central importance
for applying POD. It appears that no general a-priori rules are available. Rather the choice of £ is
based on heuristic considerations combined with observing the ratio of the modeled to the “total
energy” contained in the snapshots yf, ..., vk, 1< k < g, which is expressed by

Si AT
?
i=1

£(0) = € [0, 1].

Utilizing (1.8]) we have

¢ <
O\
=17

2

i.e., the computation of the eigenvalues {5‘/}?=L'+1 Is not necessary. This is utilized in numerical
implementations when iterative eigenvalue solver are applied like, e.g., the Lanczos method; see
[Ant05, Chapter 10], for instance.

In the following we will discuss three examples which illustrate that POD is strongly related to
the singular value decomposition of matrices.

£() =

Remark 1.10 (POD in Euclidean space R™). Suppose that X = R™ with m € Nand p = 1

hold. Then we have n snapshot vectors yq, ..., Vn and introduce the rectangular matrix Y =
Dl .. [yn] € R™" with rank d" < min(m, n). Choosing af = 1 for 1 < j < n problem (P%) has
the form

2

n £
min ) HyJ =) N
=1 i—1

st {it, CR and ¢/ ¢y =6, 1<ij <4,

(1.15)

where || - ||[gm stands for the Euclidean norm in R™ and “T" denotes the transpose of a given vector
(or matrix). From

n

(R), = (- (59)y) = SN Vuy = (vYT¥), weR™

j=1 j=1 I=1

for each component 1 < i < m we infer that ([1.5) leads to the symmetric m x m eigenvalue
problem
YY QI =X, X > >N > N = ... =A% =0. (1.16)

Recall that ([1.16]) can be solved by utilizing the singular value decomposition (SVD) [Nob69|: There
exist real numbers ¢ > 65 > ... > 0, > 0 and orthogonal matrices W € R™*" with column
vectors {¢"}7 . and ¢ € R”X” W|th column vectors {¢"}7_; such that

Uiyd — ( g 8 ) = ¥ ¢ R™", (1.17)

where D = diag (&7, ..., Gon) € RY*9 and the zeros in (1.17) denote matrices of appropriate
dimensions. Moreover the vectors {$"}%_; and {¢"}%, satisfy

Y@! =5[] and YTP! =57¢] fori=1,..., dn. (1.18)

They are eigenvectors of YY T and Y'Y, respectively, with eigenvalues 5\,” = (5,”)2 >0,/ =
1,..., d". The vectors {1,[7;’},’-16,,,4_1 and ~{<ﬁ,’-’}}7:d,,+1 (if d" < mrespectively d” < n) are eigenvectors
of YYT and Y TY with eigenvalue 0. Consequently, in the case n < m one can determine the POD
basis of rank £ as follows: Compute the eigenvectors @7, ..., J)Z € R" by solving the symmetric
n x n eigenvalue problem

YTY@r =Nigr fori=1,..., 4

1.1. THE DISCRETE VARIANT OF THE POD METHOD 9



and set, by ([1.18]),

_ 1 )

P = (An)1/2 Y¢” fori=1,..., £.
For historical reasons this method of determing the POD-basis is sometimes called the method of
snapshots; see [?]. On the other hand, if m < n holds, we can obtain the POD basis by solving
the m x m eigenvalue problem ([1.16]). If the matrix Y is badly scaled, we should avoid to build the
matrix product YY" (or YTY). In this case the SVD turns out to be more stable for the numerical

computation of the POD basis of rank £. O

Remark 1.11 (POD in R™ with weighted inner product). As in Remark we choose X = R
with m € R™ and p = 1. Let W € R™*™ be a given symmetric, positive definite matrix. We supply
R™ with the weighted inner product

Wy =Y W = (Y Wh)go = (W9, P)gn  for 9, P € R,
Then, problem lﬁﬁi has the form

mlnz

s.t. {Tl)/},‘:1 C Rm and (¥, Yj)y, =0i;, 1 <0, <L

w

¢ 2
Z Vi i) Wi
—1

As in Remark we introduce the matrix Y = [y1 | ... | ya] € R™*" with rank d” < min(m, n).

Moreover, we define the diagonal matrix D = diag (ef, ..., a) € R™". We find that
n m m
R”'l,b (ZO{ <yJ WyJ)I = ZZ YIJWlu'lpl/ ij
j=1I=1v=1

= (YDYTsz)/ for ¢ € R

for each component 1 </ < m. Consequently, ([1.5]) leads to the eigenvalue problem

YDY W =N, N > >N > N = =20 =0, (1.19)

Since W is symmetric and positive definite, W possesses an eigenvalue decomposition of the form
W = QBQT, where B = diag (B, .. ., Bm) contains the eigenvalues 8; > ... > B, > 0 of W and
Q € R™*™M is an orthogonal matrix. We define

= Qdiag (81, ..., BrIQT  for r e R.

Note that (W")~™ = W~=" and W'*s = W'WS for r, s € R. Moreover, we have

W, D)y = W29 W2\ e, for 4, i € R™

and [|[¢|lw = [WY24||gm for 1 € R™. Analogously, the matrix D'/2 is defined. Inserting ¢/ =
WA/24p0 in (T.19), multiplying (T.19) by W?'/? from the left and setting Y = W1/2Y'D/2 yield the
symmetric m x m eigenvalue problem

YYTgr =Xl 1<i<d.

Note that
YTY = DY2yTwyDY? e R™", (1.20)

Thus, the POD basis {¢7}¢_; of rank £ can also be computed by the methods of snapshots as
follows: First solve the symmetric n x n eigenvalue problem

YIVOr =X¢f, 1<i<t and (@] ¢, =0, 1<ij<CL

10 Prof. Dr. Stefan Volkwein



Then we set (by using the SVD of Y)

_ 1 . 1
Pr =W 20 = = W2y g = = YDY2¢P,  1<i<A4. (1.21)

i
li i

Note that

- - - 1
(W7, "pjn>w - ("M)TWW - gloh
7]

(oM T DAY TwyDY2 ¢ =4
V7Y

for 1 < /,j < £. Thus, the POD basis {¢"}¢_; of rank £ is orthonormal in R™ with respect to
the inner product (-, -)yy. We observe from (T1.20)) and (T.21)) that the computation of W1/2 and
W=1/2 is not required. For applications, where W is not just a diagonal matrix, the method of
snapshots turns out to be more attractive with respect to the computational costs even if m > n
holds. O

Remark 1.12 (POD in R™ with multiple snapshots). Let us discuss the more general case p = 2
in the setting of Remark[1.11] The extension for g > 2 is straightforward. We introduce the matrix
Y=l lyrly2] - ly2] € R™*(€) with rank d” < min(m, np). Then we find

Ry = (of () 9y v} + 0 07 %), )
j=1

0 D

~—_——
—=:DeR(np)x(np)

=Y ( b0 > YWy =YDY "Wy forp € R™.

Hence, corresponds to the eigenvalue problem
YOY W = XIPP, N> >N > A = =2 =0, (1.22)
Setting ¥ = W1/297 in and multiplying by W/2 from the left yield
W2y DY TW/ 24P = X0aph. (1.23)

Let Y = W12y D1/2 ¢ R™<(") Using WT = W as well as DT = D we infer from (T.23) that
the POD basis {Qﬁf}le of rank £ is given by the symmetric m x m eigenvalue problem

YYTyp =XyP, 1<i<e, and (), =05, 1<ij <t
and 97 = W~1/29" Note that
YTY = D2y Twy DY/2 e R(e)x(ng)

Thus, the POD basis of rank £ can also be computed by the methods of snapshots as follows: First
solve the symmetric (ng) x (ng) eigenvalue problem

YTV =X, 1<i<€ and (¢, @), =0y, 1<i,j <L
Then we set (by SVD)
1 W—l/Q\A/ n _ 1 YDl/2 n
B b == oy
1 !

for 1 <j<U4. O

PP =WHPyr =

1.1. THE DISCRETE VARIANT OF THE POD METHOD 11



1.2 The continuous variant of the POD method

As in Remarktet 0<ti<th<...<t,<T beagiven time grid in the interval [0, T] with
equidistant with step-size At =T/(n—1), i.e., tj=(j — 1)At Suppose that we have trajectories
yk e C([0,T]; X), 1 < k < g. Let the snapshots be given asy =yk(t) e X oryJ ~ yk(t) € X.
Then, the snapshot subspace V" introduced in (L.1]) depends on the chosen time instances {t;}7_
Consequently, the POD basis {wl”}le of rank Z as well as the corresponding eigenvalues {)\7 :
depend also on the time instances (which has already been indicated by the superindex n). I\/Ioreover,
we have not discussed so far what is the motivation to introduce the positive weights {af}le in
. For this reason we proceed by investigating the following two questions:

- How to choose good time instances for the snapshots?

- What are appropriate positive weights {ocJ’-7 J’-’:l?
To address these two questions we will introduce a continuous version of POD. In Section we
have introduced the operator R" in (1.4). By {¢"}icr and {A"};e1 we have denoted the eigenfunc-
tions and eigenvalues for R" satisfying (1.5]). Moreover, we have set d” = dim V" for the dimension
of the snapshot set. Let us now introduce the snapshot set by

V:span{yk(t)|t€[0,7'] andlgkgp}CX

with dimension d < oo. For any £ < d we are interested in determining a POD basis of rank £
which minimizes the mean square error between the trajectories y* and the corresponding ¢-th
partial Fourier sums on average in the time interval [0, T]:

w3 [ i 0.

i=1 } (PZ)
st {9}, © X and (¥, 9)) =6, 1<ij<L

An optimal solution {15,-}?21 to is called a POD basis of rank £. Analogous to 1} we can —
instead of — consider the problem

© T ¢ . 5
i) x d .
maxki_jl/o AORTALE (B
st {Yito, C X and (Wi, 9))y =0y, 1< i j <L

A solution to and to 1) can be characterized by an eigenvalue problem for the linear integral
operator R : X — X given as

R = Z/ K(t), )y y*(t)dt  for 4 € X. (1.24)

For the given real Hilbert space X we denote by L2(0, T; X) the Hilbert space of square integrable
functions t — @(t) € X so that [?, p. 114]
- the mapping t — @(t) is measurable for t € [0, T] and

T 1/2
leleors = ([ Te@ikdr) <o

Recall that ¢ : [0, T] — X is called measurable if there exists a sequence {®,} en of step functions
n 1[0, T] = X satisfying ©(t) = limp—00 @n(t) for almost all t € [0, T]. The standard inner
product on L2(0, T; X) is given by

]
Vom0 = [ 0(0.8(0)xdt Tor o9 L20,TiX)

12 Prof. Dr. Stefan Volkwein



Lemma 1.13. Let X be a (separable) real Hilbert space and y* € L2(0,T;X), 1 < k < g, be
given snapshot trajectories. Then, the operator R introduced in (1.24)) is compact, nonnegative
and selfadjoint.

Proof. First we write R as a product of an operator and its Hilbert space adjoint. For that purpose
let us define the linear operator Y : L2(0, T; R®) — X by

©
Vo = Z/T¢k(t)yk(t)dt for ¢ = (¢, ..., @) € L2(0, T; R®). (1.25)
k=170

Utilizing the Cauchy-Schwarz inequality [DR12, Satz 12.17] and y* € L2(0, T;X) for 1 < k < p
we infer that

o T &
1Vellx < Z/O 6Oy (D)llx dt <D 10 20 IV< 20,739
k=1 k=1

® 5 1/2 , @ 5 1/2
< (X 1E0n) (X 1Eorn)
k=1 k=1
= Cy ||¢||L2(O,T;R@) for any (1) S L2(O, T; R@),

where we set Cy = (3°9_, ||y’<||f2(O T_X))1/2 < 00. Hence, the operator ) is bounded. Its Hilbert

space adjoint Y* : X — L2(0, T; R®) satisfies
VU, ) 12007y = (W, V) x  for P € X and ¢ € L>(0, T; R¥).

Since we derive

[ T
V. 0) 120,750y = (. V) = <w, 3 /O ¢k<t>yk<t>dr>x
k=1

e T
— ;/0 (W, y (1)) x ¢ (1) dt = <(<¢'yk(')>><)1§kgp' ¢>

L2(0,T;R¥)

for ¢ € X and ¢ € L2(0, T;R¥), the adjoint operator is given by

(W, y' (1)) x
YVP)(t) = : for € X and t €[0,T] ae.,
(¥, y®(1)) x
where ‘a.e.’ stands for ‘almost everywhere’. From and

(W, y' () x o T
)y =Y 5 =Y [ Wk Onk o foryex
RO A

we infer that R = YY* holds. Since the operator ) is bounded, its adjoint and therefore R = YY*
are bounded operators. To prove that R is compact, we show that * is compact. Let {xp}nen C X
be sequence converging weakly to an element x € X, i.e.,

Ii_)moo (Xnm¥)x = (X, ¥)x forally e X

n
This implies that
(Xn Y (1) x O yH() x
Jim (¥*xn)(t) = lim : = : = (V%) (t)
(Xn, y2(1)) x (X ye(t))x
1.2. THE CONTINUOUS VARIANT OF THE POD METHOD 13



for t € [0,T] a.e. Thus, the sequence {V*Xn}nen converges weakly to Y*x in L2(0, T;R®).
Consequently, R = YY* is compact. From

[ T
®o )= (3 [y O @)
k=1

o T
22/ [,y (£))x [P dt > 0 for all € X
k=170

we infer that R is nonnegative. Finally, we have R* = (YY*)* =R, i.e. R is selfadjoint. O
Remark 1.14. It follows from the proof of Lemma that £ = Y*Y LQ(O,T;R@) —
L2(0, T;R¥) is compact as well. We find that
& T
k;fo (v (). y1 () x9"(s) ds
(o) (t) = : . ¢ L2(0,T;R¥).
3 I 04(5). (1) 0¥ (5) ds
The compactness of K can also be shown as follow: Notice that the kernel function
ri(s, t) = (y*(s), ¥y (t))x, (5.t)€[0,T]x[0,T]and 1 <i k< g,
belongs to L2(0, T) x L2(0, T). Here, we shortly write L2(0, T) for L2(0, T;R). Then, it follows

from [DR12, Beispiel 19.3] that the linear integral operator Ky : L2(0, T) — L2(0, T) defined by

)
Ki(t) = /O (s, 9(s)ds, ¢ € L2(0,T),

is compact. This implies, that the operator Zle Kik is compact for 1 </ < g as well. O
In the next theorem we formulate how the solution to and 1D can be found.

Theorem 1.15. Let X be a separable real Hilbert space and y* € L2(0, T; X) are given trajectories
for 1 < k < . Suppose that the linear operator R is defined by (1.24)). Then, there exist
nonnegative eigenvalues {\;}ic1 and associated orthonomal eigenfunctions {;};c1 satisfying

RT[_}/ZS\,"IZ,‘, 5\12---2>\d>;\d+1:---:0- (1.26)

For every £ € {1,..., d} the first £ eigenfunctions {1/7,'}?:1 solve (P¥) and 1} Moreover, the
value of the objectives evaluated at the optimal solution {15,-}?11 satisfies

Z/ \y (£) = > 0 (1) Di)x o L dt= Z by (1.27)
i={+1
and
© T £ ., 2 B
> [ S v aia= YA (128)
k=170 =1 i—1
respectively.

Proof. The existence of sequences {\;}cr of eigenvalues and {1);};c1 of associated eigenfunctions

satisfying ((1.26]) follows from Lemma([1.13] Theorem|[L.5]and Theorem|[L.6] Analogous to the proof
of Theorem in Section one can show that {@,}le solves (P%) as well as 1} and that

(1.27)) respectively ([1.28)) are valid. O
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Remark 1.16. Similar to (1.6]) we have

© T 5 d _
> [ vl de= Y05 (1.29)
k=10 i—1

In fact,

& T
7?,1/_),-:2/ <yk(t),'</7,->xyk(t)dt for every i € L.
k=170

Taking the inner product with ;, using (1.26]) and summing over i we get
d e ) d d
ZZ/ WA, Bt =S R Bk = SN
i=1 k=170 i=1 i=1
Expanding each y(t) € X in terms of {1;}c1 for each 1 < k < p we have

d

yE() =D R D) x b

i=1

and hence

Z/ Iy (t>||xdt—22/ WA, B —i

k=1 i=1

which is ([1.29)). O

Remark 1.17 (Singular value decomposition). Suppose that y* € L2(0, T; X) holds. By Theo-
rem there exist nonnegative eigenvalues {X;};cr and associated orthonomal eigenfunctions
{9 }icr satisfying (1.26]). From K = Y*) it follows that there is a sequence {®;};cr such that

Koi=Xigi, 1....L
Weset Rf = {s € R|s >0} and 5, = 5\,-1/2. The sequence {77, ¢, i }ier in R x L2(0, T; R®) x X
can be interpreted as a singular value decomposition of the mapping ) : LQ(O,T;R@) — X
introduced in ([1.25)). In fact, we have
Vo=, YV'i=0i¢;, i€l

Since &; > 0 holds for 1 =1...,d, we have 9; = V¢, /o for i =1, ..., d. O

1.3 Perturbation analysis for the POD basis

The eigenvalues {A"}eg satisfying depend on the time grid {t;}/_;. In this section we in-
vestigate the sum Zf—j:neﬂ A7, the value of the cost in evaluated at the solution {¥"}¢_, for
n — oo. Clearly, n — oo is equivalent with At =T/(n—1) — 0.

In general the spectrum o (7)) of an operator T € £(X) does not depend continuously on 7. This
is an essential difference to the finite dimensional case. For the compact and selfadjoint operator
R we have 0(R) = {\;}ier. Suppose that for £ € N we have Ay > X\z41 so that we can seperate the
spectrum as follows: 0(R) = 8,US8) with 8 = {X\1, ..., Ae} and 8, = 0(R)\ 8. Then, 8§,N8, = 0.
Moreover, setting V¢ = span {91, . . ., P} we have X = V¢ @ (V4)L, where the linear space (V*)+
stands for the X-orthogonal complement of V4. Let us assume that

. n_ _
n'me IR RHL(X) 0 (1.30)
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holds. Then it follows from the perturbation theory of the spectrum of linear operators [Kat80
pp. 212-214] that the space V¥ = span {7, ..., 1/72} is isomorphic to V¢ if n is sufficiently large.
Furthermore, the change of a finite set of eigenvalues of R is small provided [|R" — Rz (x) is
sufficiently small. Summarizing, the behavior of the spectrum is much the same as in the finite
dimensional case if we can ensure . Therefore, we start this section by investigating the
convergence of R" — R in the operator norm.

Recall that the Sobolev space H(0, T; X) is given by

HY(0,T; X) = {9 € L?(0, T; X) | @: € L?(0, T; X) },

where @+ denotes the weak derivative of ¢. The space Hl(O, T; X) is a Hilbert space with the inner
product

.
@ ) 1i0.7x) = /0 (), $(D) x + (0e(£), $e(£))x dt for 0, ¢ € H(0, T: X)

: 1/2
and the induced norm [[@||1(0,7:x) = (@ ‘p>H/1(o,T;X)'
Let us choose the trapezoidal weights

T T T
i L o= L for2<j<n-1,a"=-—— 1.31
R T L L e e A TP (1.31)

For this choice we observe that for every 1 € X the element R" is a trapezoidal approximation
for R1y. We will make use of the following lemma.

Lemma 1.18. Suppose that X is a (separable) real Hilbert space and that the snapshot trajectories
y¥ belong to H'(0, T; X) for 1 < k < g. Then, (1.30)) holds true.

Proof. For an arbitrary 1 € X with ||9|[x = 1 we define F : [0, T] — X by

D

F(t)=>_ (k1) ¥)x y*(t) forte[0,T].

k=1

It follows that

T 1ot
sz/o F(t)dt:jzl/tj F(t)dt,

) o (1.32)

At
R = a;F(t) = > > (F(G) + F(t)).
j=1 =1
Then, we infer from ||9||x = 1 that

© 5 2

(D)% < (ZM@HX) | (1.33)
k=1

Now we show that F belongs to H*(0, T; X) and its norm is bounded independently of 4. Recall
that y* € H*(0, T; X) imply that y* € C([0, T]; X) holds for 1 < k < g. Using (T.33]) we have

T © 2
2
120750 < /O (Z|yk|q[o,ﬂ;><)) gt < ¢

k=1

with C1 = T(36_, [Ivk ||C( 0] X))2. Moreover, F € H'(0, T; X) with

D

Fe(t) = Y (), W) x v (8) + (K1), W) x vf (1) faa te0,T],

k=1
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where ‘f.a.a." stands for 'for almost all’. Thus, we derive

T, 2
I1FellZ2i07,x) < 4/0 (Z ||yk(t)||x||)/tk(t)||x> dt < G
k=1
with Co =43¢ |y* ||C( 0.T]:X) Dofet ||yt||L2(0’T;X) < oo. Consequently,

T 1/2
Il ko, mx) = (/O IF ()% + IIFt(t)II§<dt> <G (1.34)

with the constant C3 = (C1 + C2)1/2, which is independent of . To evaluate Ry we notice that

/.tjﬂ F(t)dt = ;/.M (F(tj) +/.t Fi(s) ds)dt
+;/;j“ (F(tfrl)_'_/tj; Fil(s) ds )t (1.35)
_ At S (F(5) + F(t30)

1 [U+ t t
+/ (/ Ft(s)ds—l—/ Ft(s)ds)dt
2 tj tit1 tit1

Utilizing (1.32]) and ([1.35]) we obtain

n—1 tjv1
IR — RY||, = Z( (F(t) + F(tji+1)) — / F(t)dt) .
Jj=1
n—1 t n—1 t
% /m/ Fe(s) dsdt %Z /JH/ dsdt
j=1 j=1 L+

From the Cauchy-Schwarz inequality [DR12, Satz 12.17] we deduce that
=l et t

< Z/ / Ft(s)ds
X =174 i

¢ 5 1/2
/tj Ft(s)dSHth>

ti+1
dt
X

t
F:(s)dsdt
14

an i1
j=1 i

(1.36)
n-1 tin t 2 \1/2
<VarY. (/ (/ |Fe(s) I ds ) dt>
j=1 14 14
n—1 1 pt , 1/2
<ory ([ [ IRGIEst) " < TVBEIFlno 70
j=1 & g
Analogously, we derive
n-1 tit1
/ / Fu(s) dsdt]| < TVAEFllorx0. (1.37)
tiy X

Jj=1

From ((1.34)), (1.36)) and (1.37]) it follows that

R" R —,
R
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where C; = C3T3/2 is independent of n and 1. Consequently,
IR = Rllexy = sup [IR™Y = Rl|x =5 0
lpllx=1

which gives the claim. [l

Now we follow [KV02al Section 3.2]. We suppose that y* € H1(0, T; X) for 1 < k < . Thus
yk € C([0, T]; X) holds, which implies that

© n © T
2 2
PP HIACIEDS /O Iy* (D)l dt as n — co. (1.38)
k=1

k=1 j=1

Combining (|1.38)) with (|1.8]) and (1.29]) we find

dn d
ZX?%ZX,' as n — oo. (1.39)
i=1 i=1
Now choose and fix
£ such that Xp # Agy1. (1.40)

Then, by spectral analysis of compact operators and Lemma it follows that
AP — X\ for1<i<£asn— oo. (1.41)

Combining (1.39)) and (|1.41]) we derive

d d
Z AP — Z X\ asn— oo.

i=0+1 i=0+1
Especially, if Ay > Ao > --- > )y is satisfied, we conclude from ({1.40) and Lemma that

iMpooo |97 — Pillx =0fori=1,..., £. Summarizing the following theorem has been shown.

Theorem 1.19. Let X be a separable real Hilbert space, the weighting parameters {ozj’.7 j’zl be

given by ([L31)) and y* € HY0,T;X) for 1 < k < p. Let {($!", A" }icr and {(P;, Ai)}iex be
eigenvector-eigenvalue pairs satisfying (1.5)) and ([1.26]), respectively. Suppose that £ € N s fixed
such that ((1.40)) holds. Then we have

lim [A7=X| =0 for1<i<g,

n—oo
and
d" d
im > X=> X
n—oo
i=£+1 i=+1

In particular, if \y > Xp > -+ > X\, holds, then we even have
lim |97 —9illx =0 forl1<i<{
n—oo

Remark 1.20. Theorem [1.19 gives an answer to the two questions posed at the beginning of
Section [L.2; The time instances {t;}]_; and the associated positive weights {a}7_; should be
chosen such that R" is a quadrature approximation of R and [|R" —R||z(x) is small (for reasonable
n). A different strategy is applied in [KV10], where the time instances {t;}7_; are chosen by an
optimization approach. Clearly, other choices for the weights {aJ’-’ J’-’Zl are also possible provided
is guaranteed. For instance, we can choose the Simpson weights. %
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2 Reduced-order modelling for evolution problems

In this section we utilize the POD method to derive low-dimensional models for evolution problems.
For that purpose the POD basis of rank £ serves as test and ansatz functions in a POD Galerkin
approximation. The a-priori error of the POD Galerkin scheme is investigated. It turns out that the
resulting error bounds depend on the number of POD basis functions.

2.1 The abstract evolution problem

In this subsection we introduce our abstract evolution problem which will be under consideration
in Sections [2] and [3] Let V and H be real, separable Hilbert spaces and suppose that V is dense
in H with compact embedding. By (-,-)y and (-, ), we denote the inner products in H and V/,
respectively. In particular, there exists an embedding constant ¢, > 0 such that

lelly < cvlielly  forallpeV. (2.1)

Let T > 0 the final time. For t € [0, T] we define a time-dependent symmetric bilinear form
a(t;-,-):V xV — R satisfying

la(t: 0. )] < vl I%lly Vo eV ae in[0,7], (2.2a)

a(t;0.0) = m llelly — v lel? Vo €Vae in[0,T] (2.2b)

for constants 7y, y1 > 0 and 72 > 0 which do not depend on t. In (2.2)), the abbreviation “a.e.”

stands for “almost everywhere”. By identifying H with its dual H’ it follows that V «— H = H' — V/

each embedding being continuous and dense. Here, V' denotes the dual space of V. Recall that
the function space (see [Tro09, §3.4.1], for instance)

W(0,T)={p € L?0,T;V)|p: € L>(0,T;V')}

is a Hilbert space endowed with the inner product

.
(. Dwor) = /0 (o(t), (t))y + {(@e(t), ¢e(t))y, dt for @, ¢ € W(O, T)

and the induced norm ||lo|lw o1y = (¢, (p%%?oﬂ. Furthermore, W(0, T') is continuously embedded

into the space C([0, T]; H). Hence, ¢(0) and ¢(T) are meaningful in H for an element ¢ € W(0, T).
The integration by parts formula reads

T

d T
@0 (D de = 5 [ o(0) w(E) e
= p(T)(T) ~ $(0)8(0)

)
/O (@e(), (D)) dE + /O

for ¢, ¢ € W(0, T), where (-, -)y stands for the dual pairing between V' and its dual space V.
Moreover, we have the formula

(e(t). By = < kp(0).8)yy for (9.6) €W(O.T) xV and faa. t< [0, 7]
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Since we will consider optimal control problems in Section [3] we already introduce the evolution
problem with an input term. We suppose that for N, € N the input space U = LZ(O, T;RN“) is
chosen. In particular, we identify U with its dual space U’. For u € U, yo € H and f € L2(0,T;V’)
we consider the linear evolution problem

%(y(t), Q) +a(ty(t), @) = (f + Bu)(t), @)\, Vo€V ae in(0,T],
¥(0), @)y = (Yo @)1y Vo € H,

(2.3)

where B : U — L?(0,T;V’) is a continuous, linear (control or input) operator.

Remark 2.1. Notice that the techniques presented in this work can be adapted for problems, where
the input space U is given by L2(0, T L?(D)) for some open and bounded domain D c RM for an
N, € N. O

Theorem 2.2. Fort € [0, T] let a(t;-,-) : V xV — R be a time-dependent symmetric bilinear
form satisfying (2.2)). Then, for every u € U, f € L?(0,T;V') and y, € H there is a unique weak
solution y € W(0, T) satisfying (2.3)) and

IWlwio.ry < € (el + I1Fll 2o 7 + ully) (2.4)

for a constant C > 0 which is independent of u, y, and f. If f € L2(0,T;H), a(t;-,-) =
a(-,-) (independent of t) and y, € V hold, we even have y € L>(0,T;V) N HY(0,T;H). He-
re, L*°(0,T;V) stands for the Banach space of all measurable functions ¢ : [0, T] — V with
esssupseqo 7] llo(t)[lv < oo (see [TroQ9, §3.4.1], for instance).

Proof. For a proof of the existence of a unique solution we refer to [DLOQ, pp. 512-520]. The a-priori
error estimate follows from standard variational techniques and energy estimates. The regularity
result follows from [DLQOL pp. 532-533] and [Eva08, pp. 360-364]. O

Remark 2.3. We split the solution to ([2.3)) in one part, which depends on the fixed initial condition
Yo and right-hand f, and another part depending linearly on the input variable u. Let y € W(0,T)
be the unique solution to

S50, 0)y+ at:9(8).9) = (F(D). @y Yo eV ae in (0,7]
)7(0) = Yo in H.

We define the subspace

Wo(0,T) = {0 eW(0,T)|¢(0)=0in H}

endowed with the topology of W/(0, T). Let us now introduce the linear solution operator S : U —
Wo(0, T): for u € U the function y = Su € Wy (0, T) is the unique solution to

Lo, @)y +a(ty(t), o) = (Bu)(t), @)yry Ve €Vae in (0, T]

dt
From y € Wy(0, T) we infer y(0) = 0 in H. The boundedness of S follows from (2.4). Now, the
solution to ([2.3)) can be expressed as y = y + Su. O

2.2 The POD method for the evolution problem

Let uc U, f € L?(0,T;V’) and y, € H be given and y = y + Su. To keep the notation simple we
apply only a spatial discretization with POD basis functions, but no time integration by, e.g., the
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implicit Euler method. Therefore, we utilize the continuous version of the POD method introduced
in Section [I.2] In this section we distinguish two choices for X: X = H and X = V. It turns out
that the choice for X leads to different rate of convergence results. We suppose that the snapshots
yk k=1,..., g, belong to L2(0, T; V). Later, we will present different rate of convergence results
for appropriate choices of the yX's. Let us introduce the following notations:

® T
Rvv =" [ k@l o de for € V
k=170
[ T
Rub =Y [ @ Ohay (o)t for v € H. (2.5)
k=170

Moreover, we set Ky = R{, and Ky = R}, In Remarkwe have introduced the singular value
decomposition of the operator ) defined by . To distinguish the two choices for the Hilbert
space X we denote by the sequence {(c¥, 9, V), C Ry x V x L2(0, T;R®) of triples the
singular value decomposition for X =V, i.e., we have that

Ry =Y, Kye! =N/, of =N\, iel

Furthermore, let the sequence {(of, 9, ¢/}, C Ry x H x L2(0, T; R®) in satisfy

Ru =M, Knol = \ol!, of = W el (2.6)

The relationship between the singular values a,H and a,‘/ is investigated in the next lemma, which
is taken from [Sin14].

Lemma 2.4. Suppose that the snapshots y* € L2(0,T;V), k=1, ..., . Then we have:

1) Foralli€l witho! >0 we have ! € V.
2) a,‘-/ = 0 for all i > d with some d € N if and only if O',H = 0 forall i > d, i.e., we have

dy = dy If the rank of Ry Is finite.
3) oY >0 foralli€lifandonly ifocf >0 foralli €l

Proof. We argue similarly as in the proof of Lemma 3.1 in [Sin14].
1) Let o > 0 hold. Then, it follows that A" > 0. We infer from y* € L2(0,T;V) that

Ry € V for any 9 € H. Hence, we infer from (2.6) and that zp,H = Rle-H/A;-L’ ev.
2) Assume that oY =0 for all i > d with some d € N. Then, we deduce from (T.27) that

d

yE(t) = Z k), 1,b>/>v¢,\-/ forevery k=1,..., 0. (2.7)
i=1

From

© T
Rl =Y [ @y (@) H (08
k=10

: = [T H |k k v v .
:Z(;/O W7,y (), (1), ¥; >vdt)¢,, jel,

i=1

we conclude that that the range of Ry is at most d-dimensional, which implies that A,H =0
for all i > d. Analogously, we deduce from UIH = 0 for all / > d that the range of Ry is at
most d.

3) The claim follows directly from part 2).
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Thus, Lemma is proved. [l
Let us define the two POD subspaces

VE=span{yy, ..., YV, H=span{yl, . .. Y} CV CH,

where H¢ C V follows from part 1) of Lemma . Moreover, we introduce the orthogonal projection
operators Pf, : V — H* C V and P{, - V — V¢ C V as follows:

vE =Pl for any ¢ €V iff v solves min [lp — wt,,,
wte He (2.8)

vE =Pl for any p €V iff v¢ solves min [l — w¥|, . |
wtevt

It follows from the first-order optimality conditions that v¢ = P¥,¢ satisfies
VEy = (e, 1<i<e (2.9)

Writing v¢ € H® in the form v¢ = Y0 vEH we derive from ) that the vector V¢ =
(4, ..., Vi) T € R satisfies the linear system

l
Y@ v = (e, 1<i<t
Jj=1

For the operator P\Z/ we have the explicit representation

L
/P6¢)ZZEE:<¢LQPY>V7py ﬂﬂ'w eV

i=1

Since the linear operators P¢ and Pf, are orthogonal projections, we have |PE|| 2y = P§llev) =
1. As {1/))/},-6]1 is a complete orthonormal basis in V/, we have

;
lim / lw(t) — PEw(t)||o dt =0 for all w € L2(0, T; V). (2.10)
0

£L—o0

Next we review an essential result from [Sin14, Theorem 5.2], which we will use in our a-priori
error analysis for the choice X = H. Recall that zp,H € V holds for 1 </ < dy and the image of
P4, belongs to V. Consequently, || — PLa! ||y is well-defined for 1 </ < dy.

Theorem 2.5. Suppose that y* € L2(0,T:V) for 1 < k < g. Then,

Z/ IV (8) — Phyk (D)2 de = Z A lpH — PR, (2.11)

i=£+1

Here, dy is the rank of the operator Ry, which may be infinite. Moreover, Pﬁyk converges to y¥
in L2(0,T;V) as £ tends to oo for each k € {1, ..., P}

Proof. Suppose that 1 < £ < dy and 1 < 4, < oo hold. Then, )x,H >0forl </ <4 Let
7 € £(V) denote the identity operator. As Z — P%, is an orthonormal projection on V, we conclude
IZ — PHllcqvy = 1. Furthermore, y* € L2(0,T;V) holds for each k € {1,...p}. Thus, (2.10)
implies that 73\e/°yk — ykin L2(0,T;V) as £, — oo for each k. The proof of is essentially
based on Hilbert-Schmidt theory and on the following result [Sin14], Lemma 5.1]:

Z/ I(Z - PEYPEY* (£ dt
(2.12)
—ZAVW PEY Iy < 30 A WY —PLY [y < oo
/AV>O
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for any £, € N. To prove that PeHyk converges to y* in L2(0,T;V) as £ tends to oo for each
ke{l, ..., p} we observe that

dH dH
2 2
ST = PRI < S0 A IZ = Phllo 1wl
i=4+1 i=4+1
dy
H H 2
= > MRl
i=4+1

By utilizing the singular value decomposition (see Remark[1.17]) it is shown in [Sin14], Theorem 5.2]

that %, A |[9H]|2, < 0o holds. Therefore,

® T
| 2
Jim S [ = PPN dt = o
o OOk:l

which gives the claim. [l

We will also need the following result, which follows from the continuous embedding V' — H .
For a proof we refer to [Sin14, Proposition 5.5].

Lemma 2.6. Let yX € L%(0,T;V) for each k € {1, ..., ©} and \I' > 0 for all i € 1. Then,

lim [lo — Pholl, =0 forallpcV.
2—00

2.3 The POD Galerkin approximation

After the computation of a POD basis of rank £ we are interested in deriving a low-dimensional
approximation for the evolution problem (2.3)). In the context of Section we choose p = 1,
y! = Su and compute a POD basis {,}_, of rank £ by solving with ¢; = ¢ for X =V
and ¥; = 9! for X = H. Then, we define the subspace X* = span {1, ..., W}, ie, Xt =V*E
for X = V and X¢ = Hf for X = H. Now we approximate the state variable y by the Galerkin
expansion

¢l
YD) =9(0) + D _yHO)w €V ae in [0,T] (2.13)
=1

with coefficient functions yf-‘ [0, T] — R. We introduce the vector-valued coefficient function
ye= (v, ..., ys) [0, T] — RE

Since y(0) = y, holds, we suppose that y¢(0) = 0. Then, y¢(0) = y. is valid, i.e., the POD state
matches exactly the initial condition. Inserting (2.13) into (2.3) and using the test space in V/* for
1 </ < £ we obtain the following POD Galerkin scheme for (2.3)): yt € W(0, T) solves

% AE), )y + a(t; yH (), ¥) = ((F + Bu)(t), ¥) y Vi € XF ace.,
yé(0) = 0.

(2.14)

We call (2.14)) a low dimensional or reduced-order model for (12.3)).

Proposition 2.7. Let all assumptions of Theorem be satisfied and the POD basis of rank ¢
be computed as desribed at the beginning of Section 2.1 Then, there exists a unique solution

yt e HY(0,T;V) — W(0, T) solving (2.14).

2.3. THE POD GALERKIN APPROXIMATION 23



Proof. Choosing ¥ = 9;, 1 < i < £, and applying (2.13)) we infer from (2.14]) that the coefficient
vector y¢ satisfies

MEE(t) 4+ Af(t)y(t) = Fé(t) a.e. in [0, T], y*(0) =0, (2.15)
where we have set
ME = (Wi ¥)y)) €RZE A% = ((altiwi 9y))) € R,
FE(8) = (((F + Bu)(t) = 9e(t), Wiy — a(t; 9(¢), ;) € RS

with ; = TP,\-/ for X =V and ¥; = '(/J,H for X = H. Since (2.15)) is a linear ordinary differential
equation system the existence of a unique y¢ € H(0, T; R?) follows by standard arguments. [l

(2.16)

Remark 2.8. 1) Suppose y # 0. Then, the POD approximation does admit values y¢(t) in X,
but (y* — 9)(t) € X* holds. The benefit of this approach is that y¢(0) = y, — and not
y4(0) = Phys or y*(0) = P&y.. This improves the approximation quality of the POD basis
which is illustrated in our numerical tests.

2) We proceed analogously to Remark and introduce the linear and bounded solution ope-
rator St : U — Wy(0, T): for u € U the function w = Stu € W(0, T) satisfies wé(0) = 0
and

WA, W)+ alt W (E), ) = (Bu)(0). )y Vb€ X ae

Then, the solution to (2.14)) is given by y* = § + S*u. Analogous to the proof of (2.4) we
derive that there exists a positive constant C> which does not depend on £ or u so that

1S%ullyo,ry < C llully-
Thus, S% is bounded uniformly with respect to £. O

To investigate the convergence of the error y — y* we make use of the following two inequalities:
1)  Gronwall’s inequality [DR11), Satz 16.6]: For T > 0 let v : [0, T] — R be a nonnegative,
differentiable function satisfying

VI(t) < o(t)v(t) +x(t) forall t€]0,T],

where @ and x are real-valued, nonnegative, integrable functions on [0, T]. Then

v(t) <exp (/Ot(p(s)ds> <v(0) + /Ot x(s)ds) forall t € [0, T]. (2.17)

In particular, if
vV <ovin[0,T] and v(0)=0
hold, then v =0 in [0, T].
2) Young's inequality [DR11], Satz 10.2-(iii)]: For every a, b € R and for every € > 0 we have
h < ga’ N b?
-2 2¢
Theorem 2.9. Let u € U be chosen arbitrarily with 0 # Su € H*(0, T; V).
1) To compute a POD basis {1;}*_, of rank £ we choose p = 1 and y* = Su. Then, y = y+Su
and yt = y + Stu satisfies the a-priori error estimate

2
||yl —J/||W(0,T)
dy

2 .
Yy N+ IvE = POvEl 2009 iFX=V, (2.18)

dn 2 2 .
3 AT =Py + I =Pl oy X =H
=L+

<(Ci-

where the constant C1 depends on the terminal time T and the constants-y, y1, ¥> introduced

in 2.2).
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2) Let Su€ HY(0,T;V) holds true. If we set o = 2 and compute a POD basis of rank £ using

the trajectories y! = Su and y?> = (Su);, it follows that

dv
S for X =V,

2 j=4+1
Iy = yllweory) <Cs- ¢ d: , (2.19)
| ;lx,—” [ — Pl for X =H
1=£+

for a constant C3 which depends on 7y, y1, ¥», and T .

Proof.

1) For almost all t € [0, T] we make use of the decomposition

V() = y (1) = 9(t) + (Stu)(t) — 9(1) — (Su)(t)
= (S'u)(t) = PH((Su)(1)) + PH((Su)(t)) — (Su)(t) (2.20)
= 0%(t) + &*(t).
where 9¢ = Stu — P4(Su) € X* and ¢ = P4(Su) — Su. In we will consider the two

choices P = P¥, for X = H and P* = P{, for X = V. Since H1(0, T; V) < W(0, T) holds,
there exists an embedding constant c. > 0 such that

lellwor) < cell@llnoryy forall g€ HY(0,T;V). (2.21)

From y! = Su and (1.27)) we infer that

dy

2 2 2
HQZHW(O,T) < Cg”QeHHl(O,T;V) = Cg Z >\)‘/ + Ce2 lye — 7D\z/yt1||L2(o,T;\/) (2.22)
i=£+1

in case of X =V, where d|, stands for rank of Ry,. For the choice X = H we derive from
y! = Su and Theorem that

du
2 2 2
||Q['||W(0,T) <c Z Ayl - PﬁleHv +c2llys — Pf/)/tlHM(o,T;v)- (2.23)
i=0+1

Here, dy denotes for rank of Ry. Using 94(t) € H for almost all t € [0, T], (2.3)), (2-14))
and (2.2a]) we derive that

d

a7 (040, V) + at:0%(2), )

= (VH(B) = PO, 9)y + Aty () = PA(E). 9) (224)
< e () = Pl Ol + vy () = POy Il
for all 1 € X* and for almost all t € [0, T]. From choosing 4 = 94(t), (2.2b) and ([2.24) we
find
d 2 2 2
ar 194 () 1 + 1 [1B4(E) 1y — 372 [19°(E) 14
1 2 2 2
< v (8) = Poyi (O + - lly' (1) = Py (D)l
V2 Y1

From (2.17)) — setting v(t) = ||94(¢t)||% > O,

1 2 2 2
x(t) = o Ilyi (£) = Py (o)l + o Iyt () = Py (o)lly >0,
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©(t) = 3y > 0 — and ¥4(0) = 0 it follows that

2 2 2
194015 < e (v = PUi Iz + I = PY o)

for almost all t € [0, T] with the constants ¢; = coexp(372T) and ¢ = max(1/v2, ¥%/71),
so that we derive from ([2.1))

2 2 2
19812207y < 8 (1881 220.7:00) + 193 = PR IIE2(0,7.00))
2
+ally' =Py 0T
2 2
< C4<||Yt1 - Peyt1||L2(0,T;H) + HQZ(t)HLQ(O,T;V))

2 2
< a1y = P07y + 16 E20,m))

(2.25)

with c3 = max(32, ¢2)/v1 and ¢z = c3(1 4+ 1 T). We conclude from (2.2a)), (2.18)), (2.25))
and (2.1)) that

.
Wﬂpmmwn=ﬂm{A wﬁwwu»wvnwm@pwzluwmev@

=9 ||19e||L2(0,T;V) +llys - 73liytlnL?(o,T;H)

(2.26)
< Cs(Herl - 7JllytlHLZ(o,T;/L/) + Hyl - PZYIHLQ(O,T;V))
< cs (Cv ¢ = Pl ooy + IV — Pey1||L2(o,T;V))
with cs = 1 + c47y. Consequently, (2.25) (2.26]) and cs < 2¢2 imply
2 2 2
||79e||W(O,T) < ||19[||L2(0,T;V) + ||79§||L2(0,T;\/f)
2 2
< 253 Hyl - PeylnL?(o,T;V) + C\2/(C4 + 255?) ||)/t1 - PeYtlHLz(o,T;v/) (2.27)
5 .
+a ||Qe(t)||L2(O,T;V)
2 2 2
< ¢ <||y1 - PeylHLz(o,T;v) +|lyf - PeytIHB(O,T;V/) + HQe(t)HLQ(O,T;V))
with ¢ = max(2cz, c¢g(ca + 2¢2)). Utilizing (2.20)-(2.23) and (2.27)) imply (2.18)).
2) The claim follows directly from
1 Pe 12 o 2 ,Pe 2,2
lve Yi ||L2(0,T;V) = [ly y HL2(0,T;V)v
(1.27)) and Theorem [2.5| O

Remark 2.10. 1) Note that the a-priori error estimates and depend an the ar-
bitrarily chosen, but fixed control u € U, which is also utilized to compute the POD basis.
Moreover, these a-priori estimates do not involve errors by the POD discretization of the
initial condition y,. Further, let us mention that the a-priori error analysis holds for T < oo.

2) For the numerical realization we have to utilize also a time integration method like, e.g., the
implicit Euler or the Crank-Nicolson method. O

Example 2.11. Accurate approximation results are achieved if the subspace spanned by the snaps-
hots is (approximatively) of low dimension. Let T > 0, Q = (0,2) C R and Q = (0, T) x 2. We
set f(t,x) = e t(m? — 1) sin(wx) for (t,x) € Q and yo(x) = sin(mwx) for x € Q. Let H = L?(Q),
V = H}(Q) and

auwwwaéwawumxfm@¢eu
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i.e., the bilinear form a is independent of t. Finally, we choose u = 0. Then, the exact solution to
is given by y(t, x) = e~ tsin(mx). Thus, the snapshot space V is the one-dimensional space
{a | o € R} with ¥(x) = sin(mx). Choosing the space X = H, this implies that all eigenvalues of
the operator Ry introduced in except of the first one are zero and 91 = 1 € V is the single
POD element corresponding to a nontrivial eigenvalue of Ry. Further, the reduced order model of
the rank-1 POD-Galerkin ansatz

yEE) + W41 vi(E) = (F(t),91)y,  for t € (0,T],
v (0) = (Yo, Y1)y

t so both the projection

has the solution y*(t) = e~

(Pry)(t.x) = (y(t). Y1) x¥r(x),  (t.x) €@,

of the state y on the POD-Galerkin space and the reduced-order solution y*(t) = y!(t); coincide
with the exact solution y. In the latter case, this is due to the fact that the data functions f and
Yo as well as all time derivative snapshots y(t) are already elements of span(%1), so no projection
error occurs here, cp. the a priori error bounds given in . In the case X =V, we get the same
results with 91 (x) = sin(mx)/v1 + 72 and y*(t) = V1 + m2et. O

Corollary 2.12. Let u, i € U be chosen arbitrarily so that 0 # Sii € H*(0, T:V) and u # i hold.
To compute a POD basis {;}%_, of rank £ we choose p = 1 and y* = Sii. Moreover, let P* = P{,.
Then, y =y + Su and y* = y + Stu satisfies

l ¢ _ =0. 2.2
ZLTOHY )/||W(0,T) 0 (2.28)

Proof. We infer from (2.27)), (2.20)), (2.21)) that

2 2 2
Iyt = Vliwor = 2(19%e.m + o)
2 2 2 2
< 2¢s <||Qe||L2(O,T;V) + H0§||L2(o,7;v/) + HQ[”L?(O,T;V)) +c HQeHHl(O,T;V)

2 2 2
< 4cp ||Qe||vv(o 7+ let o vy < e llielmerv)
with ¢z = 4csc2 + c2. From and y € H'(0, T; V) we infer that

ye(t) — ze:m(t) ¥i)y H dt =% 0

el o) = /Hym W)W v, +]

which gives the claim. U

Utilizing the techniques as in the proof of Theorem 6.5 in [Sin14] one can derive an a-priori error
bound without including the time derivatives into the snapshot subspace. In the next proposition
we formulate the a-priori error estimate.

Proposition 2.13. Let y, € V and u € U be chosen arbitrarily so that Su # 0. To compute a
POD basis {w,-}le of rank £ we choose p =1 and y' = Su. Then, y = y +Su and y* = y + Stu
satisfies the a-priori error estimate

dy 2 .
, 2 XY =Pl Il ifX =V,
=4+
|yt — y||L2(0,T;V) <cC- d (2.29)

H 2 .
> M, if X = H,
i=2+1

where the constant C depends on the terminal time T and the constants -y, «y1, 7y introduced in
(2.2]). Moreover, PZH ve i H— V£ is the H-orthogonal projection given as follows:

vt = Pf, velp forany o € H iff vt solves min |lo — w¥||,,.
' wtev?t
In particular, we have y* — y in L%(0,T;V) as £ — co.
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3 The linear-quadratic optimal control problem

In this section we apply a POD Galerkin approximation to linear-quadratic optimal control problems.
Linear-quadratic problems are interesting in several respects: In particular, they occur in each level
of a sequential quadratic programming (SQP) methods; see, e.g., [NWQ6].

In this chapter we prove convergence and derive a-priori error estimates for the optimal control
problem. The error estimates rely on the (unrealistic) assumption that the POD basis is computed
from the (exact) optimal solution. However, these estimates are utilized to develop an a-posteriori
error analysis for the POD Galerkin appproximation of the optimal control problem. We deduce how
far the suboptimal control, computed by the POD Galerkin approximation, is from the (unknown)
exact one.

3.1 Problem formulation

In this section we introduce our optimal control problem, which is an constrained optimization
problem in a Hilbert space. The objective is a quadratic function. The evolution problem
serves as an equality constraint. Moreover, bilateral control bounds lead to inequality constraints in
the minimization. For the readers’ convenience we recall here. Let U = L?(0, T; R"Nv) denote
the control space with N, € N. For u € U, y, € H and f € L?(0,T;V’) we consider the state
equation

%W(t), Q)+ a(t y(t), o) = ((f + Bu)(t), @)\, Vo€V ae. in (0,T],
¥(0), @)y = (Yo, @)1y Vo € H,

(3.1)

where B : U — L2(0,T; V') is a continuous, linear operator. Due to Theorem there exists a

unique solution y € W(0, T) to (3.1)).
We introduce the Hilbert space
X=W(0,T)xU

endowed with the natural product topology, i.e., with the inner product
X X)x =W Nwer Hudy forx=(yu), X=(y 0)eX
and the norm ||x||x = (Hy||\2/V(O,T) + [|ullZ)? for x = (y, u) € X.

Assumption 1. Fort € [0, T] let a(t;-,-) : V x V — R be a time-dependent symmetric bilinear
form satisfying (2.2)). Moreover, f € L?(0, T; V'), yo € H and B € £L(U, L?(0, T; V")) holds.

In Remark we have introduced the particular solution y € W(0,T) as well as the linear,
bounded solution operator S. Then, the solution to can be expressed as y = y + Su. By Xyq
we denote the closed, convex and bounded set of admissible solutions for the optimization problem
as

Xag = {(y +Su,u) € X ‘ s <u<upinRM™ ae in [0, T},

where u; = (Ua1, ..., Uan,) Up = (Up1, .-, upn,) € U satisfy uy; < up; for 1 < i < N, ae.
in [0, T]. Since u,; < up; holds for 1 < < N,, we infer from Theorem that the set X,q is
nonempty.
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The quadratic objective J : X — R is given by

o T 0o o
909 =2 [ 1(e) = yole) 1y dt + Z2 IAT) = vl + 5 Nl (3.2)

for x = (y,u) € X, where (yg,yq) € L2(0, T; H) x H are given desired states. Furthermore, o,
oo > 0 and o > 0. Of course, more general cost functionals can be treated analogously.
Now the quadratic programming problem is given by

min J(x) subject to (s.t.) x € Xuq. (P)

From x = (y, u) € X,q we infer that y = y + Su holds. Hence, y is a dependent variable. We call
u the control and y the state. In this way, (E]) becomes an optimal control problem. Utilizing the
relationship y = y + Su we define a so-called reduced cost functional J: U — R by

J(u) = J(Y+8Su,u) foruel.
Moreover, the set of admissible controls is given as
Usg = {u c U|Ua <u<u,inRM ae. in [0, T]},

which is convex, closed and bounded in U. Then, we consider the reduced optimal control problem:

minJ(u) st. u € Usy. (P)
Clearly, if @ is the optimal solution to (P)), then X = (y + 8, @) is the optimal solution to (P)). On
the other hand, if X = (7, @) is the solution to (P)), then & solves (P).

Example 3.1. We introduce an example for @ and discuss the presented theory for this app-
lication. Let Q € RY, d € {1,2,3}, be an open and bounded domain with Lipschitz-continuous
boundary ' = 8Q. For T >0 we set Q = (0,T) x Q and ¥ = (0, T) x . We choose H = L?(Q)
and V = H}(Q) endowed with the usual inner products

<<p.w>H=/Q<pwdx, <<p,w>v=/9<pw+w-vwdx

and their induced norms, respectively. Let x; € H, 1 </ < m, denote given control shape functions.
Then, for given control u € U, initial condition y, € H and inhomogeneity f € L?(0,T; H) we
consider the linear heat equation

ye(t, x) — Ay(t,x) = f(t, x) + Zu,-(t)x,'(x), a.e. in Q,

y(t,x) =0, a.e.in X,

y(0, x) = yo(x), a.e. in Q.

We introduce the time-independent, symmetric bilinear form
alp,¥) = / Vo -Vydx fore, eV
Q

and the bounded, linear operator B : U — L2(0, T; H) < L?(0,T; V') as

m

(Bu)(t, x) = Z ui(t)xi(x) for (t,x) € Q a.e. and u e U.

i=1

Hence, we have v = 7y; = vo = 1 in (2.2)). It follows that the weak formulation of (3.3]) can be
expressed in the form ([2.3]). Moreover, the unique weak solution to (3.3) belongs to the space
L°°(0, T;V) provided y, € V holds. O
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3.2 Existence of a unique optimal solution

We suppose the following hypothesis for the objective.

Assumption 2. In (3.2) the desired states (yq,vq) belong to L?(0,T;H) x H. Furthermore,
0Q.0q > 0 and o > 0 are satisfied.

Let us review the following result for quadratic optimization problems in Hilbert spaces; see
[TroQ9l Satz 2.14].

Theorem 3.2. Suppose that U and H are given Hilbert spaces with norms || - |y and || - ||s,
respectively. Furthermore, let U,q C U be non-empty, bounded, closed, convex and z4 € H, k > 0.
The mapping G : U — H is assumed to be a linear and continuous operator. Then there exists an
optimal control ii solving

. 1 2 k2
min 7(w) =5 IGu~ 2ol + 5 . (3.4)

If k > 0 holds or if G is injective, then @i is uniquely determined.

Remark 3.3. In the proof of Theorem[3.2)it is only used that 7 is continuous and convex. Therefore,
the existence of an optimal control follows for general convex, continuous cost functionals 7 : U —
R with a Hilbert space U. O

Next we can use Theorem to obtain an existence result for the optimal control problem (]E])
which imply the existence of an optimal solution to (P)).

Theorem 3.4. Let Assumptions[1] and [2] be valid. Moreover, let the bilateral control constraints
U, up € U satisfy uy, < up componentwise in RN a.e. in [0, T]. Then, (]E]) has a unique optimal
solution u.

Proof. Let us choose the Hilbert spaces 7 = L?(0, T; H)x H and U = U. Moreover, £ : W(0,T) —
L2(0,T;H) is the canonical embedding operator, which is linear and bounded. We define the
operator & : W(0,T) — H by & = o(T) for ¢ € W(0,T). Since W(0,T) is continuously
embedded into C([0, T]; H), the linear operator &, is continuous. Finally, we set

[ voa&as [ Vel —-79)
G = < 5 xS ) eL(U,H), z4= ( /55 (v — 9(T)) ) eH (3.5)

and Uyg = U,g. Then, @ and ([3.4)) coincide. Consequently, the claim follows from Theorem
and o > 0. [l

Next we consider the case that u; = —oo or/and up = 4o00. In this case U,q is not bounded.
However, we have the following result [Tro09, Satz 2.17].

Theorem 3.5. Let Assumptions and be satisfied. If u, = —oo or/and up = 400, problem @
admits a unique solution.

Proof. We utilize the setting of the proof of Theorem . By assumption there exists an element
Uy € Uag. For u € U with [|ul|?, > 2J(up)/o we have

~ 1 o o ~
J(u) = T () = 5 11Gu = zaliie + 5 llulf > 5 lullf > J(wo).

Thus, the minimization of J over U,q is equivalent with the minimization of J over the bounded,
convex and closed set ~
2J(Uo)}

i {ue o] luff < 24

Now the claim follows from Theorem [3.2] O
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3.3 First-order necessary optimality conditions

In (3.4) we have introduced the quadratic programming problem
: 1 5 O 5
— 2 |Gu — — [lull3. 3.6
min 7() = 3 160 -zl + 1l (36)

Existence of a unique solution has been investigated in Section [3.2] In this section we characterize
the solution to by first-order optimality conditions, which are essential to prove convergence
and rate of convergence results for the POD approximations in Section [3.4] To derive first-order
conditions we require the notion of derivatives in function spaces. Therefore, we recall the following
definition [Tro09, §2.6].

Definition 3.6. Suppose that B, and B, are real Banach spaces, U C By be an open subset and
F U D By — By a given mapping. The directional derivative of F at a point u € U in the
direction h € B, is defined by

DF(u; h) := !@Oi(f(u +¢eh) — F(u))

provided the limit exists in Bo. Suppose that the directional derivative exists for all h € B, and
there is a linear, continuous operator T : U — B, satisfying

DF(u;h)y="Th forall heU.

Then, F is said to be Gateaux-differentiable at u and T is the Gateaux derivative of F at u. We
write T = F'(u).

Remark 3.7. Let JH be a real Hilbert space and F : H — R be Gateaux-differentiable at u € H.
Then, its Gateaux derivative F’(u) at u belongs to H' = L(H, R). Due to Riesz theorem [DR12),
Satz 12.24] there exists a unique element VF(u) € H satisfying

(VF(u), v)ge = (F'(u), V)gp gc forall v eH.
We call VF(u) the (Gateaux) gradient of F at u. O

Theorem 3.8. Let U be a real Hilbert space and U,y be convex subset. Suppose that i1 € U,q IS a

solution to ([3.6))
min J(u).

UEU,q
Then the following variational inequality holds
(VI(a),u—10)y >0 forall ue Uy, (3.7)
where the gradient of J is given by
VIJI(a) =G (Gu—z4)+ou foruell.
If i € Uaq solves (B.7)), then T is a solution to (3.6)).

Proof. Let & € U,q be a solution to (3.6]), u € U,q be arbitrarily chosen. Since U,q is convex, we
have 0+ t(u— ) = tu+ (1 — t)T € Uyq for all t € [0, 1]. In particular, for we find that

J@) <J(a+ t(u—a)) forall te(0,1]

Consequently,
%(j(ﬂ—kt(u— U))—J(U)) >0 forall te(0,1]
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Since J is Gateaux-differentiable, we get (3.7]), which is a sufficient condition becaus J and U,q
are convex. Il

Inequality (3.7]) is a first-order necessary and sufficient condition for ([3.6]), which can be expressed
as
(G — z4,Gu — Gl)ge + (oll, u — Ty >0 forall ue Uyg. (3.8)

Next we study for (B]). Utilizing the setting from we obtain
(GU —24,G(u— 1))g
=0 (Su— (v —9).S(u~— U)>L2(0,T;H)
+ 00 {((ST)(T) = (va = y(T)). (S(u =T )y
=0 (SU, S(u— 1)) 200,7:1y + 0 ((ST)(T), (S(u—D))T))y
— 00 (o — 9,80 — D)0 140 — 00 e — (T, (S(u — D) (T

Let us define the two linear, bounded operators © : Wu(0, T) — Wo(0, T) and = : L2(0, T; H) x
H — Ws(0,T)" by

]
(06, D01y (0T = /O (00w (t), $(1) 1 dt + (ap(T), ¢(T)),
(3.9)

-
(ZZ, D w0, 7y Wo(0.T) = /0 (00zq(t), #(t))y dt + (oaza, ¢(T))y
for ¢, ¢ € Wo(0,T) and z = (zg, zq) € L?(0, T; H) x H. Then, we find

(G — 24, G(u — 1))y
= <e(80) - E()/Q - y:YQ - )7(7—)), S(U - U)>W0(O,T)/,W0(O,T) (310)
=(§'eStu—0)y—(S=(vo — V.ya = 9(T)), u—0)y.

Let us define the linear A : U — W(0, T) as follows: for given u € U the function p = Au €
W(0, T) is the unique solution to

L (p(8), @)y + alt: p(t), ©) = —0 (Su)(). @)y YoV ae,

S dt (3.11)
p(T) = —oq (Su)(T) in H.

It follows from (2.2)) and Su € W(0, T) that the operator A is well-defined and bounded.

Lemma 3.9. Let Assumption be satisfied and u,v € U. We set y = Su € Wp(0,T), w=S8v €
Wo(0,T), and p=Av € W(0,T). Then,

T T
/0 (Bu)(), p(t))y dt = — /0 oo (W(£), y(£))ydt — ae (W(T), y(T)) .

Proof. We derive from y = Su, p = Au, y € Wp(0, T) and integration by parts

T

]
/O (Bu)(2), p(£))yry dt = /O Ye(D), (D)1 + alt; y(£), p(t)) dt
T
- /0 (P8 (D) + alt: p(E), y(£)) dt + (p(T) (T

.
_ _/O og (w(t), y(t))ydt —aq (w(T), y(T)),

which is the claim. O
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We define p € W(0, T) as the unique solution to

L B(), @y + alt: B, ©) = 30 alt) — 9(1). 9} Vo€V ae.

dt
p(T) =o0q(ya—9(T)) in H.
Then, for every u € U the function p = p + Au is the unique solution to

4
dt

(3.12)

(P(t). @)y + a(t: p(t), @) = g (vo(t) — y(t), ®)y Vo eV ae,
p(T) =0q (ya—y(T)) in H

with y = ¢ + Su. Moreover, we have the following result.

Lemma 3.10. Let Assumption [1| be satisfied. Then, BA = —8'©S € L(U), where linear and
bounded operator © has been defined in (3.9)). Moreover, B'p = S8'=(yo — V. ya — y(T)), where p

is the solution to (3.12]).

Proof. Let u, v € U be chosen arbitrarily. We set y = Su € Wy(0,T) and w = Sv € W,(0, T). Re-
call that we identify U with its dual space U’. From the integration by parts formula and Lemma|3.9
we infer that

(§'@8v, u)y = (O8V, Sty 0.7y wo0.7) = (OW. Y)wy(0. Ty Wo(0.T)
T

= | o we) vt + o0 (W(T). (T

= —(Bu, p>L2(O,T;V’),L2(0,T;V) = —(u.B'p)y = —(B'Av,u)y.

Since u, v € U are chosen arbitrarily, we have B'4A = §’©S. Further, we find

/

©

Yo =Y. ya—=9(T)). )y = (ZWe = ¥).ya = (1)), Sy 0,1y.we(0.7)
T
0q (Yo = ¥(t). y(t)ydt + oq {yo = ¥(T). ¥(T))y

\1

o— —

—(Pe(1), y(£)) s + a(t; p(1), y(£)) dt + (B(T), ¥(T))

T

.
(ye(t), p(1)) y + a(t; y(1), p(t)) dt = /O ((Bu)(t), p(1))yr, dt

P u)y-

—~
o3 o
N

which gives the claim. O
We infer from ([3.10)) and Lemma that
(Gl — z4,GV)qc = —(B'(p+ Al), u — ).
This implies the following variational inequality for @

(G — z4,Gu — Gl)g; + 0 (T, u— O)y
=(ca—B(p+Ad),u—0)y, >0 forall u€ Usg.

Summarizing we have proved the following result.

Theorem 3.11. Suppose that Assumptions (1] and 2] hold. Then, (y, @) is a solution to (P)) if and
only if (¥, i) satisfy together with the adjoint variable p the first-order optimality system

y=y+8i, p=p+Al, uz<i=Zup (3.13a)
(o0 —B'p,u—1a), >0 forall ué€ Uyy. (3.13b)
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Remark 3.12. By using a Lagrangian framework it follows from Theorem and [TroQ9] that
the variational inequality ([3.13b]) is equivalent to the existence of two Lagrange multiplier functions
Ra, iy € U satisfying fia, fip > 0,

o —B'p+fp—fia=0
and the complementarity condition
Ba(t) " (ua(t) — G(t)) = Ap(t) " (@(t) —up(t)) =0 faa. tel0,T].

Thus, (3.13) is equivalent to the system
u
Ua S u S Ub, S /»_La: O S :U’bi (314‘)

Utilizing a complementarity function it can be shown that ([3.14]) is equivalent with

y=y+8i, p=p+Ad, oci—Bp+par—Ra=0, uys<d< up,

3.15
fia = max (0, Ga +n(d — ua)), fip = max (0, fp + n(d — up)), (3.15)

where > 0 is an arbitrary real number. The max-and min-operations are interpreted component-
wise in the pointwise everywhere sense. O

The gradient VJ : U — U of the reduced cost functional J is given by
VJ(u)=ocu—Bp, uel,

where p = p+.Au holds true; see, e.g., [HPUUQ9|. Thus, a first-order sufficient optimality condition
for (]:ﬁ]) is given by the variational inequality

(o —B'p,u—a), >0 forall ue Uy, (3.16)

with p = p + Al

3.4 The POD Galerkin approximation for (P)

In this subsection we introduce the POD Galerkin schemes for the variational inequality using
a POD Galerkin approximation for the state and dual variables. Moreover, we study the convergence
of the POD discretizations. In Section[2.3]we have introduced a POD Galerkin scheme for the state
equation (3-1)). Suppose that {t;}%_; be a POD basis of rank £ computed from with ¢; = ¢Y
in case of X =V and ¢; = ¢! in case of X = H. We set X* = span {¢1, ..., W} C V. Let the
linear and bounded projection operator P* denote P{, for X =V and Py, for X = H; see (2.8).

Recall the POD Galerkin ansatz for the state variable. Analogously, we approximate the
adjoint variable p = p + Au by the Galerkin expansion

L

ph(t) = p(t) + Y _pi(t)pi eV for t €[0,T] (3.17)
=1

with coefficient functions p¢ : [0, T] — R and with p from (3.12)). Let the vector-valued coefficient
function given by
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If we assume that p*(T) = —oqy?(T) holds, then we infer from p(T) = oq(vq —¥(T)) and (3.17)

that
)

pH(T) = B(T) — o0 Y _yH(1)vi = oa(ya — Y4(T)).
i=1
This motivates the following POD scheme for the approximation of p = p+ Au is given as follows:
pt € W(0, T) satisfies

B0, W+ ol 2 (D). 9) = 00 (0 — V). W)y W€ X ae,
p(T) = ~ony(T).

It follows by similar arguments as for (2.14]) that there is a unique solution p* € W(0, T).

Remark 3.13. Recall that we have introduced the linear and bounded solution operator S¢: U —
W(0, T) as an approximation for the state solution operator S; see Remark [2.8}2). Analogously,
we define an approximation of the adjoint solution operator A as follows: Let A¢: U — Ww(o,T)
denote the solution operator to

(3.18)

d
4 (Wh(D), )y + a(t; wh(r), ) = —o1 ((S*u) (1), ¥) 4 v e Xt ae,
wH(T) = —op(Stu)(T).
Then p* = p+ A*u is the unique solution to (3:18). O

Lemma 3.14. Let Assumpt/on on page be satisfied and u, v € U. We set y* = Stu € Wy(0,T),
wt = Sty € Wy(0,T), and pt = Atv € W(0, T). Then,
T

N
/O<(BU)(f),Pe(f)>vavdf=—/0 oW (), ¥4 (1)) dt — oa(w!(T). y4(T)) .

Moreover, B' At = —(S4)/©8% € L(U), where linear and bounded operator © has been defined in
E9).

Proof. Since the POD basis for the state and adjoint coincide, the claim follows by the same
arguments used to prove Lemmas[3.9] and [3.10] O

Theorem 3.15. Suppose that Assumptions[l] and[2] hold. Let X =V and u € U be arbitrarily given
so that Su, Au € H*(0, T;V)\{0}. To compute a POD basis {1;}¢_, of rank £ we choose p = 4,
yt' =8u, y? = (Su)s, y® = Au and y* = (Au)t. Then, p = p+ Au and p* = p + Atu satisfies
the a-priori error estimate

dv
c > )x)-/ ifFX =YV,

2 =0+1
Ip* = plroryy <3 (3.19)

dy 5 ‘
c ;1>\,H |t —PElT, if X =H
=4+

for a constant C which depends on -y, 1, ¥2, T, 0q and 0g.

Proof. Analogous to we have p(t) — p(t) = 6%(t) + p%(t) for almost all ¢t € [0, T] with
6f = Abu — PHAu) and ot = PYAu) — Au. Here, Pt = PL for X = V and Pt = P¥ for
X = H. Now, the proof of the claims follows by similar arguments as the proofs of Theorem [2.9]
Proposition 4.7 in [HV08], Proposition 4.6 in [TV09] and Theorem 6.3 in [Sin14]. To estimate the
terminal term 84(T) we use observe that

64T, = [P (AT — (AT,
< o ([IPH(Su)(T) = (Su)(T|,, + [[(Su)(T) = ('), )
< C’Q( Hpe(&’) - SUHC([O,T];H) + HS“ - SZUHC([O,T];H))
< oace ([PASY) = Sullyor) + 180 = Sullio 7))
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with an embedding constant cg. The first term on the right-hand side can be handled by ((1.27)),
the second term is estimated in Theorem 2.9 O

Remark 3.16. 1) Analogous to Remark 2) the a-priori estimate ([3.19)) holds for an arbi-
trarily chosen, but fixed control u € U. Argueing as in the proof of Corollary 2.12] we find

that
. A~ Z ~ _ ~ _ ~ —
Jim |5+ A%G = p — Adl| o 1) = 0
for any 7 € U.
2) We can also extend the results in Proposition for the adjoint equation and get an a-priori
error estimate choosing p = 2, y! = Su and y? = Au. O

The POD Galerkin approximation for (]El) is as follows:
min (1) st. u € Uy, (PY)

where the cost is defined by J(u) = J(y+8%u, u) for u € U. Let & be the solution to (P¥). Then,
a first-order sufficient optimality condition is given by the variational inequality

(o —B'p* u—*), >0 forall uc Uy, (3.20)
where p¢ = p¢ + A% holds.
Theorem 3.17. Suppose that Assumptions[1] and[2] hold. Let u € U be arbitrarily given so that
Su, Au€ HY(0,T;V)\ {0}.
1) To compute a POD basis {Qp,}le of rank £ we choose p = 4, y! = Su, y?> = (Su)t,

y3 = Au and y* = (Au)¢. Then, the optimal solution i to (]EI) and the associated POD
suboptimal solution Gt to (PY) satisfy

lim ||a*—al|, =0 (3.21)

£—00

for X =V and X = H.

2) If an optimal POD basis of rank is computed by choosing g = 4, y' = Si, y?> = (Si)s,
y3 = Ai and y* = (Ail)¢, then we have

Y/ X =V,
¢ 0 j=¢+1
|a* -, < (3.22)
v C &y H pegH2
gzzﬂx, ! — Pil|, ifX=H,
I

where the constant C depends on <y, v1, Y2, T, 0q, 0g and the norm ||B'||¢(12(0,7:v).u)-
Proof. Choosing u = i in (3.16]) and u = @ in (3.20) we get the variational inequality
0 < (o(d— ") —B(p—p), a* — ). (3.23)

Utilizing Lemma and (9@, V), 0,7y .We0,7) = 0 for all o € Wp(0, T) we infer from ([3.23))
that

0 < (BAGT — B AG, @ — o), —o|d—d;
_ _ _ _ _ 2
= (BAYE* — 0) + B'(A* — A)a, i* — o), —o|la— |,
< (@8%a — ), S4d* — )y + 1B/ (A" — A)allylla — ally — o lla— a5
_ _ _ _ 12
< ||B'(A* = Aalylla® - aly — o lla—a|ly.

Consequently,
o 1 _
13—y < < IB'(A* = Ailly,

Now ([3.21]) and ([3.22)) follow from Remark 1) and (3.19)), respectively. O
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3.5 POD a-posteriori error analysis

In [TV09] a POD a-posteriori error estimates are presented which can be applied to our optimal
control problem as well. It is deduced how far the suboptimal control & is from the (unknown)
exact optimal control &i. Thus, our goal is to estimate the norm || — ||y without the knowledge
of the optimal solution . In general, @ # @ holds, so that & does not satisfy the variational
inequality (3.16]). However, there exists a function ¢* € U such that

<UUZ—B/[3£+C[,U_UZ>UZO Vv € Uy, (3.24)

with p¢ = p + Ait. Therefore, & satisfies the optimality condition of the perturbed parabolic
optimal control problem

min J(u) = J(y + Su, u) + (¢4 u)y,

u€Uyy

with “perturbation” ¢¢. The smaller ¢¢ is, the closer i is to . Next we estimate |7 — ||y in terms

of [|¢¢]|y. By Lemma [3.10] we have
B(p—p') =BAd-i*) = -80S i) =50 -y) (3.25)
with 7¢ = y + Si*. Choosing u = ¢ in (3.16), u = in and using we obtain
0< (—o(@a—a*)+B(p—p*)+ ¢t a—aby,
= o |la - @+ (S'OF — 7). 0~ a)y + (¢4 T~ )y
— o [T wll} — (0T = 7.7 — Phworrymor + (¢ T )y
= —ol|a— By + (¢4 @ — )y < —olla— By + 1¢ulla - &)y

Hence, we get the a-posteriori error estimation

1
= =L 74
ua—a < — .
| Hu =5 ¢ ||U

Theorem 3.18. Suppose that Assumptions[I] and 2] hold. Let u € U be arbitrarily given so that
Su, Au € HY(0,T;V)\ {0}. To compute a POD basis {1;}*_; of rank £ we choose p = 4,
yt=8u, y?> = (Su)t, y3 = Au and y* = (Au)¢. Define the function ¢* € U by
—min(0, ¢4(t)) ae in AL = {tel0,T] |G (t) = Uai(t) },
(1) = —max(0,€41)) ace in Al = {t € [0, T]|aH(E) = upi(1)},
—&i(t) a.e in [0, T]\ (A5 UAS),

where ¢¢ = oiit — B'(p + A%) in U. Then, the a-posteriori error estimate
__ 1
la =2y < < Iy (3.26)
/ ticular, |i tl =o.
n particular, el}rgOHC HU

Proof. Estimate ([3.26]) has already be shown. We proceed by constructing the function ¢t Here
we adapt the lines of the proof of Proposition 3.2 in [TVQ9] to our optimal control problem.
Suppose that we know ¢ and p¢ = p + Ad¢. The goal is to determine (¢ € U satisfying ([3.24)).
We distinguish three different cases.

o Case i*(t) = u,(t) for fixed t € [0, T] and i € {1,..., Ny}: Then, ui(t) — a4(t) = ui(t) —

Uai(t) >0 for all u € U,g. Hence, ¢¥(t) has to satisfy
(oa* = B'p*) () + ¢f(t) > 0. (3.27)
Setting ¢¥(t) = —min(0, (o7 — B'p%)(t)) the value (¥(t) satisfies (3.27).
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o Case T¢(t) = upi(t) for fixed t € [0, T] and i € {1,..., Ny}: Now, ui(t) — af(t) = u(t) —
upi(t) < 0 for all u € U,g. Analogously to the first case we define ¢¥(t) = — max(0, (oi* —
B'p%):(t)) to ensure (3.27).

o Case uy(t) < @¥(t) < upi(t) for fixed t € [0,T] and i € {1,..., N,}: Consequently,
(ot — B'p%)i(t) + ¢¥(t) = 0 holds so that (¥(t) = —(ci* — B'p*)i(t) guarantees (3.27).

It remains to prove that ¢¢ tends to zero for £ — co. Here we adapt the proof of Theorem 4.11 in
[TVQ9]. By Theorem 1), the sequence {7} en converges to @ in U. Since the linear operator
B'A is bounded and p¢ = p + Ai* holds, {B'p¢}sen tends to B'p = B' Al as well. Hence, there

exist subsequences {7 } ke and {B'p% }xen satisfying
lim @7 (t) = Gi(t) and lim (B'5%);(t) = (B'p)i(t)
k—00 k—00

fa.a. t € [0, 7] and for 1 </ < N,. Next we consider the active and inactive sets for &.
o lettedi={tel0,T]|uy(t) < bi(t) < upi(t)} forie{l, ..., N,}. For ko = ko(t) € N
sufficiently large, Ufk(t) € (uai(t), upi(t)) for all k > ko, and f.a.a. t € J;. Thus, (o —
B'pt);(t) = 0 for all k > ko(t) in J; a.e. This implies

C*(t)=0 Vk>ko(t)andfaa.ted. (3.28)

e Suppose that t € A, = {t € [0, T]|uai(t) = Ti(t)} for i € {1,..., N,}. From (of; —
B'p)i(t) > 0in A, a.e. we deduce

lim ¢%(t) = — lim min(0, (c@* — B'5%)i(t)) =0 faa. tec A,
k—00 k—o0
e Suppose that t € Ap;j = {t € [0, T]| upi(t) = T;(t)}. Analogously to the second case we find
lim ¢ (t) = — lim max(0, (ci* — B'p%);(t)) =0 faa. te Ay (3.29)
k—o00 k—00

Combining ([3.28])-(3.29) we conclude that limg_, ka =0a.e. in[0,7T] and for 1 </ < N,. Mo-
reover, the sequence {||¢% () |lgm Yken C L2(0, T) is bounded. Utilizing the dominated convergence

theorem [DR11), Satz 13.28] we have

lim |[¢%]|,, = 0.

i Jes |l

Since all subsequences contain a subsequence converging to zero, the claim follows from a standard
argument. [l

Remark 3.19. 1) Theorem shows that ||¢¢||y tends to zero as £ goes to infinity. Thus,
¢4y is smaller than any tolerance € > 0 provided that £ is taken sufficiently large. Motivated
by this result we set up Algorithm[I] Note that the approximation quality of the POD Galerkin
scheme is improved by only increasing the number of POD basis elements: A rank-£ POD
basis can be extended to a rank-(£41) POD basis by adding a new eigenfunction and keeping
all the old ones. Especially, the system matrices and projected data functions can be extended
by the new element, they do not have to be reconstructed in all components.

2) We infer from Proposition and Remark 3) that Theorem holds still true if we
take p =2, y! = Su and y? = Au. O
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Algorithm 1 POD reduced-order method with a-posteriori estimator

Require: Initial control u® € U, initial number £ for the POD ansatz functions, a maximal number
Lmax > £ of POD ansatz functions, and a stopping tolerance € > 0.

1: Determine y, p, y! = Su%, y2 = Au.

2: Compute a POD basis {9} choosing y* and y?. Set £ = 1.

3. repeat

4. Establish the POD Galerkin discretization using {¢;}%_,.
Compute suboptimal control .
Determine ¢¢ according to Theorem and compute €ape = ||¢¢||u/0.
if €ape < € 0r £ =4, then

Return £ and suboptimal control 7 and STOP.

end if
10 Setl={¢+1.
11: until £ > £«

© % N oo
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