POD for Linear-Quadratic Optimal Control

Wintersemester 2017/18

Prof. Dr. Stefan Volkwein
Inhaltsverzeichnis

1 The POD method 3
 1.1 The discrete variant of the POD method .. 3
 1.2 The continuous variant of the POD method 12
 1.3 Perturbation analysis for the POD basis 15

2 Reduced-order modelling for evolution problems 19
 2.1 The abstract evolution problem ... 19
 2.2 The POD method for the evolution problem 20
 2.3 The POD Galerkin approximation ... 23

3 The linear-quadratic optimal control problem 28
 3.1 Problem formulation .. 28
 3.2 Existence of a unique optimal solution 30
 3.3 First-order necessary optimality conditions 31
 3.4 The POD Galerkin approximation for \(\mathbf{P}\) 34
 3.5 POD a-posteriori error analysis ... 37

Literaturverzeichnis 40

Stichwortverzeichnis 42
1 The POD method

Throughout the lecture we suppose that X is a real Hilbert space (cf. [DR12 Definition 12.15]) endowed with the inner product $\langle \cdot, \cdot \rangle_X$ and the associated induced norm $\|\cdot\|_X = (\langle \cdot, \cdot \rangle_X)^{1/2}$. Furthermore, we assume that X is separable, i.e., X has a countable dense subset; [DR12 Definition 11.3]. This implies that X possesses a countable orthonormal basis; see, e.g., [DR12 Definition 12.30]. For the POD method in complex Hilbert spaces we refer to [Vol01], for instance.

1.1 The discrete variant of the POD method

For fixed $n, \varphi \in \mathbb{N}$ let the so-called snapshots $y_1^k, \ldots, y_n^k \in X$ be given for $1 \leq k \leq \varphi$. To avoid a trivial case we suppose that at least one of the y_j^k’s is nonzero. Then, we introduce the finite dimensional, linear subspace

$$\mathcal{V}^n = \text{span} \left\{ y_j^k \mid 1 \leq j \leq n \text{ and } 1 \leq k \leq \varphi \right\} \subset X$$

with dimension $d^n \in \{1, \ldots, n\varphi\} < \infty$. We call the set \mathcal{V}^n snapshot subspace.

Remark 1.1. Later we will focus on the following application: Let $0 \leq t_1 < t_2 < \ldots < t_n \leq T$ be a given time grid in the interval $[0, T]$. To simplify of the presentation, the time grid is assumed to be equidistant with step-size $\Delta t = T/(n-1)$, i.e., $t_j = (j-1)\Delta t$. For non-equidistant grids we refer the reader to [KV02a, KV02b]. Suppose that we have trajectories $y_k \in C([0, T]; X)$, $1 \leq k \leq \varphi$. Here, the Banach space $C([0, T]; X)$ contains all functions $\varphi : [0, T] \rightarrow X$, which are continuous on $[0, T]$ with the norm

$$\|\varphi\|_{C([0,T]; X)} = \max \left\{ \|\varphi(t)\|_X \mid t \in [0, T]\right\} \text{ for } \varphi \in C([0,T]; X);$$

see, e.g., [Tro09, p. 114]. Let the snapshots be given as $y_j^k = y_k(t_j) \in X$ or $y_j^k \approx y_k(t_j) \in X$. In Sections 2 and 3 we will choose trajectories as solutions to evolution problems.

In Section 1.3 we consider the case, where the number n is varied. Therefore, we emphasize this dependence by using the super index n. We distinguish two cases:

1) The separable Hilbert space X has finite dimension m. Then, X is isomorphic to \mathbb{R}^m. We set $\mathbb{I} = \{1, \ldots, m\}$. Clearly, we have $d^n \leq \min(n\varphi, m)$.

2) Since X is separable, each orthonormal basis of X has countably many elements. In this case X is isomorphic to the set ℓ_2 of sequences $\{x_i\}_{i \in \mathbb{N}}$ of real numbers which satisfy $\sum_{i=1}^{\infty} |x_i|^2 < \infty$; see [DR12, Beispiel 12.14(ii)], for instance. Then, we define $\mathbb{I} = \mathbb{N}$.

The method of POD consists in choosing an orthonormal set $\{\psi_i\}_{i=1}^\ell$ in X such that for every $\ell \in \{1, \ldots, d^n\}$ the mean square error between the $n\varphi$ elements y_j^k and their corresponding ℓ-th partial Fourier sum is minimized on average:

$$\min \sum_{k=1}^{n} \sum_{j=1}^{\varphi} \alpha^{ij}_n \left\| y_j^k - \sum_{i=1}^{\ell} \langle y_j^k, \psi_i \rangle_X \psi_i \right\|_X^2 \text{ s.t. } \{\psi_i\}_{i=1}^\ell \subset X \text{ and } \langle \psi_i, \psi_j \rangle_X = \delta_{ij}, \ 1 \leq i, j \leq \ell. \ (P_n^\ell)$$

where the α^{ij}_n’s denote positive weighting parameters and ‘s.t.’ stands for ‘subject to’. Here, the symbol δ_{ij} denotes the Kronecker symbol satisfying $\delta_{ii} = 1$ and $\delta_{ij} = 0$ for $i \neq j$. An optimal
solution \(\{ \psi_i^k \}_{i=1}^n \) to \(\mathcal{P}_n^L \) is called a POD basis of rank \(\ell \), which can be extended to a complete orthonormal basis \(\{ \psi_i \}_{i \in \mathbb{N}} \) in the Hilbert space \(X \). Notice that

\[
\| y_j^k - \sum_{i=1}^{\ell} \langle y_j^k, \psi_i \rangle_X \psi_i \|^2_X \\
= \langle y_j^k - \sum_{i=1}^{\ell} \langle y_j^k, \psi_i \rangle_X \psi_i, y_j^k - \sum_{i=1}^{\ell} \langle y_j^k, \psi_i \rangle_X \psi_i \rangle_X \\
= \| y_j^k \|^2_X - 2 \sum_{i=1}^{\ell} \langle y_j^k, \psi_i \rangle_X \| y_j^k \|^2_X + \sum_{i=1}^{\ell} \sum_{i=1}^{\ell} \langle y_j^k, \psi_i \rangle_X \langle y_j^k, \psi_i \rangle_X \langle \psi_i, \psi_i \rangle_X \\
= \| y_j^k \|^2_X - \sum_{i=1}^{\ell} \langle y_j^k, \psi_i \rangle_X \|^2_X
\]

(1.2)

holds for any set \(\{ \psi_i \}_{i=1}^n \subset X \) satisfying \(\langle \psi_i, \psi_j \rangle_X = \delta_{ij} \). Thus, \(\mathcal{P}_n^L \) is equivalent with the maximization problem

\[
\max \sum_{k=1}^{n} \sum_{j=1}^{\ell} \alpha_j \langle y_j^k, \psi_i \rangle_X \text{ s.t. } \{ \psi_i \}_{i=1}^n \subset X \text{ and } \langle \psi_i, \psi_j \rangle_X = \delta_{ij}, 1 \leq i, j \leq \ell. \quad \mathcal{P}_n^L
\]

Suppose that \(\{ \psi_i \}_{i \in \mathbb{N}} \) is a complete orthonormal basis in \(X \). Since \(X \) is separable, any \(y_j^k \in X \), \(1 \leq j \leq n \) and \(1 \leq k \leq p \), can be written as

\[
y_j^k = \sum_{i \in \mathbb{N}} \langle y_j^k, \psi_i \rangle_X \psi_i
\]

(1.3)

and the (probably infinite) sum converges for all snapshots (even for all elements in \(X \)). Thus, the POD basis \(\{ \psi_i^k \}_{i=1}^n \) of rank \(\ell \) maximizes the absolute values of the first \(\ell \) Fourier coefficients \(\langle y_j^k, \psi_i \rangle_X \) for all \(n \) snapshots \(y_j^k \) in an average sense. Let us recall the following definition for linear operators in Banach spaces; cf. [DR11] Definition 10.16 and [DR12] Definition 13.18.

Definition 1.2. Let \(\mathcal{B}_1, \mathcal{B}_2 \) be two real Banach spaces. The operator \(\mathcal{T} : \mathcal{B}_1 \rightarrow \mathcal{B}_2 \) is called a linear, bounded operator if these two conditions are satisfied:

1) \(\mathcal{T}(\alpha u + \beta v) = \alpha \mathcal{T}u + \beta \mathcal{T}v \) for all \(\alpha, \beta \in \mathbb{R} \) and \(u, v \in \mathcal{B}_1 \).

2) There exists a constant \(c > 0 \) such that \(\| \mathcal{T}u \|_{\mathcal{B}_2} \leq c \| u \|_{\mathcal{B}_1} \) for all \(u \in \mathcal{B}_1 \).

The set of all linear, bounded operators from \(\mathcal{B}_1 \) to \(\mathcal{B}_2 \) is denoted by \(\mathcal{L}(\mathcal{B}_1, \mathcal{B}_2) \) which is a Banach space equipped with the operator norm

\[
\| \mathcal{T} \|_{\mathcal{L}(\mathcal{B}_1, \mathcal{B}_2)} = \sup_{\| u \|_{\mathcal{B}_1} = 1} \| \mathcal{T}u \|_{\mathcal{B}_2} \quad \text{for } \mathcal{T} \in \mathcal{L}(\mathcal{B}_1, \mathcal{B}_2).
\]

If \(\mathcal{B}_1 = \mathcal{B}_2 \) holds, we briefly write \(\mathcal{L}(\mathcal{B}_1) \) instead of \(\mathcal{L}(\mathcal{B}_1, \mathcal{B}_2) \). The dual mapping \(\mathcal{T}' : \mathcal{B}_2' \rightarrow \mathcal{B}_1' \) of an operator \(\mathcal{T} \in \mathcal{L}(\mathcal{B}_1, \mathcal{B}_2) \) is defined as

\[
\langle \mathcal{T}'f, u \rangle_{\mathcal{B}_1', \mathcal{B}_1} = \langle f, \mathcal{T}u \rangle_{\mathcal{B}_2', \mathcal{B}_2} \quad \text{for all } (u, f) \in \mathcal{B}_1 \times \mathcal{B}_2'.
\]

where, for instance, \(\langle \cdot, \cdot \rangle_{\mathcal{B}_1', \mathcal{B}_1} \) denotes the dual pairing of the space \(\mathcal{B}_1 \) with its dual space \(\mathcal{B}_1' = \mathcal{L}(\mathcal{B}_1, \mathbb{R}) \).

Let \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) denote two real Hilbert spaces. For a given \(\mathcal{T} \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2) \) the adjoint operator \(\mathcal{T}^* : \mathcal{H}_2 \rightarrow \mathcal{H}_1 \) is uniquely defined by

\[
\langle \mathcal{T}^*v, u \rangle_{\mathcal{H}_1} = \langle v, \mathcal{T}u \rangle_{\mathcal{H}_2} = \langle \mathcal{T}u, v \rangle_{\mathcal{H}_2} \quad \text{for all } (u, v) \in \mathcal{H}_1 \times \mathcal{H}_2.
\]
Let $J_i : \mathcal{H}_i \rightarrow \mathcal{H}'_i$, $i = 1, 2$, denote the Riesz isomorphisms satisfying

$$\langle u, v \rangle_{\mathcal{H}_i} = (J_i u, v)_{\mathcal{H}'_i} \quad \text{for all } u, v \in \mathcal{H}_i.$$

Then, we have

$$\langle T^* v, u \rangle_{\mathcal{H}_1} = \langle v, T u \rangle_{\mathcal{H}_2} = \langle J_2 v, T u \rangle_{\mathcal{H}'_2} = \langle T^* J_2 v, u \rangle_{\mathcal{H}'_1} = \langle (J_1^{-1} T) J_2 v, u \rangle_{\mathcal{H}_1} \quad \text{for all } (u, v) \in \mathcal{H}_1 \times \mathcal{H}_2.$$

Consequently, $T^* = J_1^{-1} T J_2$ holds. Moreover, $(T^*)^* = T$ for every $T \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. If $T = T^*$ holds, T is said to be selfadjoint. The operator $T \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ is called nonnegative if $\langle T u, u \rangle_{\mathcal{H}_2} \geq 0$ for all $u \in \mathcal{H}_1$. Finally, $T \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ is called compact if for every bounded sequence $\{u_n\}_{n \in \mathbb{N}} \subset \mathcal{H}_1$ the sequence $\{T u_n\}_{n \in \mathbb{N}} \subset \mathcal{H}_2$ contains a convergent subsequence.

Now we turn to (P_1) and (P_2). We make use of the following lemma.

Lemma 1.3. Let X be a (separable) real Hilbert space and $y_1^k, \ldots, y_n^k \in X$ are given snapshots for $1 \leq k \leq p$. Define the linear operator $\mathcal{R}^n : X \rightarrow X$ as follows:

$$\mathcal{R}^n \psi = \sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_j^n \langle \psi, y_j^k \rangle_X y_j^k \quad \text{for } \psi \in X$$

with positive weights $\alpha_1^n, \ldots, \alpha_n^n$. Then, \mathcal{R}^n is a compact, nonnegative and selfadjoint operator.

Proof. It is clear that \mathcal{R}^n is a linear operator. From

$$\|\mathcal{R}^n \psi\|_X \leq \sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_j^n |\langle \psi, y_j^k \rangle_X| \|y_j^k\|_X \quad \text{for } \psi \in X$$

and the Cauchy-Schwarz inequality [DR12 Satz 12.17]

$$|\langle \varphi, \phi \rangle_X| \leq \|\varphi\|_X \|\phi\|_X \quad \text{for } \varphi, \phi \in X$$

we conclude that \mathcal{R}^n is bounded. Since $\mathcal{R}^n \psi \in \mathcal{V}^n$ holds for all $\psi \in X$, the range of \mathcal{R}^n is finite dimensional. Thus, \mathcal{R}^n is a finite rank operator which is compact; see [DR12 Satz 19,2-(iii)]. Next we show that \mathcal{R}^n is nonnegative. For that purpose we choose an arbitrary element $\psi \in X$ and consider

$$\langle \mathcal{R}^n \psi, \psi \rangle_X = \sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_j^n \langle \psi, y_j^k \rangle_X \langle y_j^k, \psi \rangle_X = \sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_j^n \langle \psi, y_j^k \rangle_X^2 \geq 0.$$

Thus, \mathcal{R}^n is nonnegative. For any $\psi, \bar{\psi} \in X$ we derive

$$\langle \mathcal{R}^n \psi, \bar{\psi} \rangle_X = \sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_j^n \langle \psi, y_j^k \rangle_X \langle y_j^k, \bar{\psi} \rangle_X = \sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_j^n \langle \psi, y_j^k \rangle_X \langle y_j^k, \bar{\psi} \rangle_X$$

$$= \langle \mathcal{R}^n \bar{\psi}, \psi \rangle_X = \langle \psi, \mathcal{R}^n \bar{\psi} \rangle_X.$$

Thus, \mathcal{R}^n is selfadjoint.

Next we recall some important results from the spectral theory of operators (on infinite dimensional spaces). We begin with the following definition; see [DR12 Definition 13.22].

Definition 1.4. Let \mathcal{H} be a real Hilbert space and $T \in \mathcal{L}(\mathcal{H})$.

1) A complex number λ belongs to the resolvent set $\rho(T)$ if $\lambda \mathcal{I} - T$ is a bijection with a bounded inverse. Here, $\mathcal{I} \in \mathcal{L}(\mathcal{H})$ stands for the identity operator. If $\lambda \notin \rho(T)$, then λ is an element of the spectrum $\sigma(T)$ of T.
2) Let \(u \neq 0 \) be a vector with \(T u = \lambda u \) for some \(\lambda \in \mathbb{C} \). Then, \(u \) is said to be an eigenvector of \(T \). We call \(\lambda \) the corresponding eigenvalue. If \(\lambda \) is an eigenvalue, then \(\lambda I - T \) is not injective. This implies \(\lambda \in \sigma(T) \). The set of all eigenvalues is called the point spectrum of \(T \).

We will make use of the next two essential theorems for compact operators; see [RS80, p. 203] and [DR12, Satz 19.7 and Satz 19.8].

Theorem 1.5 (Riesz-Schauder). Let \(\mathcal{K} \) be a real Hilbert space and \(T : \mathcal{K} \to \mathcal{K} \) a linear, compact operator. Then the spectrum \(\sigma(T) \) is a discrete set having no limit points except possibly 0. Furthermore, the space of eigenvectors corresponding to each nonzero \(\lambda \in \sigma(T) \) is finite dimensional.

Theorem 1.6 (Hilbert-Schmidt). Let \(\mathcal{K} \) be a real separable Hilbert space and \(T : \mathcal{K} \to \mathcal{K} \) a linear, compact, selfadjoint operator. Then, there is a sequence of eigenvalues \(\{\lambda_i\}_{i \in \mathbb{I}} \) and of an associated complete orthonormal basis \(\{\psi_i\}_{i \in \mathbb{I}} \subset X \) satisfying
\[
T \psi_i = \lambda_i \psi_i \quad \text{and} \quad \lambda_i \to 0 \quad \text{as} \quad i \to \infty.
\]

Since \(X \) is a separable real Hilbert space and \(\mathcal{R}^\varphi : X \to X \) is a linear, compact, nonnegative, selfadjoint operator (see Lemma 1.3), we can utilize Theorems 1.5 and 1.6: There exist a complete countable orthonormal basis \(\{\psi_i\}_{i \in \mathbb{I}} \) and a corresponding sequence of real eigenvalues \(\{\lambda_i\}_{i \in \mathbb{I}} \) satisfying
\[
\mathcal{R}^\varphi \psi_i = \lambda_i \psi_i, \quad \bar{\lambda}_1 \geq \ldots \geq \bar{\lambda}_d > \bar{\lambda}_{d+1} = \ldots = 0. \tag{1.5}
\]
The spectrum of \(\mathcal{R} \) is a pure point spectrum except for possibly 0. Each nonzero eigenvalue of \(\mathcal{R} \) has finite multiplicity and 0 is the only possible accumulation point of the spectrum of \(\mathcal{R} \).

Remark 1.7. From (1.4), (1.5) and \(||\psi||_X = 1 \) we infer that
\[
\sum_{k=1}^p \sum_{j=1}^n \alpha_j^n \langle y_j^k, \bar{\psi}_i^n \rangle_X^2 = \left\langle \sum_{k=1}^p \sum_{j=1}^n \alpha_j^n \langle y_j^k, \bar{\psi}_i^n \rangle_X y_j^k, \bar{\psi}_i^n \right\rangle_X
\]
\[
= \langle \mathcal{R}^\varphi \psi_i^n, \bar{\psi}_i^n \rangle_X = \bar{\lambda}_i^n \quad \text{for any} \quad i \in \mathbb{I}. \tag{1.6}
\]
In particular, it follows that
\[
\sum_{k=1}^p \sum_{j=1}^n \alpha_j^n \langle y_j^k, \bar{\psi}_i^n \rangle_X^2 = 0 \quad \text{for all} \quad i > d^n. \tag{1.7}
\]
Since \(\{\bar{\psi}_i^n\}_{i \in \mathbb{I}} \) is a complete orthonormal basis and \(||y_j^k||_X < \infty \) holds for \(1 \leq k \leq \varphi, 1 \leq j \leq n \), we derive from (1.6) and (1.7) that
\[
\sum_{k=1}^p \sum_{j=1}^n \alpha_j^n \|y_j^k\|_X^2 = \sum_{k=1}^p \sum_{j=1}^n \sum_{i \in \mathbb{I}} \alpha_j^n \|y_j^k, \bar{\psi}_i^n\|_X^2
\]
\[
= \sum_{i \in \mathbb{I}} \sum_{j=1}^n \alpha_j^n \|y_j^k, \bar{\psi}_i^n\|_X^2 = \sum_{i \in \mathbb{I}} \bar{\lambda}_i^n = \sum_{i=1}^{d^n} \bar{\lambda}_i^n. \tag{1.8}
\]
By (1.8) the sum \(\sum_{i \in \mathbb{I}} \bar{\lambda}_i^n \) is bounded. It follows from (1.2) that the objective of (1.9) can be written as
\[
\sum_{k=1}^p \sum_{j=1}^n \alpha_j^n \|y_j^k - \sum_{i=1}^t \langle y_j^k, \bar{\psi}_i^n \rangle_X \bar{\psi}_i^n\|_X^2
\]
\[
= \sum_{i=1}^{d^n} \bar{\lambda}_i^n - \sum_{k=1}^p \sum_{j=1}^n \sum_{i=1}^t \alpha_j^n \|y_j^k, \bar{\psi}_i^n\|_X^2 \tag{1.9}
\]
which we will use in the proof of Theorem 1.8. ⊗
Now we can formulate the main result for \((\mathcal{P}_n^c)\) and \((\mathcal{P}_n^e)\).

Theorem 1.8. Let \(X\) be a separable real Hilbert space, \(y_1^k, \ldots, y_n^k \in X\) for \(1 \leq k \leq \varphi\) and \(\mathcal{R}^n : X \to X\) be defined by (1.4). Suppose that \(\{\lambda_i^n\}_{i=1}^\varphi\) and \(\{\psi_i^n\}_{i=1}^\varphi\) denote the nonnegative eigenvalues and associated orthonormal eigenfunctions of \(\mathcal{R}^n\) satisfying (1.5). Then, for every \(\ell \in \{1, \ldots, d^n\}\) the first \(\ell\) eigenfunctions \(\{\psi_i^n\}_{i=1}^\ell\) solve \((\mathcal{P}_n^c)\) and \((\mathcal{P}_n^e)\). Moreover, the value of the cost evaluated at the optimal solution \(\{\psi_i^n\}_{i=1}^\ell\) satisfies

\[
\sum_{k=1}^\varphi \sum_{j=1}^n \alpha_j^n \|y_j^k - \sum_{i=1}^\ell \langle y_j^k, \psi_i^n \rangle_X \psi_i^n \|_X^2 = \sum_{i=1}^\ell \bar{x}_i^n.
\tag{1.10}
\]

and

\[
\sum_{k=1}^\varphi \sum_{j=1}^n \alpha_j^n \sum_{i=1}^\ell \langle y_j^k, \psi_i^n \rangle_X^2 = \sum_{i=1}^\ell \bar{x}_i^n.
\tag{1.11}
\]

Proof. We prove the claim for \((\mathcal{P}_n^c)\) by finite induction over \(\ell \in \{1, \ldots, d^n\}\).

1) The base case: Let \(\ell = 1\) and \(\psi \in X\) with \(\|\psi\|_X = 1\). Since \(\{\psi_i^n\}_{i=1}^\ell\) is a complete orthonormal basis in \(X\), we have the representation

\[
\psi = \sum_{\nu \in \mathcal{I}} \langle \psi, \psi_i^n \rangle_X \psi_i^n.
\tag{1.12}
\]

Inserting this expression for \(\psi\) in the objective of \((\mathcal{P}_n^c)\) we find that

\[
\sum_{k=1}^\varphi \sum_{j=1}^n \alpha_j^n \langle y_j^k, \psi \rangle_X^2 = \sum_{k=1}^\varphi \sum_{j=1}^n \alpha_j^n \langle y_j^k, \psi \rangle_X \sum_{\nu \in \mathcal{I}} \langle \psi, \psi_i^n \rangle_X \langle y_j^k, \psi_i^n \rangle_X
\]

\[
= \sum_{k=1}^\varphi \sum_{j=1}^n \alpha_j^n \sum_{\nu \in \mathcal{I}} \mu_{\nu} \langle y_j^k, \psi_i^n \rangle_X \langle y_j^k, \psi_i^n \rangle_X
\]

\[
= \sum_{k=1}^\varphi \sum_{j=1}^n \alpha_j^n \sum_{\nu \in \mathcal{I}} \mu_{\nu} \langle y_j^k, \psi_i^n \rangle_X \langle y_j^k, \psi_i^n \rangle_X
\]

\[
= \sum_{\nu \in \mathcal{I}} \mu_{\nu} \langle \psi, \psi_i^n \rangle_X^2.
\]

Utilizing (1.4), (1.5) and \(||\psi_i^n||_X = 1\) we find that

\[
\sum_{k=1}^\varphi \sum_{j=1}^n \alpha_j^n \langle y_j^k, \psi \rangle_X^2 = \sum_{\nu \in \mathcal{I}} \mu_{\nu} \langle \bar{x}_i^n \psi \bar{\psi}_i^n \rangle_X \langle \psi, \psi_i^n \rangle_X \langle \bar{x}_i^n \psi \bar{\psi}_i^n \rangle_X
\]

\[
= \sum_{\nu \in \mathcal{I}} \mu_{\nu} \langle \psi, \psi_i^n \rangle_X^2.
\]

From \(\bar{x}_i^n \geq \bar{x}_i^n\) for all \(\nu \in \mathcal{I}\) and (1.6) we infer that

\[
\sum_{\nu \in \mathcal{I}} \mu_{\nu} \langle \psi, \psi_i^n \rangle_X^2 \leq \bar{x}_i^n \sum_{\nu \in \mathcal{I}} \langle \psi, \psi_i^n \rangle_X = \bar{x}_i^n \|\psi\|^2_X = \bar{x}_i^n
\]

\[
= \sum_{k=1}^\varphi \sum_{j=1}^n \alpha_j^n \langle y_j^k, \psi_i^n \rangle_X^2
\]

i.e., \(\psi_i^n\) solves \((\mathcal{P}_n^c)\) for \(\ell = 1\) and (1.11) holds. This gives the base case. Notice that (1.9) and (1.11) imply (1.10).
2) The induction hypothesis: Now we suppose that
\[
\left\{ \begin{array}{l}
\text{for any } \ell \in \{1, \ldots, d^n - 1\} \text{ the set } \{\tilde{\psi}_i^n\}_{i=1}^{\ell} \subset X \text{ solve } \tilde{P}_n^{\ell} \\ \\
\text{and } \sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_j^n \sum_{i=1}^{\ell} (y_j^k, \tilde{\psi}_i^n)_X = \sum_{i=1}^{\ell} \tilde{\lambda}_i^n. \end{array} \right. \tag{1.13}
\]

3) The induction step: We consider
\[
\left\{ \begin{array}{l}
\max \sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_j^n \sum_{i=1}^{\ell+1} (y_j^k, \psi_i)_X \\
\text{s.t. } \{\psi_i\}_{i=1}^{\ell+1} \subset X \text{ and } (\psi_i, \psi_j)_X = \delta_{ij}, \ 1 \leq i, j \leq \ell + 1. \end{array} \right. \tag{\tilde{P}_{n+1}^{\ell+1}}
\]

By (1.13) the elements \{\tilde{\psi}_i^n\}_{i=1}^{\ell} maximize the term
\[
\sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_j^n \sum_{i=1}^{\ell} (y_j^k, \psi_i)_X.
\]

Thus, \(\tilde{P}_{n+1}^{\ell+1}\) is equivalent with
\[
\left\{ \begin{array}{l}
\max \sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_j^n (y_j^k, \psi)_X \\
\text{s.t. } \psi \in X \text{ and } \|\psi\|_X = 1, \ (\psi, \tilde{\psi}_i^n)_X = 0, \ 1 \leq i \leq \ell. \end{array} \right. \tag{1.14}
\]

Let \(\psi \in X\) be given satisfying \(\|\psi\|_X = 1\) and \((\psi, \tilde{\psi}_i^n)_X = 0\) for \(i = 1 \ldots, \ell\). Then, using the representation \(\tilde{P}_{1}^{\ell+1}\) and \((\psi, \tilde{\psi}_i^n)_X = 0\) for \(i = 1 \ldots, \ell\), we derive as above
\[
\sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_j^n (y_j^k, \psi)_X = \sum_{\nu \in I} \tilde{\lambda}_\nu^n \langle \psi, \tilde{\psi}_i^n \rangle_X = \sum_{\nu \in I} \tilde{\lambda}_\nu^n \langle \psi, \tilde{\psi}_i^n \rangle_X.
\]

From \(\tilde{\lambda}_{\ell+1}^\rho \geq \tilde{\lambda}_{\nu}^\rho\) for all \(\nu \geq \ell + 1\) and (1.6) we conclude that
\[
\sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_j^n (y_j^k, \psi)_X \leq \tilde{\lambda}_{\ell+1}^\rho \sum_{\nu \geq \ell} \langle \psi, \tilde{\psi}_i^n \rangle_X \leq \tilde{\lambda}_{\ell+1}^\rho \sum_{\nu \in I} \langle \psi, \tilde{\psi}_i^n \rangle_X
\]
\[
= \tilde{\lambda}_{\ell+1}^\rho \|\psi\|_X^2 = \tilde{\lambda}_{\ell+1}^\rho = \sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_j^n (y_j^k, \tilde{\psi}_{\ell+1}^n)_X^2.
\]

Thus, \(\tilde{\psi}_{\ell+1}^n\) solves (1.14), which implies that \(\{\tilde{\psi}_i^n\}_{i=1}^{\ell+1}\) is a solution to \(\tilde{P}_{n+1}^{\ell+1}\) and
\[
\sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_j^n \sum_{i=1}^{\ell+1} (y_j^k, \tilde{\psi}_i^n)_X = \sum_{i=1}^{\ell+1} \tilde{\lambda}_i^n. \tag{1.10}
\]

Again, (1.9) and (1.11) imply (1.10).

It follows that the claim is proved. \(\Box\)

\textbf{Remark 1.9.} Theorem 1.8 can also be proved by using the theory of nonlinear programming; see [HLBR12, Vol01], for instance. In this case \(\tilde{P}_{n}^{\ell}\) is considered as an equality constrained optimization problem. Applying a Lagrangian framework it turns out that (1.5) are first-order necessary optimality conditions for \(\tilde{P}_{n}^{\ell}\). \(\Diamond\)
For the application of POD to concrete problems the choice of ℓ is certainly of central importance for applying POD. It appears that no general a-priori rules are available. Rather the choice of ℓ is based on heuristic considerations combined with observing the ratio of the modeled to the “total energy” contained in the snapshots y_1^k, \ldots, y_n^k, $1 \leq k \leq p$, which is expressed by

$$E(\ell) = \frac{\sum_{i=1}^{\ell} |\bar{\lambda}_i|^2}{\sum_{i=1}^{d} |\bar{\lambda}_i|^2} \in [0, 1].$$

Utilizing (1.3) we have

$$E(\ell) = \frac{\sum_{i=1}^{\ell} \bar{\lambda}_i^2}{\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{ij}^2 \|y^k_j\|^2_X}.$$

i.e., the computation of the eigenvalues $\{\bar{\lambda}_i\}_{i=\ell+1}^d$ is not necessary. This is utilized in numerical implementations when iterative eigenvalue solver are applied like, e.g., the Lanczos method; see [Ant05, Chapter 10], for instance.

In the following we will discuss three examples which illustrate that POD is strongly related to the singular value decomposition of matrices.

Remark 1.10 (POD in Euclidean space \mathbb{R}^m). Suppose that $X = \mathbb{R}^m$ with $m \in \mathbb{N}$ and $p = 1$ hold. Then we have n snapshot vectors y_1, \ldots, y_n and introduce the rectangular matrix $Y = [y_1 \ldots y_n] \in \mathbb{R}^{m \times n}$ with rank $d^0 \leq \min(m,n)$. Choosing $\alpha_0^0 = 1$ for $1 \leq j \leq n$ problem \mathbb{P}_0^0 has the form

$$\min \left\{ \sum_{j=1}^{n} \|y_j - \sum_{i=1}^{\ell} (\psi_j^i \psi_i)\|_{\mathbb{R}^m}^2 \right\}$$

s.t. $\{\psi_i\}_{i=1}^{\ell} \subset \mathbb{R}^m$ and $\psi_i^T \psi_j = \delta_{ij}$, $1 \leq i, j \leq \ell$.

where $\| \cdot \|_{\mathbb{R}^m}$ stands for the Euclidean norm in \mathbb{R}^m and “T” denotes the transpose of a given vector (or matrix). From

$$\mathbb{P}_0^0^m(i) = \left(\sum_{j=1}^{n} (\psi_j^T \psi_j) y_j \right)_{i} = \sum_{j=1}^{n} \sum_{j=1}^{\ell} Y_{ij} \psi_i = (Y Y^T)^m \psi_i, \quad \psi \in \mathbb{R}^m,$$

for each component $1 \leq i \leq m$ we infer that (1.5) leads to the symmetric $m \times m$ eigenvalue problem

$$Y Y^T \bar{\psi}_i = \bar{\psi}_i \bar{\lambda}_i, \quad \bar{\lambda}_1 \geq \ldots \geq \bar{\lambda}_{d^0} > \bar{\lambda}_{d^0+1} = \ldots = \bar{\lambda}_m = 0.$$

Recall that (1.16) can be solved by utilizing the singular value decomposition (SVD) [Nob69]: There exist real numbers $\bar{\sigma}_1^0 \geq \bar{\sigma}_2^0 \geq \ldots \geq \bar{\sigma}_{d^0}^0 > 0$ and orthogonal matrices $\Phi \in \mathbb{R}^{m \times m}$ with column vectors $\{\bar{\psi}_i^0\}_{i=1}^{m}$ and $\Phi \in \mathbb{R}^{m \times n}$ with column vectors $\{\bar{\phi}_i^0\}_{i=1}^{d^0}$ such that

$$\psi^T \Phi = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} =: \Sigma \in \mathbb{R}^{m \times n},$$

where $D = \text{diag}(\bar{\sigma}_1^0, \ldots, \bar{\sigma}_{d^0}^0) \in \mathbb{R}^{d^0 \times d^0}$ and the zeros in (1.17) denote matrices of appropriate dimensions. Moreover the vectors $\{\bar{\psi}_i^0\}_{i=1}^{m}$ and $\{\bar{\phi}_i^0\}_{i=1}^{d^0}$ satisfy

$$Y \bar{\phi}_i^0 = \bar{\sigma}_i^0 \bar{\phi}_i^0 \quad \text{and} \quad Y^T \bar{\psi}_i^0 = \bar{\sigma}_i^0 \bar{\psi}_i^0 \quad \text{for} \ i = 1, \ldots, d^0.$$

They are eigenvectors of $Y Y^T$ and $Y^T Y$, respectively, with eigenvalues $\bar{\lambda}_i^0 = (\bar{\sigma}_i^0)^2 > 0$, $i = 1, \ldots, d^0$. The vectors $\{\bar{\psi}_i^0\}_{i=d^0+1}^{n}$ and $\{\bar{\phi}_i^0\}_{i=d^0+1}^{n}$ (if $d^0 < m$ respectively $d^0 < n$) are eigenvectors of $Y Y^T$ and $Y^T Y$ with eigenvalue 0. Consequently, in the case $n < m$ one can determine the POD basis of rank ℓ as follows: Compute the eigenvectors $\bar{\phi}_1^0, \ldots, \bar{\phi}_\ell^0 \in \mathbb{R}^n$ by solving the symmetric $n \times n$ eigenvalue problem

$$Y^T \bar{\phi}_i^0 = \bar{\lambda}_i \bar{\phi}_i^0 \quad \text{for} \ i = 1, \ldots, \ell.$$

1.1. THE DISCRETE VARIANT OF THE POD METHOD
As in Remark 1.10 we introduce the matrix

Moreover, we define the diagonal matrix

Thus, the POD basis

Remark 1.11 (POD in \mathbb{R}^m with weighted inner product). As in Remark 1.10 we choose $X = \mathbb{R}^m$ with $m \in \mathbb{R}$ and $\varphi = 1$. Let $W \in \mathbb{R}^{m \times m}$ be a given symmetric, positive definite matrix. We supply \mathbb{R}^m with the weighted inner product

Then, problem (P_m') has the form

As in Remark 1.10 we introduce the matrix $Y = [y_1 | \ldots | y_n] \in \mathbb{R}^{m \times n}$ with rank $d_n \leq \min(m, n)$. Moreover, we define the diagonal matrix $D = \text{diag}(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^{n \times n}$. We find that

for each component $1 \leq i \leq m$. Consequently, (1.5) leads to the eigenvalue problem

Since W is symmetric and positive definite, W possesses an eigenvalue decomposition of the form $W = QBQ^T$, where $B = \text{diag}(\beta_1, \ldots, \beta_m)$ contains the eigenvalues $\beta_1 \geq \ldots \geq \beta_m > 0$ of W and $Q \in \mathbb{R}^{m \times m}$ is an orthogonal matrix. We define

Note that $(W')^{-1} = W^{-r}$ and $W^{r+s} = W^r W^s$ for $r, s \in \mathbb{R}$. Moreover, we have

and $\|\psi\|_W = \|W^{1/2}\psi\|_{\mathbb{R}^m}$ for $\psi \in \mathbb{R}^m$. Analogously, the matrix $D^{1/2}$ is defined. Inserting $\psi_i^m = W^{1/2}\tilde{\psi}_n$ in (1.19), multiplying (1.19) by $W^{1/2}$ from the left and setting $\tilde{\psi} = W^{1/2}YD^{1/2}$ yield the symmetric $m \times m$ eigenvalue problem

Note that

Thus, the POD basis $\{\tilde{\psi}_n^m\}_{n=1}^\ell$ of rank ℓ can also be computed by the methods of snapshots as follows: First solve the symmetric $n \times n$ eigenvalue problem

Prof. Dr. Stefan Volkwein
Then we set (by using the SVD of \tilde{Y})

$$
\psi_i^n = W^{-1/2} \phi_i^n = \frac{1}{\sigma_i^n} W^{-1/2} \bar{Y} \phi_i^n = \frac{1}{\sigma_i^n} Y D^{1/2} \phi_i^n, \quad 1 \leq i \leq \ell.
$$

(1.21)

Note that

$$
\langle \psi_i^n, \psi_j^n \rangle_W = (\psi_i^n)^\top W \psi_j^n = \frac{1}{\sigma_i^n \sigma_j^n} (\phi_i^n)^\top D^{1/2} Y^\top W Y D^{1/2} \phi_j^n = \delta_{ij}
$$

for $1 \leq i, j \leq \ell$. Thus, the POD basis $\{\psi_i^n\}_{i=1}^\ell$ of rank ℓ is orthonormal in \mathbb{R}^m with respect to the inner product $\langle \cdot, \cdot \rangle_W$. We observe from (1.20) and (1.21) that the computation of $W^{1/2}$ and $W^{-1/2}$ is not required. For applications, where W is not just a diagonal matrix, the method of snapshots turns out to be more attractive with respect to the computational costs even if $m > n$ holds. \hfill \diamond

Remark 1.12 (POD in \mathbb{R}^m with multiple snapshots). Let us discuss the more general case $p = 2$ in the setting of Remark 1.11. The extension for $p > 2$ is straightforward. We introduce the matrix $Y = [y_1^1 \mid \ldots \mid y_n^1 \mid y_1^2 \mid \ldots \mid y_n^2] \in \mathbb{R}^{m \times (np)}$ with rank $d_0 \leq \min(m, np)$. Then we find

$$
\begin{align*}
\mathcal{R}^n \psi &= \sum_{j=1}^n \left(\alpha_j^n \langle y_j^1, \psi \rangle_W y_j^1 + \alpha_j^n \langle y_j^2, \psi \rangle_W y_j^2 \right) \\
&= Y \left(\begin{array}{cc} D & 0 \\ 0 & D \end{array} \right) Y^\top W \psi = Y \tilde{D} Y^\top W \psi \quad \text{for } \psi \in \mathbb{R}^m.
\end{align*}
$$

Hence, (1.5) corresponds to the eigenvalue problem

$$
Y \tilde{D} Y^\top W \psi_i^n = \bar{\lambda}_i^n \psi_i^n, \quad \bar{\lambda}_1^n \geq \ldots \geq \bar{\lambda}_{d_0}^n > \bar{\lambda}_{d_0+1}^n = \ldots = \bar{\lambda}_m^n = 0.
$$

(1.22)

Setting $\psi_i^n = W^{1/2} \bar{\psi}_i^n$ in (1.22) and multiplying by $W^{1/2}$ from the left yield

$$
W^{1/2} Y \tilde{D} Y^\top W^{1/2} \psi_i^n = \bar{\lambda}_i^n \psi_i^n.
$$

(1.23)

Let $\bar{Y} = W^{1/2} Y \tilde{D}^{1/2} \in \mathbb{R}^{m \times (np)}$. Using $W^T = W$ as well as $\tilde{D}^T = \tilde{D}$ we infer from (1.23) that the POD basis $\{\psi_i^n\}_{i=1}^\ell$ of rank ℓ is given by the symmetric $m \times m$ eigenvalue problem

$$
\bar{Y} \bar{Y}^\top \psi_i^n = \bar{\lambda}_i^n \psi_i^n, \quad 1 \leq i \leq \ell, \quad \text{and} \quad \langle \psi_i^n, \psi_j^n \rangle_{\mathbb{R}^m} = \delta_{ij}, \quad 1 \leq i, j \leq \ell
$$

and $\bar{\psi}_i^n = W^{-1/2} \psi_i^n$. Note that

$$
\bar{Y}^\top \bar{Y} = \tilde{D}^{1/2} Y^\top W Y \tilde{D}^{1/2} \in \mathbb{R}^{(np) \times (np)}.
$$

Thus, the POD basis of rank ℓ can also be computed by the methods of snapshots as follows: First solve the symmetric $(np) \times (np)$ eigenvalue problem

$$
\bar{Y}^\top \bar{Y} \phi_i^n = \bar{\lambda}_i^n \phi_i^n, \quad 1 \leq i \leq \ell \quad \text{and} \quad \langle \phi_i^n, \phi_j^n \rangle_{\mathbb{R}^m} = \delta_{ij}, \quad 1 \leq i, j \leq \ell.
$$

Then we set (by SVD)

$$
\bar{\psi}_i^n = W^{-1/2} \psi_i^n = \frac{1}{\sigma_i^n} W^{-1/2} \bar{Y} \phi_i^n = \frac{1}{\sigma_i^n} Y \tilde{D}^{1/2} \phi_i^n
$$

for $1 \leq i \leq \ell$. \hfill \diamond

1.1. THE DISCRETE VARIANT OF THE POD METHOD

11
1.2 The continuous variant of the POD method

As in Remark 1.1 let $0 \leq t_1 < t_2 < \ldots < t_n \leq T$ be a given time grid in the interval $[0, T]$ with equidistant with step-size $\Delta t = T / (n - 1)$, i.e., $t_j = (j - 1)\Delta t$. Suppose that we have trajectories $y^k \in C([0, T]; X)$, $1 \leq k \leq \varphi$. Let the snapshots be given as $y^k_j = y^k(t_j) \in X$ or $y^k_j \approx y^k(t_j) \in X$. Then, the snapshot subspace \mathcal{V}^n introduced in (1.1) depends also on the time instances (which has already been indicated by the superindex n). Moreover, we have not discussed so far what is the motivation to introduce the positive weights $\{\alpha^n_j\}_{j=1}^n$ in \mathcal{P}^n. For this reason we proceed by investigating the following two questions:
- How to choose good time instances for the snapshots?
- What are appropriate positive weights $\{\alpha^n_j\}_{j=1}^n$?

To address these two questions we will introduce a continuous version of POD. In Section 1.1 we have introduced the operator \mathcal{R}^n in (1.4). By $\{\psi^n_i\}_{i \in I}$ and $\{\lambda^n_i\}_{i \in I}$ we have denoted the eigenfunctions and eigenvalues for \mathcal{R}^n satisfying (1.5). Moreover, we have set $d^n = \dim \mathcal{V}^n$ for the dimension of the snapshot set. Let us now introduce the snapshot set by

$$\mathcal{V} = \text{span} \left\{ y^k(t) \mid t \in [0, T] \text{ and } 1 \leq k \leq \varphi \right\} \subset X$$

with dimension $d \leq \infty$. For any $\ell \leq d$ we are interested in determining a POD basis of rank ℓ which minimizes the mean square error between the trajectories y^k and the corresponding ℓ-th partial Fourier sums on average in the time interval $[0, T]$:

$$\begin{equation}
\begin{aligned}
\min & \sum_{k=1}^\varphi \int_0^T \left\| y^k(t) - \sum_{i=1}^\ell \langle y^k(t), \psi_i \rangle_X \psi_i \right\|^2_X \, dt \\
\text{s.t.} & \{\psi_i\}_{i=1}^\ell \subset X \text{ and } \langle \psi_i, \psi_j \rangle_X = \delta_{ij}, \ 1 \leq i, j \leq \ell.
\end{aligned}
\end{equation} \quad (\mathcal{P}^\ell)$$

An optimal solution $\{\bar{\psi}_i\}_{i=1}^\ell$ to \mathcal{P}^ℓ is called a POD basis of rank ℓ. Analogous to \mathcal{P}^ℓ we can – instead of \mathcal{P}^ℓ – consider the problem

$$\begin{equation}
\begin{aligned}
\max & \sum_{k=1}^\varphi \int_0^T \sum_{i=1}^\ell \langle y^k(t), \psi_i \rangle_X^2 \, dt \\
\text{s.t.} & \{\psi_i\}_{i=1}^\ell \subset X \text{ and } \langle \psi_i, \psi_j \rangle_X = \delta_{ij}, \ 1 \leq i, j \leq \ell.
\end{aligned}
\end{equation} \quad (\mathcal{\hat{P}}^\ell)$$

A solution to (\mathcal{P}^ℓ) and to $(\mathcal{\hat{P}}^\ell)$ can be characterized by an eigenvalue problem for the linear integral operator $\mathcal{R} : X \to X$ given as

$$\mathcal{R} \psi = \sum_{k=1}^\varphi \int_0^T \langle y^k(t), \psi \rangle_X y^k(t) \, dt \quad \text{for } \psi \in X. \quad (1.24)$$

For the given real Hilbert space X we denote by $L^2(0, T; X)$ the Hilbert space of square integrable functions $t \mapsto \varphi(t) \in X$ so that [7, p. 114]
- the mapping $t \mapsto \varphi(t)$ is measurable for $t \in [0, T]$ and
- $\|\varphi\|_{L^2(0, T; X)} = \left(\int_0^T \|\varphi(t)\|^2_X \, dt \right)^{1/2} < \infty$.

Recall that $\varphi : [0, T] \to X$ is called measurable if there exists a sequence $\{\varphi_n\}_{n \in \mathbb{N}}$ of step functions $\varphi_n : [0, T] \to X$ satisfying $\varphi(t) = \lim_{n \to \infty} \varphi_n(t)$ for almost all $t \in [0, T]$. The standard inner product on $L^2(0, T; X)$ is given by

$$\langle \varphi, \psi \rangle_{L^2(0, T; X)} = \int_0^T \langle \varphi(t), \psi(t) \rangle_X \, dt \quad \text{for } \varphi, \psi \in L^2(0, T; X).$$
Lemma 1.13. Let \(X \) be a (separable) real Hilbert space and \(y^k \in L^2(0, T; X) \), \(1 \leq k \leq p \), be given snapshot trajectories. Then, the operator \(R \) introduced in (1.24) is compact, nonnegative and selfadjoint.

Proof. First we write

\[
\mathcal{Y} \phi = \sum_{k=1}^{p} \int_{0}^{T} \phi^k(t) y^k(t) \, dt \quad \text{for } \phi = (\phi^1, \ldots, \phi^p) \in L^2(0, T; \mathbb{R}^p). \tag{1.25}
\]

Utilizing the Cauchy-Schwarz inequality [DR12, Satz 12.17] and \(y^k \in L^2(0, T; X) \) for \(1 \leq k \leq p \) we infer that

\[
\|\mathcal{Y} \phi\|_X \leq \sum_{k=1}^{p} \int_{0}^{T} |\phi^k(t)| \|y^k(t)\|_X \, dt \leq \sum_{k=1}^{p} \|\phi^k\|_{L^2(0,T)} \|y^k\|_{L^2(0,T;X)}
\]

\[
\leq \left(\sum_{k=1}^{p} \|\phi^k\|_{L^2(0,T)}^2 \right)^{1/2} \left(\sum_{k=1}^{p} \|y^k\|_{L^2(0,T;X)}^2 \right)^{1/2}
\]

\[
= C_{\mathcal{Y}} \|\phi\|_{L^2(0,T;\mathbb{R}^p)} \quad \text{for any } \phi \in L^2(0, T; \mathbb{R}^p),
\]

where we set \(C_{\mathcal{Y}} = (\sum_{k=1}^{p} \|y^k\|_{L^2(0,T;X)}^2)^{1/2} < \infty \). Hence, the operator \(\mathcal{Y} \) is bounded. Its Hilbert space adjoint \(\mathcal{Y}^* : X \to L^2(0, T; \mathbb{R}^p) \) satisfies

\[
\langle \mathcal{Y}^* \psi, \phi \rangle_{L^2(0,T;\mathbb{R}^p)} = \langle \psi, \mathcal{Y} \phi \rangle_X \quad \text{for } \psi \in X \text{ and } \phi \in L^2(0, T; \mathbb{R}^p).
\]

Since we derive

\[
\langle \mathcal{Y}^* \psi, \phi \rangle_{L^2(0,T;\mathbb{R}^p)} = \langle \psi, \mathcal{Y} \phi \rangle_X = \left\langle \psi, \sum_{k=1}^{p} \int_{0}^{T} \phi^k(t) y^k(t) \, dt \right\rangle_X
\]

\[
= \sum_{k=1}^{p} \int_{0}^{T} \langle \psi, y^k(t) \rangle_X \phi^k(t) \, dt = \left\langle \left((\psi, y^k(\cdot))_X \right)_{1 \leq k \leq p}, \phi \right\rangle_{L^2(0,T;\mathbb{R}^p)}
\]

for \(\psi \in X \) and \(\phi \in L^2(0, T; \mathbb{R}^p) \), the adjoint operator is given by

\[
(\mathcal{Y}^* \psi)(t) = \begin{pmatrix}
\langle \psi, y^1(t) \rangle_X \\
\vdots \\
\langle \psi, y^p(t) \rangle_X
\end{pmatrix}
\quad \text{for } \psi \in X \text{ and } t \in [0, T] \text{ a.e.,}
\]

where ‘a.e.’ stands for ‘almost everywhere’. From (1.4) and

\[
(\mathcal{Y} \mathcal{Y}^*) \psi = \mathcal{Y}^* \begin{pmatrix}
\langle \psi, y^1(\cdot) \rangle_X \\
\vdots \\
\langle \psi, y^p(\cdot) \rangle_X
\end{pmatrix} = \sum_{k=1}^{p} \int_{0}^{T} \langle \psi, y^k(t) \rangle_X y^k(t) \, dt \quad \text{for } \psi \in X
\]

we infer that \(R = \mathcal{Y} \mathcal{Y}^* \) holds. Since the operator \(\mathcal{Y} \) is bounded, its adjoint and therefore \(R = \mathcal{Y} \mathcal{Y}^* \) are bounded operators. To prove that \(R \) is compact, we show that \(\mathcal{Y}^* \) is compact. Let \(\{x_n\}_{n \in \mathbb{N}} \subset X \) be sequence converging weakly to an element \(x \in X \), i.e.,

\[
\lim_{n \to \infty} \langle x_n, \psi \rangle_X = \langle x, \psi \rangle_X \quad \text{for all } \psi \in X.
\]

This implies that

\[
\lim_{n \to \infty} (\mathcal{Y}^* x_n)(t) = \lim_{n \to \infty} \begin{pmatrix}
\langle x_n, y^1(t) \rangle_X \\
\vdots \\
\langle x_n, y^p(t) \rangle_X
\end{pmatrix} = \begin{pmatrix}
\langle x, y^1(t) \rangle_X \\
\vdots \\
\langle x, y^p(t) \rangle_X
\end{pmatrix} = (\mathcal{Y}^* x)(t)
\]

1.2. THE CONTINUOUS VARIANT OF THE POD METHOD 13
for \(t \in [0, T] \) a.e. Thus, the sequence \(\{\mathcal{Y}^n \chi_n\}_{n \in \mathbb{N}} \) converges weakly to \(\mathcal{Y}^* \chi \) in \(L^2(0, T; \mathbb{R}^p) \). Consequently, \(\mathcal{R} = \mathcal{Y} \mathcal{Y}^* \) is compact. From

\[
\langle \mathcal{R} \psi, \psi \rangle_X = \left\langle \sum_{k=1}^{p} \int_{0}^{T} \langle \psi, y^k(t) \rangle_X y^k(t) \, dt, \psi \right\rangle_X = \sum_{k=1}^{p} \int_{0}^{T} |\langle \psi, y^k(t) \rangle_X|^2 \, dt \geq 0 \quad \text{for all } \psi \in X
\]

we infer that \(\mathcal{R} \) is nonnegative. Finally, we have \(\mathcal{R}^* = (\mathcal{Y} \mathcal{Y}^*)^* = \mathcal{R} \), i.e. \(\mathcal{R} \) is selfadjoint. \(\square \)

Remark 1.14. It follows from the proof of Lemma 1.13 that \(\mathcal{K} = \mathcal{Y} \mathcal{Y} : L^2(0, T; \mathbb{R}^p) \to L^2(0, T; \mathbb{R}^p) \) is compact as well. We find that

\[
(\mathcal{K} \phi)(t) = \begin{pmatrix}
\sum_{k=1}^{p} \int_{0}^{T} \langle y^k(s), y^k(t) \rangle_X \phi^k(s) \, ds \\
\vdots \\
\sum_{k=1}^{p} \int_{0}^{T} \langle y^k(s), y^p(t) \rangle_X \phi^k(s) \, ds
\end{pmatrix}, \quad \phi \in L^2(0, T; \mathbb{R}^p).
\]

The compactness of \(\mathcal{K} \) can also be shown as follows: Notice that the kernel function

\[
r_{ik}(s, t) = \langle y^k(s), y^l(t) \rangle_X, \quad (s, t) \in [0, T] \times [0, T] \text{ and } 1 \leq i, k \leq p,
\]

belongs to \(L^2(0, T) \times L^2(0, T) \). Here, we shortly write \(L^2(0, T) \) for \(L^2(0, T; \mathbb{R}) \). Then, it follows from [DR12 Beispiel 19.3] that the linear integral operator \(\mathcal{K}_{ik} : L^2(0, T) \to L^2(0, T) \) defined by

\[
\mathcal{K}_{ik}(t) = \int_{0}^{T} r_{ik}(s, t) \phi(s) \, ds, \quad \phi \in L^2(0, T),
\]

is compact. This implies, that the operator \(\sum_{k=1}^{p} \mathcal{K}_{ik} \) is compact for \(1 \leq i \leq p \) as well. \(\diamond \)

In the next theorem we formulate how the solution to \(\textbf{(P)} \) and \(\textbf{(P')\ell} \) can be found.

Theorem 1.15. Let \(X \) be a separable real Hilbert space and \(y^k \in L^2(0, T; X) \) are given trajectories for \(1 \leq k \leq p \). Suppose that the linear operator \(\mathcal{R} \) is defined by \(\textbf{(1.24)} \). Then, there exist nonnegative eigenvalues \(\{\bar{\lambda}_i\}_{i \in \mathbb{I}} \) and associated orthonormal eigenfunctions \(\{\bar{\psi}_i\}_{i \in \mathbb{I}} \) satisfying

\[
\mathcal{R} \bar{\psi}_i = \bar{\lambda}_i \bar{\psi}_i, \quad \bar{\lambda}_1 \geq \ldots \geq \bar{\lambda}_d > \bar{\lambda}_{d+1} = \ldots = 0. \tag{1.26}
\]

For every \(\ell \in \{1, \ldots, d\} \) the first \(\ell \) eigenfunctions \(\{\bar{\psi}_i\}_{i=1}^{\ell} \) solve \(\textbf{(P)} \) and \(\textbf{(P')\ell} \). Moreover, the value of the objectives evaluated at the optimal solution \(\{\bar{\psi}_i\}_{i=1}^{\ell} \) satisfies

\[
\sum_{k=1}^{p} \int_{0}^{T} \left\| y^k(t) - \sum_{i=1}^{\ell} \langle y^k(t), \bar{\psi}_i \rangle_X \bar{\psi}_i \right\|_X^2 \, dt = \sum_{i=\ell+1}^{d} \bar{\lambda}_i \tag{1.27}
\]

and

\[
\sum_{k=1}^{p} \int_{0}^{T} \sum_{i=1}^{\ell} \langle y^k(t), \bar{\psi}_i \rangle_X^2 \, dt = \sum_{i=1}^{\ell} \bar{\lambda}_i, \tag{1.28}
\]

respectively.

Proof. The existence of sequences \(\{\bar{\lambda}_i\}_{i \in \mathbb{I}} \) of eigenvalues and \(\{\bar{\psi}_i\}_{i \in \mathbb{I}} \) of associated eigenfunctions satisfying \(\textbf{(1.26)} \) follows from Lemma 1.13, Theorem 1.5 and Theorem 1.6. Analogous to the proof of Theorem 1.8 in Section 1.1 one can show that \(\{\psi_i\}_{i=1}^{\ell} \) solves \(\textbf{(P')\ell} \) as well as \(\textbf{(P')} \) and that \(\textbf{(1.27)} \) respectively \(\textbf{(1.28)} \) are valid. \(\square \)
1.3 Perturbation analysis for the POD basis

1.3.1 Perturbation analysis for the POD basis

stands for the spectrum as follows:

\[R \int \langle y^k(t), \Psi_i \rangle_X y^k(t) dt \quad \text{for every } i \in \mathbb{I}. \]

Taking the inner product with \(\Psi_i \), using (1.26) and summing over \(i \) we get

\[\sum_{i=1}^{d} \int_0^T \langle y^k(t), \Psi_i \rangle_X^2 dt = \sum_{i=1}^{d} \langle R \Psi_i, \Psi_i \rangle_X = \sum_{i=1}^{d} \tilde{\lambda}_i. \]

Expanding each \(y^k(t) \in X \) in terms of \(\{ \tilde{\Psi}_i \}_{i \in \mathbb{I}} \) for each \(1 \leq k \leq p \) we have

\[y^k(t) = \sum_{i=1}^{d} \langle y^k(t), \tilde{\Psi}_i \rangle_X \tilde{\Psi}_i \]

and hence

\[\sum_{i=1}^{d} \int_0^T \| y^k(t) \|^2_X dt = \sum_{i=1}^{d} \sum_{k=1}^{p} \int_0^T \langle y^k(t), \tilde{\Psi}_i \rangle_X^2 dt = \sum_{i=1}^{d} \tilde{\lambda}_i, \]

which is (1.29).

\[\tilde{\Psi}_i = \tilde{\lambda}_i \Phi_i, \quad 1, \ldots, \ell. \]

We set \(\mathbb{R}^+_0 = \{ s \in \mathbb{R} \mid s \geq 0 \} \) and \(\tilde{\sigma}_i = \tilde{\lambda}_i^{1/2} \). The sequence \(\{ \tilde{\sigma}_i, \tilde{\Phi}_i, \tilde{\Psi}_i \}_{i \in \mathbb{I}} \) in \(\mathbb{R}^+_0 \times L^2(0, T; \mathbb{R}^p) \times X \) can be interpreted as a singular value decomposition of the mapping \(\mathcal{Y} : L^2(0, T; \mathbb{R}^p) \rightarrow X \) introduced in (1.25). In fact, we have

\[\mathcal{Y} \Phi_i = \tilde{\sigma}_i \tilde{\Psi}_i, \quad \mathcal{Y}^* \tilde{\Psi}_i = \tilde{\sigma}_i \tilde{\Phi}_i, \quad i \in \mathbb{I}. \]

Since \(\tilde{\sigma}_i > 0 \) holds for \(i = 1, \ldots, d \), we have \(\tilde{\Psi}_i = \mathcal{Y} \tilde{\Phi}_i / \tilde{\sigma}_i \) for \(i = 1, \ldots, d \).

1.3 Perturbation analysis for the POD basis

The eigenvalues \(\{ \tilde{\lambda}_i \}_{i \in \mathbb{I}} \) satisfying (1.5) depend on the time grid \(\{ t_j \}_{j=1}^n \). In this section we investigate the sum \(\sum_{i=1}^{n} \tilde{\lambda}_i \), the value of the cost in (P\ell) evaluated at the solution \(\{ \tilde{\Psi}_i^{\ell} \}_{i=1}^\ell \) for \(n \rightarrow \infty \). Clearly, \(n \rightarrow \infty \) is equivalent to \(\Delta t = T / (n - 1) \rightarrow 0 \).

In general the spectrum \(\sigma(T) \) of an operator \(T \in \mathcal{L}(X) \) does not depend continuously on \(T \). This is an essential difference to the finite dimensional case. For the compact and selfadjoint operator \(R \) we have \(\sigma(R) = \{ \tilde{\lambda}_i \}_{i \in \mathbb{I}} \). Suppose that for \(\ell \in \mathbb{N} \) we have \(\tilde{\lambda}_\ell > \tilde{\lambda}_{\ell+1} \) so that we can separate the spectrum as follows: \(\sigma(R) = S_\ell \cup S'_\ell \) with \(S_\ell = \{ \tilde{\lambda}_1, \ldots, \tilde{\lambda}_\ell \} \) and \(S'_\ell = \sigma(R) \setminus S_\ell \). Then, \(S_\ell \cap S'_\ell = \emptyset \).

Moreover, setting \(V^\ell = \text{span} \{ \tilde{\Psi}_1, \ldots, \tilde{\Psi}_\ell \} \) we have \(X = V^\ell \oplus (V^\ell)^\perp \), where the linear space \((V^\ell)^\perp \) stands for the \(X \)-orthogonal complement of \(V^\ell \). Let us assume that

\[\lim_{n \rightarrow \infty} \| R^n - R \|_{\mathcal{L}(X)} = 0 \quad (1.30) \]
Lemma 1.18. Suppose that X is a (separable) real Hilbert space and that the snapshot trajectories y^k belong to $H^1(0, T; X)$ for $1 \leq k \leq p$. Then, (1.30) holds true.

Proof. For an arbitrary $\psi \in X$ with $\|\psi\|_X = 1$ we define $F : [0, T] \to X$ by

$$F(t) = \sum_{k=1}^{p} \langle y^k(t), \psi \rangle_X y^k(t) \quad \text{for } t \in [0, T].$$

It follows that

$$\mathcal{R}\psi = \int_0^T F(t) \, dt = \sum_{j=1}^{n-1} \int_{t_j}^{t_{j+1}} F(t) \, dt,$$

$$\mathcal{R}^n\psi = \sum_{j=1}^{n} \alpha_j F(t_j) = \frac{\Delta t}{2} \sum_{j=1}^{n-1} \left(F(t_j) + F(t_{j+1}) \right).$$

Then, we infer from $\|\psi\|_X = 1$ that

$$\|F(t)\|_X^2 \leq \left(\sum_{k=1}^{P} \|y^k(t)\|_X^2 \right)^2. \quad \text{(1.33)}$$

Now we show that F belongs to $H^1(0, T; X)$ and its norm is bounded independently of ψ. Recall that $y^k \in H^1(0, T; X)$ imply that $y^k \in C([0, T]; X)$ holds for $1 \leq k \leq p$. Using (1.33) we have

$$\|F\|_{L^2(0, T; X)}^2 \leq \int_0^T \left(\sum_{k=1}^{P} \|y^k\|^2_{C([0, T]; X)} \right)^2 \, dt \leq C_1$$

with $C_1 = T \sum_{k=1}^{P} \|y^k\|^2_{C([0, T]; X)}^2$. Moreover, $F \in H^1(0, T; X)$ with

$$F_t(t) = \sum_{k=1}^{P} \langle y^k(t), \psi \rangle_X y^k(t) + \langle y^k(t), \psi \rangle_X y^k(t) \quad \text{f.a.a. } t \in [0, T].$$

holds. Then it follows from the perturbation theory of the spectrum of linear operators [Kat80, pp. 212–214] that the space $V^p_t = \text{span} \{ \overline{\psi}^1, \ldots, \overline{\psi}^p \}$ is isomorphic to V^t if n is sufficiently large. Furthermore, the change of a finite set of eigenvalues of \mathcal{R} is small provided $\|\mathcal{R}^n - \mathcal{R}\|_{c(X)}$ is sufficiently small. Summarizing, the behavior of the spectrum is much the same as in the finite dimensional case if we can ensure (1.30). Therefore, we start this section by investigating the convergence of $\mathcal{R}^n - \mathcal{R}$ in the operator norm.

Recall that the Sobolev space $H^1(0, T; X)$ is given by

$$H^1(0, T; X) = \{ \varphi \in L^2(0, T; X) \mid \varphi_t \in L^2(0, T; X) \},$$

where φ_t denotes the weak derivative of φ. The space $H^1(0, T; X)$ is a Hilbert space with the inner product

$$\langle \varphi, \phi \rangle_{H^1(0, T; X)} = \int_0^T \langle \varphi(t), \phi(t) \rangle_X + \langle \varphi_t(t), \phi_t(t) \rangle_X \, dt$$

for $\varphi, \phi \in H^1(0, T; X)$

and the induced norm $\|\varphi\|_{H^1(0, T; X)} = \langle \varphi, \varphi \rangle_{H^1(0, T; X)}^{1/2}$.

Let us choose the trapezoidal weights

$$\alpha_1^k = \frac{T}{2(n-1)}, \quad \alpha_j^k = \frac{T}{n-1} \quad \text{for } 2 \leq j \leq n-1, \quad \alpha_n^k = \frac{T}{2(n-1)}, \quad \text{(1.31)}$$

For this choice we observe that for every $\psi \in X$ the element $\mathcal{R}^n\psi$ is a trapezoidal approximation for $\mathcal{R}\psi$. We will make use of the following lemma.
where ‘f.a.a.’ stands for ‘for almost all’. Thus, we derive
\[
\|F_t\|_{L^2([0,T];X)}^2 \leq 4 \int_0^T \left(\sum_{k=1}^p \|y^k(t)\|_X \|y^k(t)\|_X \right)^2 \, dt \leq C_2
\]
with \(C_2 = 4 \sum_{k=1}^p \|y^k\|_{C([0,T];X)}^2 \sum_{j=1}^p \|y_j^k\|_{L^2([0,T];X)}^2 < \infty \). Consequently,
\[
\|F\|_{H^1(0,T;X)} = \left(\int_0^T \|F(t)\|_X^2 + \|F_t(t)\|_X^2 \, dt \right)^{1/2} \leq C_3 \tag{1.34}
\]
with the constant \(C_3 = (C_1 + C_2)^{1/2} \), which is independent of \(\psi \). To evaluate \(\mathcal{R}^n \psi \) we notice that
\[
\int_{t_j}^{t_{j+1}} F(t) \, dt = \frac{1}{2} \int_{t_j}^{t_{j+1}} \left(F(t_j) + F(t_{j+1}) \right) \, dt \\
+ \frac{1}{2} \int_{t_j}^{t_{j+1}} \left(F(t_j) + \int_{t_j}^{t} F_t(s) \, ds \right) \, dt \\
= \frac{\Delta t}{2} (F(t_j) + F(t_{j+1})) \\
+ \frac{1}{2} \int_{t_j}^{t_{j+1}} \left(\int_{t_j}^{t} F_t(s) \, ds + \int_{t_j}^{t} F_t(s) \, ds \right) \, dt. \tag{1.35}
\]
Utilizing (1.32) and (1.35) we obtain
\[
\|\mathcal{R}^n \psi - \mathcal{R} \psi\|_X \leq \sum_{j=1}^{n-1} \left(\frac{\Delta t}{2} \left(F(t_j) + F(t_{j+1}) \right) - \int_{t_j}^{t_{j+1}} F(t) \, dt \right) \|F\|_X \\
\leq \frac{1}{2} \sum_{j=1}^{n-1} \left(\int_{t_j}^{t_{j+1}} F_t(s) \, ds \right) \|F\|_X + \frac{1}{2} \sum_{j=1}^{n-1} \left(\int_{t_j}^{t_{j+1}} F_t(s) \, ds \right) \|F\|_X.
\]
From the Cauchy-Schwarz inequality \cite{DR12 Satz 12.17} we deduce that
\[
\sum_{j=1}^{n-1} \left(\int_{t_j}^{t_{j+1}} F_t(s) \, ds \right)^2 \|F\|_X \\
\leq \Delta t \sum_{j=1}^{n-1} \left(\int_{t_j}^{t_{j+1}} \left(\int_{t_j}^{t} F_t(s) \, ds \right)^2 \, dt \right)^{1/2} \\
\leq \Delta t \sum_{j=1}^{n-1} \left(\int_{t_j}^{t_{j+1}} \left(\int_{t_j}^{t} \|F_t(s)\|_X \, ds \right)^2 \, dt \right)^{1/2} \\
\leq \Delta t \sum_{j=1}^{n-1} \left(\int_{t_j}^{t_{j+1}} \|F_t(s)\|_X^2 \, ds \right)^{1/2} \|F\|_{H^1(0,T;X)} \\
\leq T \sqrt{\Delta t} \|F\|_{H^1(0,T;X)}. \tag{1.36}
\]
Analogously, we derive
\[
\sum_{j=1}^{n-1} \left(\int_{t_j}^{t_{j+1}} F_t(s) \, ds \right)^2 \|F\|_X \\
\leq T \sqrt{\Delta t} \|F\|_{H^1(0,T;X)}. \tag{1.37}
\]
From (1.34), (1.36) and (1.37) it follows that
\[
\|\mathcal{R}^n \psi - \mathcal{R} \psi\|_X \leq \frac{C_4}{\sqrt{n}}.
\]
where $C_4 = C_3 T^{3/2}$ is independent of n and ψ. Consequently,

$$\|\mathcal{R}^n - \mathcal{R}\|_{\mathcal{L}(X)} = \sup_{\|\psi\|_X = 1} \|\mathcal{R}^n \psi - \mathcal{R} \psi\|_X \xrightarrow{n \to \infty} 0$$

which gives the claim. \(\square\)

Now we follow \[KV02a\] Section 3.2. We suppose that $y^k \in H^1([0, T; X])$ for $1 \leq k \leq \varphi$. Thus $y^k \in C([0, T; X])$ holds, which implies that

$$\sum_{k=1}^{p} \sum_{j=1}^{n} \alpha_{ij}^n \|y^k(t_j)\|_X^2 \rightarrow \sum_{k=1}^{p} \int_0^T \|y^k(t)\|_X^2 \; dt \quad \text{as } n \to \infty. \quad (1.38)$$

Combining (1.38) with (1.8) and (1.29) we find

$$\sum_{i=1}^{d^n} \lambda_i^n \rightarrow \sum_{i=1}^{d} \lambda_i \quad \text{as } n \to \infty. \quad (1.39)$$

Now choose and fix ℓ such that $\bar{\lambda}_{\ell} \neq \bar{\lambda}_{\ell+1}$. \(\ell \\text{ is fixed}\)

Then, by spectral analysis of compact operators and Lemma 1.18 it follows that

$$\bar{\lambda}_i^n \rightarrow \bar{\lambda}_i \quad \text{for } 1 \leq i \leq \ell \quad \text{as } n \to \infty. \quad (1.41)$$

Combining (1.39) and (1.41) we derive

$$\sum_{i=\ell+1}^{d^n} \bar{\lambda}_i^n \rightarrow \sum_{i=\ell+1}^{d} \bar{\lambda}_i \quad \text{as } n \to \infty.$$

Especially, if $\lambda_1 > \lambda_2 > \cdots > \lambda_{\ell}$ is satisfied, we conclude from (1.40) and Lemma 1.18 that

$$\lim_{n \to \infty} \|\tilde{\psi}_i^n - \tilde{\psi}_i\|_X = 0 \quad \text{for } i = 1, \ldots, \ell. \quad \text{Summarizing the following theorem has been shown.}$$

Theorem 1.19. Let X be a separable real Hilbert space, the weighting parameters $\{\alpha_{ij}^n\}_{i,j=1}^{n}$ be given by (1.31) and $y^k \in H^1([0, T; X])$ for $1 \leq k \leq \varphi$. Let $\{\tilde{\psi}_i^n, \tilde{\lambda}_i^n\}_{i \in I}$ and $\{(\tilde{\psi}_i, \tilde{\lambda}_i)\}_{i \in I}$ be eigenvector-eigenvalue pairs satisfying (1.5) and (1.26), respectively. Suppose that $\ell \in \mathbb{N}$ is fixed such that (1.40) holds. Then we have

$$\lim_{n \to \infty} \left|\bar{\lambda}_i^n - \bar{\lambda}_i\right| = 0 \quad \text{for } 1 \leq i \leq \ell,$$

and

$$\lim_{n \to \infty} \sum_{i=\ell+1}^{d^n} \bar{\lambda}_i^n = \sum_{i=\ell+1}^{d} \bar{\lambda}_i.$$

In particular, if $\lambda_1 > \lambda_2 > \cdots > \lambda_{\ell}$ holds, then we even have

$$\lim_{n \to \infty} \|\tilde{\psi}_i^n - \tilde{\psi}_i\|_X = 0 \quad \text{for } 1 \leq i \leq \ell.$$

Remark 1.20. Theorem 1.19 gives an answer to the two questions posed at the beginning of Section 1.2. The time instances $\{t_j\}_{j=1}^{n}$ and the associated positive weights $\{\alpha_{ij}^n\}_{j=1}^{n}$ should be chosen such that \mathcal{R}^n is a quadrature approximation of \mathcal{R} and $\|\mathcal{R}^n - \mathcal{R}\|_{\mathcal{L}(X)}$ is small (for reasonable n). A different strategy is applied in [KV10], where the time instances $\{t_j\}_{j=1}^{n}$ are chosen by an optimization approach. Clearly, other choices for the weights $\{\alpha_{ij}^n\}_{j=1}^{n}$ are also possible provided (1.30) is guaranteed. For instance, we can choose the Simpson weights. \(\diamond\)
2 Reduced-order modelling for evolution problems

In this section we utilize the POD method to derive low-dimensional models for evolution problems. For that purpose the POD basis of rank \(\ell \) serves as test and ansatz functions in a POD Galerkin approximation. The a-priori error of the POD Galerkin scheme is investigated. It turns out that the resulting error bounds depend on the number of POD basis functions.

2.1 The abstract evolution problem

In this subsection we introduce our abstract evolution problem which will be under consideration in Sections 2 and 3. Let \(V \) and \(H \) be real, separable Hilbert spaces and suppose that \(V \) is dense in \(H \) with compact embedding. By \(\langle \cdot , \cdot \rangle _{H} \) and \(\langle \cdot , \cdot \rangle _{V} \) we denote the inner products in \(H \) and \(V \), respectively. In particular, there exists an embedding constant \(c_{V} > 0 \) such that

\[
\| \varphi \|_{H} \leq c_{V} \| \varphi \|_{V} \quad \text{for all } \varphi \in V.
\]

(2.1)

Let \(T > 0 \) the final time. For \(t \in [0, T] \) we define a time-dependent symmetric bilinear form \(a(t; \cdot , \cdot) : V \times V \rightarrow \mathbb{R} \) satisfying

\[
a(t; \varphi , \psi) \leq \gamma \| \varphi \|_{V} \| \psi \|_{V} \quad \forall \varphi \in V \text{ a.e. in } [0, T],
\]

(2.2a)

\[
a(t; \varphi , \psi) \geq \gamma _{1} \| \varphi \|^{2}_{V} - \gamma _{2} \| \psi \|^{2}_{H} \quad \forall \varphi \in V \text{ a.e. in } [0, T].
\]

(2.2b)

for constants \(\gamma , \gamma _{1} > 0 \) and \(\gamma _{2} \geq 0 \) which do not depend on \(t \). In (2.2), the abbreviation “a.e.” stands for “almost everywhere”. By identifying \(H \) with its dual \(H' \) it follows that \(V \hookrightarrow H = H' \hookrightarrow V' \) each embedding being continuous and dense. Here, \(V' \) denotes the dual space of \(V \). Recall that the function space (see [Tro09, §3.4.1], for instance)

\[
W(0, T) = \{ \varphi \in L^{2}(0, T; V) \mid \varphi _{t} \in L^{2}(0, T; V') \}
\]

is a Hilbert space endowed with the inner product

\[
\langle \varphi , \phi \rangle _{W(0, T)} = \int_{0}^{T} \langle \varphi (t), \phi (t) \rangle _{V} + \langle \varphi _{t}(t), \phi _{t}(t) \rangle _{V'} \, dt \text{ for } \varphi , \phi \in W(0, T)
\]

and the induced norm \(\| \varphi \|_{W(0, T)} = \langle \varphi , \varphi \rangle _{W(0, T)}^{1/2} \). Furthermore, \(W(0, T) \) is continuously embedded into the space \(C([0, T]; H) \). Hence, \(\varphi (0) \) and \(\varphi (T) \) are meaningful in \(H \) for an element \(\varphi \in W(0, T) \). The integration by parts formula reads

\[
\int_{0}^{T} \langle \varphi _{t}(t), \phi (t) \rangle _{V'} \, dt + \int_{0}^{T} \langle \phi _{t}(t), \varphi (t) \rangle _{V} \, dt = \frac{d}{dt} \int_{0}^{T} \langle \varphi (t), \psi (t) \rangle _{H} \, dt = \varphi (T)\phi (T) - \varphi (0)\phi (0),
\]

for \(\varphi , \phi \in W(0, T) \), where \(\langle \cdot , \cdot \rangle _{V', V} \) stands for the dual pairing between \(V \) and its dual space \(V' \). Moreover, we have the formula

\[
\langle \varphi _{t}(t), \phi \rangle _{V', V} = \frac{d}{dt} \langle \varphi (t), \phi \rangle _{H} \quad \text{for } \langle \varphi , \phi \rangle \in W(0, T) \times V \text{ and f.a.a. } t \in [0, T].
\]
Since we will consider optimal control problems in Section 3, we already introduce the evolution problem with an input term. We suppose that for \(N_u \in \mathbb{N} \) the input space \(U = L^2(0; T; \mathbb{R}^{N_u}) \) is chosen. In particular, we identify \(U \) with its dual space \(U' \). For \(u \in U \), \(y_0 \in H \) and \(f \in L^2(0; T; V') \) we consider the linear evolution problem

\[
\frac{d}{dt} \langle y(t), \varphi \rangle_H + a(t; y(t), \varphi) = \langle (f + Bu)(t), \varphi \rangle_{V', V} \quad \forall \varphi \in V \text{ a.e. in } (0, T],
\]

\[
\langle y(0), \varphi \rangle_H = \langle y_0, \varphi \rangle_H \quad \forall \varphi \in H,
\]

where \(B : U \to L^2(0; T; V') \) is a continuous, linear (control or input) operator.

Remark 2.1. Notice that the techniques presented in this work can be adapted for problems, where the input space \(U \) is given by \(L^2(0, T; L^2(D)) \) for some open and bounded domain \(D \subset \mathbb{R}^{N_u} \) for an \(N_u \in \mathbb{N} \).

Theorem 2.2. For \(t \in [0, T] \) let \(a(t; \cdot, \cdot) : V \times V \to \mathbb{R} \) be a time-dependent symmetric bilinear form satisfying (2.2). Then, for every \(u \in U \), \(f \in L^2(0, T; V') \) and \(y_0 \in H \) there is a unique weak solution \(y \in W(0, T) \) satisfying (2.3) and

\[
\|y\|_{W(0, T)} \leq C \left(\|y_0\|_H + \|f\|_{L^2(0, T; V')} + \|u\|_U \right)
\]

for a constant \(C > 0 \) which is independent of \(u \), \(y_0 \) and \(f \). If \(f \in L^2(0, T; H) \), \(a(t; \cdot, \cdot) = a(\cdot, \cdot) \) (independent of \(t \)) and \(y_0 \) is held constant, we even have \(y \in L^\infty(0, T; \mathbb{R}) \). Here, \(L^\infty(0, T; V) \) stands for the Banach space of all measurable functions \(\varphi : [0, T] \to V \) with \(\|a(t; \varphi(t))\|_V < \infty \) (see [Tro08], §3.4.1., for instance). The a-priori error estimate follows from standard variational techniques and energy estimates. The regularity result follows from [DL00] pp. 532-533 and [Eva08] pp. 360-364.

Proof. For a proof of the existence of a unique solution we refer to [DL00] pp. 512-520. The a-priori error estimate follows from standard variational techniques and energy estimates. The regularity result follows from [DL00] pp. 532-533 and [Eva08] pp. 360-364.

Remark 2.3. We split the solution to (2.3) in one part, which depends on the fixed initial condition \(y_0 \) and right-hand \(f \), and another part depending linearly on the input variable \(u \). Let \(\hat{y} \in W(0, T) \) be the unique solution to

\[
\frac{d}{dt} \langle \hat{y}(t), \varphi \rangle_H + a(t; \hat{y}(t), \varphi) = \langle f(t), \varphi \rangle_{V', V} \quad \forall \varphi \in V \text{ a.e. in } (0, T],
\]

\[
\hat{y}(0) = y_0 \quad \text{in } H.
\]

We define the subspace

\[
W_0(0, T) = \{ \varphi \in W(0, T) \mid \varphi(0) = 0 \text{ in } H \}
\]

endowed with the topology of \(W(0, T) \). Let us now introduce the linear solution operator \(S : U \to W_0(0, T) \): for \(u \in U \) the function \(y = Su \in W_0(0, T) \) is the unique solution to

\[
\frac{d}{dt} \langle y(t), \varphi \rangle_H + a(t; y(t), \varphi) = \langle (Bu)(t), \varphi \rangle_{V', V} \quad \forall \varphi \in V \text{ a.e. in } (0, T].
\]

From \(y \in W_0(0, T) \) we infer \(y(0) = 0 \) in \(H \). The boundedness of \(S \) follows from (2.4). Now, the solution to (2.3) can be expressed as \(y = \hat{y} + Su \).

2.2 The POD method for the evolution problem

Let \(u \in U \), \(f \in L^2(0, T; V') \) and \(y_0 \in H \) be given and \(y = \hat{y} + Su \). To keep the notation simple we apply only a spatial discretization with POD basis functions, but no time integration by, e.g., the
2.2. THE POD METHOD FOR THE EVOLUTION PROBLEM

Lemma 2.4. Suppose that the snapshots \(y^k, k = 1, \ldots, \varphi \), belong to \(L^2(0, T; V) \). Later, we will present different rate of convergence results for appropriate choices of the \(y^k \)‘s. Let us introduce the following notations:

\[
\mathcal{R}_V \psi = \sum_{k=1}^{\varphi} \int_0^T \langle \psi, y^k(t) \rangle_V y^k(t) \, dt \quad \text{for } \psi \in \mathcal{V},
\]

\[
\mathcal{R}_H \psi = \sum_{k=1}^{\varphi} \int_0^T \langle \psi, y^k(t) \rangle_H y^k(t) \, dt \quad \text{for } \psi \in \mathcal{H}. \quad (2.5)
\]

Moreover, we set \(\mathcal{K}_V = \mathcal{R}_V^* \) and \(\mathcal{K}_H = \mathcal{R}_H^* \). In Remark 1.17, we have introduced the singular value decomposition of the operator \(\mathcal{V} \) defined by (1.25). To distinguish the two choices for the Hilbert space \(X \) we denote by the sequence \(\{ (\sigma_i^V, \psi_i^V, \phi_i^V) \}_{i \in I} \subset \mathbb{R}_0^+ \times V \times L^2(0, T; \mathbb{R}^p) \) of triples the singular value decomposition for \(X = V \), i.e., we have that

\[
\mathcal{R}_V \psi_i^V = \lambda_i^V \psi_i^V, \quad \mathcal{K}_V \psi_i^V = \lambda_i^V \phi_i^V, \quad \sigma_i^V = \sqrt{\lambda_i^V}, \quad i \in I.
\]

Furthermore, let the sequence \(\{ (\sigma_i^H, \psi_i^H, \phi_i^H) \}_{i \in I} \subset \mathbb{R}_0^+ \times H \times L^2(0, T; \mathbb{R}^p) \) in satisfy

\[
\mathcal{R}_H \psi_i^H = \lambda_i^H \psi_i^H, \quad \mathcal{K}_H \psi_i^H = \lambda_i^H \phi_i^H, \quad \sigma_i^H = \sqrt{\lambda_i^H}, \quad i \in I. \quad (2.6)
\]

The relationship between the singular values \(\sigma_i^H \) and \(\sigma_i^V \) is investigated in the next lemma, which is taken from [Sin14].

Lemma 2.4. Suppose that the snapshots \(y^k \in L^2(0, T; V), k = 1, \ldots, \varphi \). Then we have:

1) For all \(i \in I \) with \(\sigma_i^H > 0 \) we have \(\psi_i^H \in \mathcal{V} \).

2) \(\sigma_i^V = 0 \) for all \(i > d \) with some \(d \in \mathbb{N} \) if and only if \(\sigma_i^H = 0 \) for all \(i > d \), i.e., we have \(d_H = d_V \) if the rank of \(\mathcal{R}_V \) is finite.

3) \(\sigma_i^H > 0 \) for all \(i \in I \) if and only if \(\sigma_i^H > 0 \) for all \(i \in I \).

Proof. We argue similarly as in the proof of Lemma 3.1 in [Sin14].

1) Let \(\sigma_i^H > 0 \) hold. Then, it follows that \(\lambda_i^H > 0 \). We infer from \(y^k \in L^2(0, T; V) \) that \(\mathcal{R}_H \psi \in \mathcal{V} \) for any \(\psi \in \mathcal{H} \). Hence, we infer from (2.6) and that \(\psi_i^H = \mathcal{R}_H \psi_i^H / \lambda_i^H \in \mathcal{V} \).

2) Assume that \(\sigma_i^V = 0 \) for all \(i > d \) with some \(d \in \mathbb{N} \). Then, we deduce from (1.27) that

\[
y^k(t) = \sum_{i=1}^d \langle y^k(t), \psi_i^V \rangle_V \psi_i^V \quad \text{for every } k = 1, \ldots, \varphi. \quad (2.7)
\]

From

\[
\mathcal{R}_H \psi_j^H = \sum_{k=1}^{\varphi} \int_0^T \langle \psi_j^H, y^k(t) \rangle_H y^k(t) \, dt = d \sum_{i=1}^d \left(\sum_{k=1}^{\varphi} \int_0^T \langle \psi_j^H, y^k(t) \rangle_H \langle y^k(t), \psi_i^V \rangle_V \, dt \right) \psi_i^V, \quad j \in I,
\]

we conclude that the range of \(\mathcal{R}_H \) is at most \(d \)-dimensional, which implies that \(\lambda_j^H = 0 \) for all \(i > d \). Analogously, we deduce from \(\sigma_i^H = 0 \) for all \(i > d \) that the range of \(\mathcal{R}_V \) is at most \(d \).

3) The claim follows directly from part 2).
Thus, Lemma 2.4 is proved. □

Let us define the two POD subspaces

\[V^\ell = \text{span} \{ \psi_1^\ell, \ldots, \psi_{1,1}^\ell \} \subset V, \quad H^\ell = \text{span} \{ \psi_1^H, \ldots, \psi_1^H \} \subset V \subset H, \]

where \(H^\ell \subset V \) follows from part 1) of Lemma 2.4. Moreover, we introduce the orthogonal projection operators \(P_H^\ell : V \to H^\ell \subset V \) and \(P_V^\ell : V \to V^\ell \subset V \) as follows:

\[\forall \psi \in V \quad \text{iff } \psi \in V \]

\[\psi^\ell = P_H^\ell \psi \]

\[\psi^\ell = P_V^\ell \psi \]

It follows from the first-order optimality conditions that \(\psi^\ell = P_H^\ell \psi \) satisfies

\[\langle \psi^\ell, \psi^\ell \rangle_V = \langle \psi, \psi^\ell \rangle_V, \quad 1 \leq \ell \leq \ell. \] (2.9)

Writing \(\psi^\ell \in H^\ell \) in the form \(\psi^\ell = \sum_{j=1}^{\ell} v_j^\ell \) we derive from (2.9) that the vector \(\psi^\ell = (v_1^\ell, \ldots, v_{\ell}^\ell)^T \in \mathbb{R}^\ell \) satisfies the linear system

\[\sum_{j=1}^{\ell} \langle \psi_j^H, \psi^\ell \rangle_V v_j^\ell = \langle \psi, \psi^\ell \rangle_V, \quad 1 \leq \ell \leq \ell. \]

For the operator \(P_V^\ell \) we have the explicit representation

\[P_V^\ell \psi = \sum_{i=1}^{\ell} \langle \psi, \psi_i^V \rangle_V \psi_i^V \quad \text{for } \psi \in V. \]

Since the linear operators \(P_V^\ell \) and \(P_H^\ell \) are orthogonal projections, we have \(\| P_V^\ell \|_{L(V)} = \| P_H^\ell \|_{L(V)} = 1 \). As \(\{ \psi_i^V \}_{i=1}^{\ell} \) is a complete orthonormal basis in \(V \), we have

\[\lim_{\ell \to \infty} \int_0^T \| w(t) - P_V^\ell w(t) \|^2_V dt = 0 \quad \text{for all } w \in L^2(0, T; V). \] (2.10)

Next we review an essential result from [Sin14, Theorem 5.2], which we will use in our a-priori error analysis for the choice \(X = H \). Recall that \(\psi^H_1 \in V \) holds for \(1 \leq \ell \leq d_H \) and the image of \(P_H^\ell \) belongs to \(V \). Consequently, \(\| \psi^H_1 - P_H^\ell \psi^H_1 \|^2 \) is well-defined for \(1 \leq \ell \leq d_H \).

Theorem 2.5. Suppose that \(y^k \in L^2(0, T; V) \) for \(1 \leq k \leq \ell \). Then,

\[\sum_{k=1}^\ell \int_0^T \| y^k(t) - P_V^\ell y^k(t) \|^2_V dt = \sum_{i=\ell+1}^{d_H} \lambda_i^H \| \psi^H_1 - P_V^\ell \psi^H_1 \|^2 \] (2.11)

Here, \(d_H \) is the rank of the operator \(R_H \), which may be infinite. Moreover, \(P_V^\ell y^k \) converges to \(y^k \) in \(L^2(0, T; V) \) as \(\ell \) tends to \(\infty \) for each \(k \in \{1, \ldots, \ell\} \).

Proof. Suppose that \(1 \leq \ell \leq d_H \) and \(1 \leq \ell_0 < \infty \) hold. Then, \(\lambda_i^H > 0 \) for \(1 \leq i \leq \ell \). Let \(I \in L(V) \) denote the identity operator. As \(I - P_H^\ell \) is an orthonormal projection on \(V \), we conclude \(\| I - P_H^\ell \|_{L(V)} = 1 \). Furthermore, \(y^k \in L^2(0, T; V) \) holds for each \(k \in \{1, \ldots, \ell\} \). Thus, (2.10) implies that \(\sum_{k=1}^\ell P_V^\ell y^k \to y^k \) in \(L^2(0, T; V) \) as \(\ell_0 \to \infty \) for each \(k \). The proof of (2.11) is essentially based on Hilbert-Schmidt theory and on the following result [Sin14, Lemma 5.1]:

\[\sum_{k=1}^\ell \int_0^T \| (I - P_H^\ell) P_V^\ell y^k(t) \|^2_V dt \leq \sum_{i=\ell+1}^{d_H} \lambda_i^H \| \psi^H_1 - P_V^\ell \psi^H_1 \|^2 \] (2.12)

\[= \sum_{i=1}^{\ell_0} \lambda_i^H \| \psi^H_1 - P_V^\ell \psi^H_1 \|^2 \leq \sum_{i=1}^{\ell_0} \lambda_i^H \| \psi^H_1 - P_V^\ell \psi^H_1 \|^2 < \infty \]
for any $\ell_0 \in \mathbb{N}$. To prove that $\mathcal{P}_H^\ell y^k$ converges to y^k in $L^2(0; T; V)$ as ℓ tends to ∞ for each $k \in \{1, \ldots, \varphi\}$ we observe that

$$\sum_{i=\ell+1}^{d_H} \lambda_i^H \|\psi_i^H - \mathcal{P}_H^\ell \psi_i^H\|_V^2 \leq \sum_{i=\ell+1}^{d_H} \lambda_i^H \|I - \mathcal{P}_H^\ell\|_{L(V)} \|\psi_i^H\|_V^2$$

$$= \sum_{i=\ell+1}^{d_H} \lambda_i^H \|\psi_i^H\|_V^2$$

By utilizing the singular value decomposition (see Remark 1.17) it is shown in [Sin14, Theorem 5.2] that $\sum_{i=\ell+1}^{d_H} \lambda_i^H \|\psi_i^H\|_V^2 < \infty$ holds. Therefore,

$$\lim_{\ell_0 \to \infty} \frac{1}{\varphi} \sum_{k=1}^{\varphi} \int_0^T \|(I - \mathcal{P}_H^\ell) \mathcal{P}_V^\ell y^k(t)\|_V^2 \, dt = 0$$

which gives the claim. \qed

We will also need the following result, which follows from the continuous embedding $V \hookrightarrow H$. For a proof we refer to [Sin14, Proposition 5.5].

Lemma 2.6. Let $y^k \in L^2(0; T; V)$ for each $k \in \{1, \ldots, \varphi\}$ and $\lambda_i^H > 0$ for all $i \in \mathbb{I}$. Then,

$$\lim_{\ell_0 \to \infty} \|\varphi - \mathcal{P}_H^\ell \varphi\|_V = 0 \quad \text{for all } \varphi \in V.$$

2.3 The POD Galerkin approximation

After the computation of a POD basis of rank ℓ we are interested in deriving a low-dimensional approximation for the evolution problem (2.3). In the context of Section 1.2 we choose $p = 1$, $y^1 = S u$ and compute a POD basis $\{\psi_i\}_{i=1}^{\ell}$ of rank ℓ by solving (2.13) with $\psi_i = \psi_i^H$ for $X = V$ and $\psi_i = \psi_i^H$ for $X = H$. Then, we define the subspace $X^\ell = \text{span} \{\psi_1, \ldots, \psi_\ell\}$, i.e., $X^\ell = V^\ell$ for $X = V$ and $X^\ell = H^\ell$ for $X = H$. Now we approximate the state variable y by the Galerkin expansion

$$y^\ell(t) = \hat{y}(t) + \sum_{i=1}^{\ell} y_i^\ell(t) \psi_i \in V \quad \text{a.e. in } [0, T]$$

(2.13)

with coefficient functions $y_i^\ell : [0, T] \to \mathbb{R}$. We introduce the vector-valued coefficient function

$$y^\ell = (y_1^\ell, \ldots, y_\ell^\ell) : [0, T] \to \mathbb{R}^\ell.$$

Since $\hat{y}(0) = y_0$ holds, we suppose that $y_i^\ell(0) = 0$. Then, $y^\ell(0) = y_0$ is valid, i.e., the POD state matches exactly the initial condition. Inserting (2.13) into (2.3) and using the test space in V^ℓ for $1 \leq i \leq \ell$ we obtain the following POD Galerkin scheme for (2.3): $y^\ell \in W(0, T)$ solves

$$\frac{d}{dt} (y_i^\ell(t), \psi)_H + a(t; y_i^\ell(t), \psi) = ((f + Bu)(t), \psi)_{V^\ell, V} \quad \forall \psi \in X^\ell \quad \text{a.e.},$$

(2.14)

We call (2.14) a low dimensional or reduced-order model for (2.3).

Proposition 2.7. Let all assumptions of Theorem 2.2 be satisfied and the POD basis of rank ℓ be computed as described at the beginning of Section 2.1. Then, there exists a unique solution $y^\ell \in H^\ell(0, T; V) \hookrightarrow W(0, T)$ solving (2.14).
Remark 2.8.

1) Suppose the equation system the existence of a unique solution \(y^\ell \) with \(y^\ell(0) = 0 \) a.e. in \([0, T]\).

\[
M^\ell y^\ell(t) + A^\ell(t)y(t) = \hat{F}^\ell(t) \quad \text{for } t \in [0, T], \quad y^\ell(0) = 0, \tag{2.15}
\]

where we have set

\[
M^\ell = ((\psi_i, \psi_j)_M) \in \mathbb{R}^{\ell \times \ell}, \quad A^\ell(t) = ((a(t; \psi_i, \psi_j)) \in \mathbb{R}^{\ell \times \ell}, \\
\hat{F}^\ell(t) = (((f + Bu)(t) - \hat{y}_t(t), \psi_i)_V, V - a(t; \hat{y}_t(t), \psi_i)) \in \mathbb{R}^\ell
\]

with \(\psi_i = \psi_i^\ell \) for \(X = V \) and \(\psi_i = \psi_i^H \) for \(X = H \). Since (2.15) is a linear ordinary differential equation system the existence of a unique \(y^\ell \in H^1(0, T; \mathbb{R}^\ell) \) follows by standard arguments. \(\Box \)

2) We proceed analogously to Remark 2.3 and introduce the linear and bounded solution operator \(S^\ell : U \rightarrow W_0(0, T) \): for \(u \in U \) the function \(w^\ell = S^\ell u \in W(0, T) \) satisfies \(w^\ell(0) = 0 \) and

\[
\frac{d}{dt} (w^\ell(t), \psi)_H + a(t; w^\ell(t), \psi) = ((Bu)(t), \psi)_V, V \quad \forall \psi \in X^\ell \text{ a.e.}
\]

Then, the solution to (2.14) is given by \(y^\ell = \hat{y} + S^\ell u \). Analogous to the proof of (2.4) we derive that there exists a positive constant \(C_2 \) which does not depend on \(\ell \) or \(u \) so that

\[
\|S^\ell u\|_{W(0,T)} \leq C \|u\|_U.
\]

Thus, \(S^\ell \) is bounded uniformly with respect to \(\ell \).

\(\Box \)

To investigate the convergence of the error \(y - y^\ell \) we make use of the following two inequalities:

1) Gronwall’s inequality [DR11] Satz 16.6]: For \(T > 0 \) let \(v : [0, T] \rightarrow \mathbb{R} \) be a nonnegative, differentiable function satisfying

\[
v'(t) \leq \varphi(t)v(t) + \chi(t) \quad \text{for all } t \in [0, T],
\]

where \(\varphi \) and \(\chi \) are real-valued, nonnegative, integrable functions on \([0, T]\). Then

\[
v(t) \leq \exp \left(\int_0^t \varphi(s) \, ds \right) \left(v(0) + \int_0^t \chi(s) \, ds \right) \quad \text{for all } t \in [0, T]. \tag{2.17}
\]

In particular, if

\[
v' \leq \varphi v \quad \text{in } [0, T] \quad \text{and} \quad v(0) = 0
\]

hold, then \(v = 0 \) in \([0, T]\).

2) Young’s inequality [DR11] Satz 10.2-(iii)]: For every \(a, b \in \mathbb{R} \) and for every \(\varepsilon > 0 \) we have

\[
ab \leq \frac{\varepsilon a^2}{2} + \frac{b^2}{2\varepsilon}.
\]

Theorem 2.9. Let \(u \in U \) be chosen arbitrarily with \(0 \neq Su \in H^1(0, T; V) \).

1) To compute a POD basis \(\{\psi_i\}_{i=1}^\ell \) of rank \(\ell \) we choose \(\varphi = 1 \) and \(y^1 = Su \). Then, \(y = \hat{y} + Su \) and \(y^\ell = \hat{y} + S^\ell u \) satisfies the a-priori error estimate

\[
\|y^\ell - y\|_{W(0,T)}^2 \leq C_1 \left\{ \begin{array}{ll}
\sum_{i=\ell+1}^{d_V} \lambda_i^V ||x_i^V - P_{\psi_i}^V x_i^V||_{L^2(0,T;V)}^2 & \text{if } X = V, \\
\sum_{i=\ell+1}^{d_H} \lambda_i^H ||\psi_i^H - P_{\psi_i^H}^V x_i^H||_{L^2(0,T;V)}^2 + ||y_i^1 - P_{\lambda_i^H}^V y_i^1||_{L^2(0,T;V)}^2 & \text{if } X = H,
\end{array} \right. \tag{2.18}
\]

where the constant \(C_1 \) depends on the terminal time \(T \) and the constants \(\gamma, \gamma_1, \gamma_2 \) introduced in (2.2).
2) Let \(Su \in H^1(0, T; V) \) holds true. If we set \(\varphi = 2 \) and compute a POD basis of rank \(\ell \) using the trajectories \(y^1 = Su \) and \(y^2 = (Su)_t \), it follows that

\[
\|y^\ell - y\|^2_{W(0,T)} \leq C_3 \begin{cases}
\sum_{i=\ell+1}^{d_\ell} \lambda^V_i \quad & \text{for } X = V, \\
\sum_{i=\ell+1}^{d_\ell} \lambda^H_i \|\psi^H_i - P^\ell_H \psi^H_i\|^2_V & \text{for } X = H
\end{cases}
\]

for a constant \(C_3 \) which depends on \(\gamma, \gamma_1, \gamma_2, \) and \(T \).

Proof.

1) For almost all \(t \in [0, T] \) we make use of the decomposition

\[
y^\ell(t) - y(t) = \hat{y}(t) + (S^\ell u)(t) - y(t) - (Su)(t) \\
= (S^\ell u)(t) - P^\ell((Su)(t)) + P^\ell((Su)(t)) - (Su)(t)
\]

where \(\theta^\ell = S^\ell u - P^\ell(Su) \in X^\ell \) and \(\bar{\theta}^\ell = P^\ell(Su) - Su \). In (2.20) we will consider the two choices \(P^\ell = P^\ell_H \) for \(X = H \) and \(P^\ell = P^\ell_V \) for \(X = V \). Since \(H^2(0, T; V) \rightarrow W(0, T) \) holds, there exists an embedding constant \(c_0 > 0 \) such that

\[
\|\psi\|_{W(0,T)} \leq c_0 \|\varphi\|_{H^1(0,T; V)} \quad \text{for all } \varphi \in H^1(0, T; V).
\]

From \(y^1 = Su \) and (1.27) we infer that

\[
\|\bar{\theta}^\ell\|^2_{W(0,T)} \leq c^2_0 \|\bar{\theta}^\ell\|^2_{H^1(0,T; V)} = c^2_0 \sum_{i=\ell+1}^{d_\ell} \lambda^V_i + c^2_0 \|y^1 - P^\ell y^1\|^2_{L^2(0,T; V)}
\]

in case of \(X = V \), where \(d_\ell \) stands for rank of \(R_V \). For the choice \(X = H \) we derive from \(y^1 = Su \) and Theorem 2.3 that

\[
\|\bar{\theta}^\ell\|^2_{W(0,T)} \leq c^2_0 \sum_{i=\ell+1}^{d_\ell} \lambda^H_i \|\psi^H_i - P^\ell_H \psi^H_i\|^2_V + c^2_0 \|y^1 - P^\ell y^1\|^2_{L^2(0,T; V)}
\]

Here, \(d_H \) denotes for rank of \(R_H \). Using \(\theta^\ell(t) \in H \) for almost all \(t \in [0, T] \), (2.3), (2.14) and (2.2a) we derive that

\[
\frac{d}{dt} \langle \theta^\ell(t), \psi \rangle_H + a(t; \theta^\ell(t), \psi) \\
= \langle y^1(t) - P^\ell y^1(t), \psi \rangle_H + a(t; y^1(t) - P^\ell y^1(t), \psi) \\
\leq \|y^1(t) - P^\ell y^1(t)\|_H \|\psi\|_H + \gamma \|y^1(t) - P^\ell y^1(t)\|_V \|\psi\|_V
\]

for all \(\psi \in X^\ell \) and for almost all \(t \in [0, T] \). From choosing \(\psi = \theta^\ell(t) \), (2.2b) and (2.24) we find

\[
\frac{d}{dt} \|\theta^\ell(t)\|^2_H + \gamma_1 \|\theta^\ell(t)\|^2_V - 3\gamma_2 \|\theta^\ell(t)\|^2_H \\
\leq \frac{1}{\gamma_2} \|y^1(t) - P^\ell y^1(t)\|^2_H + \frac{\gamma_1^2}{\gamma_1} \|y^1(t) - P^\ell y^1(t)\|^2_V.
\]

From (2.17) - setting \(\nu(t) = \|\theta^\ell(t)\|^2_H \geq 0 \),

\[
\chi(t) = \frac{1}{\gamma_2} \|y^1(t) - P^\ell y^1(t)\|^2_H + \frac{\gamma_1^2}{\gamma_1} \|y^1(t) - P^\ell y^1(t)\|^2_V \geq 0,
\]

2.3. THE POD GALERKIN APPROXIMATION
\[\varphi(t) = 3\gamma_2 > 0 \text{ and } \varphi(0) = 0 \text{ it follows that} \]
\[\| \varphi'(t) \|^2_H \leq c_1 (\| y_1^2 - P_t y_1^0 \|^2_{L^2(0,T;H)} + \| y^1 - P_t y_1^0 \|^2_{L^2(0,T;V)}) \]
for almost all \(t \in [0, T] \) with the constants \(c_1 = c_2 \exp(3\gamma_2 T) \) and \(c_2 = \max(1/\gamma_2, \gamma^2/\gamma_1) \), so that we derive from (2.1)
\[\| \varphi' \|^2_{L^2(0,T;V)} \leq c_3 \left(\| \varphi'(t) \|^2_{L^2(0,T;H)} + \| y^1 - P_t y_1^0 \|^2_{L^2(0,T;V)} \right) \]
\[+ c_3 \| y^1 - P_t y_1^0 \|^2_{L^2(0,T;V)} \]
\[\leq c_4 \left(\| y^1 - P_t y_1^0 \|^2_{L^2(0,T;H)} + \| \varphi'(t) \|^2_{L^2(0,T;V)} \right) \]
\[\leq c_4 \left(c_5^2 \| y^1 - P_t y_1^0 \|^2_{L^2(0,T;V)} + \| y^1 - P_t y_1^0 \|^2_{L^2(0,T;V)} \right) \]
with \(c_3 = \max(3\gamma_2, c_2)/\gamma_1 \) and \(c_4 = c_3(1 + c_1 T) \). We conclude from (2.2a), (2.18), (2.25) and (2.1) that
\[\| \varphi' \|^2_{L^2(0,T;V')} = \sup \left\{ \left\| \int_0^T \langle \varphi'(t), \psi(t) \rangle_{V',V} \right\| \| \psi \|^2_{L^2(0,T;V)} = 1, \psi(t) \in V' \right\} \]
\[\leq \gamma \| \varphi' \|^2_{L^2(0,T;V)} + \| y^1 - P_t y_1^0 \|^2_{L^2(0,T;H)} \]
\[\leq c_5 \left(\| y^1 - P_t y_1^0 \|^2_{L^2(0,T;V)} + \| y^1 - P_t y_1^0 \|^2_{L^2(0,T;V)} \right) \]
with \(c_5 = 1 + c_4 \gamma \). Consequently, (2.25), (2.26) and \(c_4 \leq 2c_5^2 \) imply
\[\| \varphi' \|^2_{L^2(0,T)} \leq \| \varphi' \|^2_{L^2(0,T;V')} \]
\[\leq 2c_5^2 \| y^1 - P_t y_1^0 \|^2_{L^2(0,T;V)} + c_6^2 \left(c_4 + 2c_2^2 \right) \| y^1 - P_t y_1^0 \|^2_{L^2(0,T;V')} \]
\[+ c_4 \| \varphi'(t) \|^2_{L^2(0,T;V')} \]
\[\leq c_6 \left(\| y^1 - P_t y_1^0 \|^2_{L^2(0,T;V)} + \| y^1 - P_t y_1^0 \|^2_{L^2(0,T;V)} + \| \varphi'(t) \|^2_{L^2(0,T;V')} \right) \]
with \(c_6 = \max(2c_2^2, c_5^2 (c_4 + 2c_2^2)) \). Utilizing (2.20)-(2.23) and (2.27) imply (2.18).

2) The claim follows directly from
\[\| y_1^1 - P_t y_1^0 \|^2_{L^2(0,T;V)} = \| y^1 - P_t y_1^0 \|^2_{L^2(0,T;V)}, \]
(1.27) and Theorem 2.5.

\[\square \]

Remark 2.10. 1) Note that the a-priori error estimates (2.18) and (2.19) depend on the arbitrarily chosen, but fixed control \(u \in U \), which is also utilized to compute the POD basis. Moreover, these a-priori estimates do not involve errors by the POD discretization of the initial condition \(y_0 \). Further, let us mention that the a-priori error analysis holds for \(T < \infty \).

2) For the numerical realization we have to utilize also a time integration method like, e.g., the implicit Euler or the Crank-Nicolson method.

\[\diamond \]

Example 2.11. Accurate approximation results are achieved if the subspace spanned by the snapshots is (approximatively) of low dimension. Let \(T > 0 \), \(\Omega = (0, 2) \subset \mathbb{R} \) and \(Q = (0, T) \times \Omega \). We set \(f(t, x) = e^{-t}(\pi^2 - 1) \sin(\pi x) \) for \((t, x) \in Q \) and \(y_0(x) = \sin(\pi x) \) for \(x \in \Omega \). Let \(H = L^2(\Omega), V = H^1(\Omega) \)
\[a(t; \varphi, \phi) = \int_\Omega \varphi(x)\phi'(x) \, dx \text{ for } \varphi, \phi \in V, \]

\[\text{Prof. Dr. Stefan Volkwein} \]
where the constant satisfies the a-priori error estimate

\[\text{Corollary 2.12.} \]

with the exact solution \(f \). We formulate the a-priori error estimate.

\[\| y(t) - y^\ell(t) \|_{W(0,T)} \leq \| y(t) - y^\ell(0) \|_{W(0,T)} + \int_0^T \| \dot{y}(t) - \dot{y}^\ell(t) \|_{W(0,T)} dt \]

which gives the claim.

\[\lim_{\ell \to \infty} \| y^\ell - y \|_{W(0,T)} = 0. \quad (2.28) \]

Proof. We infer from (2.27), (2.20), (2.21) that

\[\| y^\ell - y \|_{W(0,T)}^2 = 2\left(\| y^\ell \|_{W(0,T)}^2 + \| \dot{y}^\ell \|_{W(0,T)}^2 \right) \]

\[\leq 2c_6 \left(\| y^\ell \|_{L^2(0,T;V)}^2 + \| \dot{y}^\ell \|_{L^2(0,T;V)}^2 + \| \ddot{y}^\ell \|_{L^2(0,T;V)}^2 + \| \dddot{y}^\ell \|_{L^2(0,T;V)}^2 \right) \]

\[\leq 4c_7 \| y^\ell \|_{H^2(0,T;V)}^2 + c_7 \| \dot{y}^\ell \|_{H^2(0,T;V)}^2 \leq c_7 \| y^\ell \|_{H^2(0,T;V)} \]

with \(c_7 = 4c_6c_5^2 + c_5^2 \). From (2.10) and \(y \in H^1(0,T;V) \) we infer that

\[\| y^\ell \|_{H^2(0,T;V)}^2 = \int_0^T \| y(t) - \sum_{i=1}^{\ell} y_i(t) \|_{V}^2 dt \]

which gives the claim. \(\square \)

Utilizing the techniques as in the proof of Theorem 6.5 in [Sin14] one can derive an a-priori error bound without including the time derivatives into the snapshot subspace. In the next proposition we formulate the a-priori error estimate.

Proposition 2.13. Let \(y_0 \in V \) and \(u \in U \) be chosen arbitrarily so that \(S_u \neq 0 \). To compute a POD basis \(\{ \psi_i \}_{i=1}^{\ell} \) of rank \(\ell \) we choose \(\varphi = 1 \) and \(y^1 = S_u \). Then, \(y = y + S_u \) and \(y^\ell = y + S^\ell u \) satisfies the a-priori error estimate

\[\| y^\ell - y \|_{L^2(0,T;V)} \leq C \cdot \sum_{i=1}^{\ell} \lambda_i \| \psi_i \|_{V}^2 \]

where the constant \(C \) depends on the terminal time \(T \) and the constants \(\gamma_1, \gamma_2 \) introduced in (2.2). Moreover, \(P_{H^V} : H \to V^\ell \) is the \(H \)-orthogonal projection given as follows:

\[V^\ell = P_{H^V} \psi \] for any \(\psi \in \phi \) if \(\psi \) solves \(\min_{\psi \in \phi} \| \psi - \psi^\ell \|_{H} \).

\begin{align*}
\text{In particular, we have } y^\ell &\to y \text{ in } L^2(0,T;V) \text{ as } \ell \to \infty. \\
2.3. \text{ THE POD GALERKIN APPROXIMATION} &\quad 27
\end{align*}
3 The linear-quadratic optimal control problem

In this section we apply a POD Galerkin approximation to linear-quadratic optimal control problems. Linear-quadratic problems are interesting in several respects: In particular, they occur in each level of a sequential quadratic programming (SQP) methods; see, e.g., [NW06].

In this chapter we prove convergence and derive a-priori error estimates for the optimal control problem. The error estimates rely on the (unrealistic) assumption that the POD basis is computed from the (exact) optimal solution. However, these estimates are utilized to develop an a-posteriori error analysis for the POD Galerkin approximation of the optimal control problem. We deduce how far the suboptimal control, computed by the POD Galerkin approximation, is from the (unknown) exact one.

3.1 Problem formulation

In this section we introduce our optimal control problem, which is a constrained optimization problem in a Hilbert space. The objective is a quadratic function. The evolution problem (2.3) is a continuous, linear operator. Due to Theorem 2.2 there exists a unique solution

\[
\frac{d}{dt}\langle y(t), \varphi \rangle_H + a(t; y(t), \varphi) = \langle (f + Bu)(t), \varphi \rangle_{V', V} \quad \forall \varphi \in V \text{ a.e. in } (0, T),
\]

where \(B : U \to L^2(0, T; V') \) is a continuous, linear operator. Due to Theorem 2.2 there exists a unique solution \(y \in W(0, T) \) to (3.1).

We introduce the Hilbert space

\[X = W(0, T) \times U \]

endowed with the natural product topology, i.e., with the inner product

\[\langle x, \tilde{x} \rangle_X = \langle y, \tilde{y} \rangle_{W(0, T)} + \langle u, \tilde{u} \rangle_U \quad \text{for } x = (y, u), \tilde{x} = (\tilde{y}, \tilde{u}) \in X \]

and the norm \(\|x\|_X = (\|y\|_{W(0, T)}^2 + \|u\|_U^2)^{1/2} \) for \(x = (y, u) \in X \).

Assumption 1. For \(t \in [0, T] \) let \(a(t; \cdot, \cdot) : V \times V \to \mathbb{R} \) be a time-dependent symmetric bilinear form satisfying (2.2). Moreover, \(f \in L^2(0, T; V') \), \(y_0 \in H \) and \(B \in \mathcal{L}(U, L^2(0, T; V')) \) holds.

In Remark 2.3 we have introduced the particular solution \(\hat{y} \in W(0, T) \) as well as the linear, bounded solution operator \(S \). Then, the solution to (3.1) can be expressed as \(y = \hat{y} + Su \). By \(X_{\text{ad}} \) we denote the closed, convex and bounded set of admissible solutions for the optimization problem as

\[X_{\text{ad}} = \{ (\hat{y} + Su, u) \in X \mid u_a \leq u \leq u_b \text{ in } \mathbb{R}^{N_u} \text{ a.e. in } [0, T] \}. \]

where \(u_a = (u_{a1}, \ldots, u_{aN_u}) \), \(u_b = (u_{b1}, \ldots, u_{bN_u}) \) \(\in U \) satisfy \(u_{a,i} \leq u_{b,i} \) for \(1 \leq i \leq N_u \) a.e. in \([0, T]\). Since \(u_{a,i} \leq u_{b,i} \) holds for \(1 \leq i \leq N_u \), we infer from Theorem 2.2 that the set \(X_{\text{ad}} \) is nonempty.
The quadratic objective $J : X \to \mathbb{R}$ is given by
\[
J(x) = \frac{\sigma_0}{2} \int_0^T \|y(t) - y_0(t)\|_H^2 \, dt + \frac{\sigma_n}{2} \|y(T) - y_T\|_H^2 + \frac{\sigma}{2} \|u\|_U^2
\]
for $x = (y, u) \in X$, where $(y_0, y_T) \in L^2(0, T; H) \times H$ are given desired states. Furthermore, $\sigma_0, \sigma_n \geq 0$ and $\sigma > 0$. Of course, more general cost functionals can be treated analogously.

Now the quadratic programming problem is given by
\[
\min J(x) \quad \text{subject to (s.t.)} \quad x \in X_{ad}.
\]
From $x = (y, u) \in X_{ad}$ we infer that $y = \hat{y} + Su$ holds. Hence, y is a dependent variable. We call u the control and y the state. In this way, \((P)\) becomes an optimal control problem. Utilizing the relationship $y = \hat{y} + Su$ we define a so-called reduced cost functional $\hat{J} : U \to \mathbb{R}$ by
\[
\hat{J}(u) = J(\hat{y} + Su, u) \quad \text{for } u \in U.
\]
Moreover, the set of admissible controls is given as
\[
U_{ad} = \{ u \in U \mid u_a \leq u \leq u_b \ \text{in} \ \mathbb{R}^{Nu} \ \text{a.e. in} \ [0, T] \},
\]
which is convex, closed and bounded in U. Then, we consider the reduced optimal control problem:
\[
\min \hat{J}(u) \quad \text{s.t.} \quad u \in U_{ad}.
\]
Clearly, if \bar{u} is the optimal solution to \((P)\), then $\bar{x} = (\hat{y}, \bar{u})$ is the optimal solution to \((P)\). On the other hand, if $\bar{x} = (\hat{y}, \bar{u})$ is the solution to \((P)\), then \bar{u} solves \((P)\).

Example 3.1. We introduce an example for \((P)\) and discuss the presented theory for this application. Let $\Omega \subset \mathbb{R}^d$, $d \in \{1, 2, 3\}$, be an open and bounded domain with Lipschitz-continuous boundary $\Gamma = \partial \Omega$. For $T > 0$ we set $Q = (0, T) \times \Omega$ and $\Sigma = (0, T) \times \Gamma$. We choose $H = L^2(\Omega)$ and $V = H_0^1(\Omega)$ endowed with the usual inner products
\[
\langle \varphi, \psi \rangle_H = \int_{\Omega} \varphi \psi \, dx, \quad \langle \varphi, \psi \rangle_V = \int_{\Omega} \varphi \psi + \nabla \varphi \cdot \nabla \psi \, dx
\]
and their induced norms, respectively. Let $\chi_i \in H$, $1 \leq i \leq m$, denote given control shape functions. Then, for given control $u \in U$, initial condition $y_0 \in H$ and inhomogeneity $f \in L^2(0, T; H)$ we consider the linear heat equation
\[
y_t(t, x) - \Delta y(t, x) = f(t, x) + \sum_{i=1}^{m} u_i(t) \chi_i(x), \quad \text{a.e. in } Q,
\]
\[
y(t, x) = 0, \quad \text{a.e. in } \Sigma,
\]
\[
y(0, x) = y_0(x), \quad \text{a.e. in } \Omega.
\]
(3.3)

We introduce the time-independent, symmetric bilinear form
\[
a(\varphi, \psi) = \int_{\Omega} \nabla \varphi \cdot \nabla \psi \, dx \quad \text{for } \varphi, \psi \in V
\]
and the bounded, linear operator $B : U \to L^2(0, T; H) \hookrightarrow L^2(0, T; V')$ as
\[
(Bu)(t, x) = \sum_{i=1}^{m} u_i(t) \chi_i(x) \quad \text{for } (t, x) \in Q \text{ a.e. and } u \in U.
\]

Hence, we have $\gamma = \gamma_1 = \gamma_2 = 1$ in (2.2). It follows that the weak formulation of (3.3) can be expressed in the form (2.3). Moreover, the unique weak solution to (3.3) belongs to the space $L^\infty(0, T; V)$ provided $y_0 \in V$ holds.

3.1. PROBLEM FORMULATION
3.2 Existence of a unique optimal solution

We suppose the following hypothesis for the objective.

Assumption 2. In (3.2) the desired states \((y_Q, y_T)\) belong to \(L^2(0, T; H) \times H\). Furthermore, \(\sigma_Q, \sigma_T \geq 0\) and \(\sigma > 0\) are satisfied.

Let us review the following result for quadratic optimization problems in Hilbert spaces; see [Tro09, Satz 2.14].

Theorem 3.2. Suppose that \(\mathcal{U}\) and \(\mathcal{H}\) are given Hilbert spaces with norms \(\| \cdot \|_{\mathcal{U}}\) and \(\| \cdot \|_{\mathcal{H}}\), respectively. Furthermore, let \(\mathcal{U}_{ad} \subset \mathcal{U}\) be non-empty, bounded, closed, convex and \(z_d \in \mathcal{H}, \kappa \geq 0\). The mapping \(\mathcal{G}: \mathcal{U} \to \mathcal{H}\) is assumed to be a linear and continuous operator. Then there exists an optimal control \(\bar{u}\) solving

\[
\min_{u \in \mathcal{U}_{ad}} J(u) := \frac{1}{2} \| \mathcal{G}u - z_d \|_{\mathcal{H}}^2 + \frac{\kappa}{2} \| u \|_{\mathcal{U}}^2. \tag{3.4}
\]

If \(\kappa > 0\) holds or if \(\mathcal{G}\) is injective, then \(\bar{u}\) is uniquely determined.

Remark 3.3. In the proof of Theorem 3.2 it is only used that \(J\) is continuous and convex. Therefore, the existence of an optimal control follows for general convex, continuous cost functionals \(J: \mathcal{U} \to \mathbb{R}\) with a Hilbert space \(\mathcal{U}\).

Next we can use Theorem 3.2 to obtain an existence result for the optimal control problem \((\hat{P})\), which imply the existence of an optimal solution to \((P)\).

Theorem 3.4. Let Assumptions 1 and 2 be valid. Moreover, let the bilateral control constraints \(u_a, u_b \in \mathcal{U}\) satisfy \(u_a \leq u_b\) componentwise in \(\mathbb{R}^{N_u}\) a.e. in \([0, T]\). Then, \((\hat{P})\) has a unique optimal solution \(\bar{u}\).

Proof. Let us choose the Hilbert spaces \(\mathcal{H} = L^2(0, T; H) \times H\) and \(\mathcal{U} = \mathcal{U}\). Moreover, \(\mathcal{E}: W(0, T) \to L^2(0, T; H)\) is the canonical embedding operator, which is linear and bounded. We define the operator \(\mathcal{E}_2: W(0, T) \to H\) by \(\mathcal{E}_2\varphi = \varphi(T)\) for \(\varphi \in W(0, T)\). Since \(W(0, T)\) is continuously embedded into \(C([0, T]; H)\), the linear operator \(\mathcal{E}_2\) is continuous. Finally, we set

\[
\mathcal{G} = \left(\frac{\sqrt{\sigma_Q} \mathcal{E}_1 S}{\sqrt{\sigma_T} \mathcal{E}_2 S} \right) \in \mathcal{L}(\mathcal{U}, \mathcal{H}), \quad z_d = \left(\frac{\sqrt{\sigma_Q} (y_Q - \bar{y})}{\sqrt{\sigma_T} (y_T - \bar{y}(T))} \right) \in \mathcal{H}\tag{3.5}
\]

and \(\mathcal{U}_{ad} = \mathcal{U}_{ad}\). Then, \((\hat{P})\) and (3.4) coincide. Consequently, the claim follows from Theorem 3.2 and \(\sigma > 0\).

Next we consider the case that \(u_a = -\infty\) or/and \(u_b = +\infty\). In this case \(\mathcal{U}_{ad}\) is not bounded. However, we have the following result [Tro09, Satz 2.17].

Theorem 3.5. Let Assumptions 1 and 2 be satisfied. If \(u_a = -\infty\) or/and \(u_b = +\infty\), problem \((\hat{P})\) admits a unique solution.

Proof. We utilize the setting of the proof of Theorem 3.4. By assumption there exists an element \(u_0 \in \mathcal{U}_{ad}\). For \(u \in \mathcal{U}\) with \(\| u \|_{\mathcal{U}}^2 > 2 \hat{J}(u_0) / \sigma\) we have

\[
\hat{J}(u) = J(u) = \frac{1}{2} \| \mathcal{G}u - z_d \|_{\mathcal{H}}^2 + \frac{\sigma}{2} \| u \|_{\mathcal{U}}^2 \geq \frac{\sigma}{2} \| u \|_{\mathcal{U}}^2 > \hat{J}(u_0).
\]

Thus, the minimization of \(\hat{J}\) over \(\mathcal{U}_{ad}\) is equivalent with the minimization of \(\hat{J}\) over the bounded, convex and closed set

\[
\mathcal{U}_{ad} \cap \left\{ u \in \mathcal{U} \mid \| u \|_{\mathcal{U}}^2 \leq \frac{2 \hat{J}(u_0)}{\sigma} \right\}.
\]

Now the claim follows from Theorem 3.2.

Prof. Dr. Stefan Volkwein
3.3 First-order necessary optimality conditions

In (3.4) we have introduced the quadratic programming problem
\[
\min_{u \in U_{ad}} J(u) = \frac{1}{2} \|G u - z_d\|_2^2 + \frac{\sigma}{2} \|u\|_U^2. \tag{3.6}
\]
Existence of a unique solution has been investigated in Section 3.2. In this section we characterize the solution to (3.6) by first-order optimality conditions, which are essential to prove convergence and rate of convergence results for the POD approximations in Section 3.4. To derive first-order conditions we require the notion of derivatives in function spaces. Therefore, we recall the following definition [Tro09, §2.6].

Definition 3.6. Suppose that \(B_1\) and \(B_2\) are real Banach spaces, \(U \subset B_1\) be an open subset and \(F : U \supset B_1 \rightarrow B_2\) a given mapping. The directional derivative of \(F\) at a point \(u \in U\) in the direction \(h \in B_2\) is defined by
\[
D F(u; h) := \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} (F(u + \varepsilon h) - F(u))
\]
provided the limit exists in \(B_2\). Suppose that the directional derivative exists for all \(h \in B_1\) and there is a linear, continuous operator \(T : U \rightarrow B_2\) satisfying
\[
D F(u; h) = Th \quad \text{for all} \quad h \in U.
\]
Then, \(F\) is said to be Gâteaux-differentiable at \(u\) and \(T\) is the Gâteaux derivative of \(F\) at \(u\). We write \(T = F'(u)\).

Remark 3.7. Let \(H\) be a real Hilbert space and \(F : H \rightarrow \mathbb{R}\) be Gâteaux-differentiable at \(u \in H\). Then, its Gâteaux derivative \(F'(u)\) at \(u\) belongs to \(H' = L(H, \mathbb{R})\). Due to Riesz theorem [DR12 Satz 12.24] there exists a unique element \(\nabla F(u) \in H\) satisfying
\[
\langle \nabla F(u), v \rangle_H = \langle F'(u), v \rangle_{H'} \quad \text{for all} \quad v \in H.
\]
We call \(\nabla F(u)\) the (Gâteaux) gradient of \(F\) at \(u\).

Theorem 3.8. Let \(U\) be a real Hilbert space and \(U_{ad}\) be convex subset. Suppose that \(\bar{u} \in U_{ad}\) is a solution to (3.6)
\[
\min_{u \in U_{ad}} J(u).
\]
Then the following variational inequality holds
\[
\langle \nabla J(\bar{u}), u - \bar{u} \rangle_U \geq 0 \quad \text{for all} \quad u \in U_{ad}, \tag{3.7}
\]
where the gradient of \(J\) is given by
\[
\nabla J(\bar{u}) = G^*(Gu - z_d) + \sigma u \quad \text{for} \quad u \in U.
\]
If \(\bar{u} \in U_{ad}\) solves (3.7), then \(\bar{u}\) is a solution to (3.6).

Proof. Let \(\bar{u} \in U_{ad}\) be a solution to (3.6), \(u \in U_{ad}\) be arbitrarily chosen. Since \(U_{ad}\) is convex, we have \(\bar{u} + t(u - \bar{u}) = tu + (1 - t)\bar{u} \in U_{ad}\) for all \(t \in [0, 1]\). In particular, for we find that
\[
J(\bar{u}) \leq J(\bar{u} + t(u - \bar{u})) \quad \text{for all} \quad t \in (0, 1].
\]
Consequently,
\[
\frac{1}{t} \left(J(\bar{u} + t(u - \bar{u})) - J(\bar{u}) \right) \geq 0 \quad \text{for all} \quad t \in (0, 1]
\]
Since J is Gâteaux-differentiable, we get (3.7), which is a sufficient condition because J and u_{ad} are convex.

Inequality (3.7) is a first-order necessary and sufficient condition for (3.6), which can be expressed as

\[
\langle G\tilde{u} - z_d, G(u - \tilde{u}) \rangle_{\mathcal{H}} + \langle \sigma_u, u - \tilde{u} \rangle_{\mathcal{U}} \geq 0 \quad \text{for all} \quad u \in \mathcal{U}_{ad}.
\]

Next we study (3.8) for (3.9). Utilizing the setting from (3.5) we obtain

\[
\langle G\tilde{u} - z_d, G(u - \tilde{u}) \rangle_{\mathcal{H}} = \sigma_Q \langle S\tilde{u} - (y_Q - \tilde{y}), S(u - \tilde{u}) \rangle_{L^2(0,T;H)} + \sigma_Q \langle (S\tilde{u})(T) - (y_Q(T) - \tilde{y}(T)), (S(u - \tilde{u}))(T) \rangle_H = \sigma_Q \langle S\tilde{u}, S(u - \tilde{u}) \rangle_{L^2(0,T;H)} + \sigma_Q \langle (S\tilde{u})(T), (S(u - \tilde{u}))(T) \rangle_H - \sigma_Q \langle y_Q - \tilde{y}, S(u - \tilde{u}) \rangle_{L^2(0,T;H)} - \sigma_Q \langle y_Q(T) - \tilde{y}(T), (S(u - \tilde{u}))(T) \rangle_H.
\]

Let us define the two linear, bounded operators $\Theta : W_0(0,T) \to W_0(0,T)'$ and $\Xi : L^2(0,T;H) \times H \to W_0(0,T)'$ by

\[
\langle \Theta \varphi, \phi \rangle_{W_0(0,T)',W_0(0,T)} = \int_0^T \langle \sigma_Q \varphi(t), \phi(t) \rangle_H dt + \langle \sigma_Q \varphi(T), \phi(T) \rangle_H,
\]

\[
\langle \Xi z, \phi \rangle_{W_0(0,T)',W_0(0,T)} = \int_0^T \langle \sigma_Q z(t), \phi(t) \rangle_H dt + \langle \sigma_Q z(T), \phi(T) \rangle_H
\]

for $\varphi, \phi \in W_0(0,T)$ and $z = (z_Q, z_{\Omega}) \in L^2(0,T;H) \times H$. Then, we find

\[
\langle G\tilde{u} - z_d, G(u - \tilde{u}) \rangle_{\mathcal{H}} = \langle \Theta(S\tilde{u}) - \Xi(y_Q - \tilde{y}, y_{\Omega} - \tilde{y}(T)), S(u - \tilde{u}) \rangle_{W_0(0,T)',W_0(0,T)} = \langle S' \Theta S\tilde{u}, u - \tilde{u} \rangle_{\mathcal{U}} - \langle S' \Xi(y_Q - \tilde{y}, y_{\Omega} - \tilde{y}(T)), u - \tilde{u} \rangle_{\mathcal{U}}.
\]

Let us define the linear $A : U \to W(0,T)$ as follows: for given $u \in U$ the function $p = Au \in W(0,T)$ is the unique solution to

\[
\frac{d}{dt} (p(t), \varphi)_H + a(t, p(t), \varphi) = -\sigma_Q \langle (Su(t)), \varphi \rangle_H \quad \forall \varphi \in V \ a.e.,
\]

\[
p(T) = -\sigma_Q \langle Su(T) \rangle_H \quad \text{in} \ H.
\]

It follows from (2.2) and $Su \in W(0,T)$ that the operator A is well-defined and bounded.

Lemma 3.9. Let Assumption [1] be satisfied and $u, v \in U$. We set $y = Su \in W_0(0,T)$, $w = Sv \in W_0(0,T)$, and $p = Av \in W(0,T)$. Then,

\[
\int_0^T \langle (Bu(t), p(t))_{V',V} dt = -\int_0^T \sigma_Q \langle w(t), y(t) \rangle_H dt - \sigma_Q \langle w(T), y(T) \rangle_H.
\]

Proof. We derive from $y = Su$, $p = Au$, $y \in W_0(0,T)$ and integration by parts

\[
\int_0^T \langle (Bu(t), p(t))_{V',V} dt = \int_0^T \langle y_t(t), p(t) \rangle_{V',V} + a(t, y(t), p(t)) dt
\]

\[
= \int_0^T -\langle p_t(t), y(t) \rangle_{V',V} + a(t, p(t), y(t)) dt + \langle p(T), y(T) \rangle_H
\]

\[
= -\int_0^T \sigma_Q \langle w(t), y(t) \rangle_H dt - \sigma_Q \langle w(T), y(T) \rangle_H
\]

which is the claim. \qed
We define $\hat{p} \in W(0, T)$ as the unique solution to
\[
-\frac{d}{dt} \langle \hat{p}(t), \varphi \rangle_H + a(t; \hat{p}(t), \varphi) = \sigma_Q \langle y_Q(t) - \hat{y}(t), \varphi \rangle_H \quad \forall \varphi \in V \text{ a.e.}, \tag{3.12}
\]
where $\hat{y} = \hat{y}(T)$ in H.

Then, for every $u \in U$ the function $p = \hat{p} + Au$ is the unique solution to
\[
-\frac{d}{dt} \langle p(t), \varphi \rangle_H + a(t; p(t), \varphi) = \sigma_Q \langle y_Q(t) - y(t), \varphi \rangle_H \quad \forall \varphi \in V \text{ a.e.},
\]
where $p(T) = \sigma_\Omega (y_\Omega - y(T))$ in H.

with $y = \tilde{y} + Su$. Moreover, we have the following result.

Lemma 3.10. Let Assumption 1 be satisfied. Then, $B' \tilde{A} = -S' \Theta S \in \mathcal{L}(U)$, where linear and bounded operator Θ has been defined in (3.9). Moreover, $B' \hat{p} = S' \Xi (y_Q - \hat{y}, y_\Omega - \hat{y}(T))$, where \hat{p} is the solution to (3.12).

Proof. Let $u, v \in U$ be chosen arbitrarily. We set $y = Su \in W_0(0, T)$ and $w = Sv \in W_0(0, T)$. Recall that we identify U with its dual space U'. From the integration by parts formula and Lemma 3.9 we infer that
\[
\langle S' \Theta Sv, u \rangle_U = \langle \Theta Sv, Su \rangle_{W_0(0, T)'; W_0(0, T)} = \langle \Theta w, y \rangle_{W_0(0, T)'; W_0(0, T)} = \int_0^T \sigma_Q \langle w(t), y(t) \rangle_H + \sigma_\Omega \langle w(T), y(T) \rangle_H dt
\]
\[
-\langle Bu, p \rangle_{L^2(0, T; V'), L^2(0, T; V)} = -\langle u, B' \hat{p} \rangle_U = -\langle B' \tilde{A} v, u \rangle_U.
\]

Since $u, v \in U$ are chosen arbitrarily, we have $B' \tilde{A} = S' \Theta S$. Further, we find
\[
\langle S' \Xi (y_Q - \hat{y}, y_\Omega - \hat{y}(T)), u \rangle_U = \langle \Xi (y_Q - \hat{y}, y_\Omega - \hat{y}(T)), Su \rangle_{W_0(0, T)'; W_0(0, T)} = \int_0^T \sigma_Q \langle y_Q(t) - \hat{y}(t), y(t) \rangle_H dt + \sigma_\Omega \langle y_\Omega(t) - \hat{y}(T), y(T) \rangle_H dt
\]
\[
= \int_0^T \langle \hat{p}(t), y(t) \rangle_H dt + a(t; \hat{p}(t), y(t)) dt + \langle \hat{p}(T), y(T) \rangle_H dt
\]
\[
= \int_0^T \langle y(t), \hat{p}(t) \rangle_H dt + a(t; y(t), \hat{p}(t)) dt = \int_0^T \langle (Bu)(t), \hat{p}(t) \rangle_{V', V} dt
\]
\[
= \langle B' \hat{p}, u \rangle_U.
\]

which gives the claim. \hfill \Box

We infer from (3.10) and Lemma 3.10 that
\[
\langle \mathcal{G} \tilde{u} - z_d, \mathcal{G} \tilde{v} \rangle_{\mathcal{H}} = -\langle B' (\hat{p} + A\tilde{u}), u - \tilde{u} \rangle_U.
\]

This implies the following variational inequality for \tilde{P}
\[
\langle \mathcal{G} \tilde{u} - z_d, \mathcal{G} u - \mathcal{G} \tilde{u} \rangle_{\mathcal{H}} + \sigma \langle \tilde{u}, u - \tilde{u} \rangle_U
\]
\[
= \langle \sigma \tilde{u} - B' (\hat{p} + A\tilde{u}), u - \tilde{u} \rangle_U \geq 0 \quad \text{for all } u \in U_{ad}.
\]

Summarizing we have proved the following result.

Theorem 3.11. Suppose that Assumptions 1 and 2 hold. Then, (\tilde{y}, \tilde{u}) is a solution to \tilde{P} if and only if (\tilde{y}, \tilde{u}) satisfy together with the adjoint variable \hat{p} the first-order optimality system
\[
\begin{align}
\tilde{y} &= \hat{y} + Su, \quad \tilde{p} = \hat{p} + A\tilde{u}, \quad u_a \leq \tilde{u} \leq u_b \tag{3.13a} \\
\langle \sigma \tilde{u} - B' \hat{p}, u - \tilde{u} \rangle_U &\geq 0 \quad \text{for all } u \in U_{ad}. \tag{3.13b}
\end{align}
\]
Remark 3.12. By using a Lagrangian framework it follows from Theorem 3.11 and [Tro09] that the variational inequality (3.13b) is equivalent to the existence of two Lagrange multiplier functions $\bar{\mu}_a, \bar{\mu}_b \in U$ satisfying $\bar{\mu}_a, \bar{\mu}_b \geq 0$.

$$\sigma \bar{u} - B' \bar{\rho} + \bar{\mu}_b - \bar{\mu}_a = 0$$

and the complementarity condition

$$\bar{\mu}_a(t)^T (u_a(t) - \bar{u}(t)) = \bar{\mu}_b(t)^T (\bar{u}(t) - u_b(t)) = 0 \quad \text{f.a.a. } t \in [0, T].$$

Thus, (3.13) is equivalent to the system

$$\bar{y} = \bar{y} + S \bar{u}, \quad \bar{\rho} = \bar{\rho} + A \bar{u}, \quad \sigma \bar{u} - B' \bar{\rho} + \bar{\mu}_b - \bar{\mu}_a = 0,$$

$$u_a \leq \bar{u} \leq u_b, \quad 0 \leq \bar{\mu}_a, \quad 0 \leq \bar{\mu}_b.$$

(3.14)

Utilizing a complementarity function it can be shown that (3.14) is equivalent with

$$\bar{y} = \bar{y} + S \bar{u}, \quad \bar{\rho} = \bar{\rho} + A \bar{u}, \quad \sigma \bar{u} - B' \bar{\rho} + \bar{\mu}_b - \bar{\mu}_a = 0,$$

$$\bar{\mu}_a = \max \{0, \bar{\mu}_a + \eta(\bar{u} - u_a)\}, \quad \bar{\mu}_b = \max \{0, \bar{\mu}_b + \eta(\bar{u} - u_b)\}.$$

(3.15)

where $\eta > 0$ is an arbitrary real number. The max-and min-operations are interpreted component-wise in the pointwise everywhere sense.

The gradient $\nabla \bar{J} : U \rightarrow U$ of the reduced cost functional \bar{J} is given by

$$\nabla \bar{J}(u) = \sigma u - B^* \bar{\rho}, \quad u \in U,$$

where $\bar{\rho} = \bar{\rho} + A \bar{u}$ holds true; see, e.g., [HPUU09]. Thus, a first-order sufficient optimality condition for \bar{P} is given by the variational inequality

$$\langle \sigma \bar{u} - B' \bar{\rho}, u - \bar{u} \rangle_U \geq 0 \quad \text{for all } u \in U_{\text{ad}},$$

(3.16)

with $\bar{\rho} = \bar{\rho} + A \bar{u}$.

3.4 The POD Galerkin approximation for \hat{P}

In this subsection we introduce the POD Galerkin schemes for the variational inequality (3.16) using a POD Galerkin approximation for the state and dual variables. Moreover, we study the convergence of the POD discretizations. In Section 2.3 we have introduced a POD Galerkin scheme for the state equation (3.1). Suppose that $\{\psi_i\}_{i=1}^\ell$ be a POD basis of rank ℓ computed from $[P^v]$ with $\psi_i = \psi_i^V$ in case of $X = V$ and $\psi_i = \psi_i^H$ in case of $X = H$. We set $X^\ell = \text{span} \{\psi_1, \ldots, \psi_\ell\} \subset V$. Let the linear and bounded projection operator P_i^ℓ denote P_i^V for $X = V$ and P_i^H for $X = H$; see (2.8).

Recall the POD Galerkin ansatz (2.13) for the state variable. Analogously, we approximate the adjoint variable $\hat{p} = \hat{\rho} + A \hat{u}$ by the Galerkin expansion

$$p^\ell(t) = \hat{\rho}(t) + \sum_{i=1}^\ell p_i^\ell(t) \psi_i \in V \quad \text{for } t \in [0, T]$$

(3.17)

with coefficient functions $p_i^\ell : [0, T] \rightarrow \mathbb{R}$ and with $\hat{\rho}$ from (3.12). Let the vector-valued coefficient function given by

$$p^\ell = (p_1^\ell, \ldots, p_\ell^\ell) : [0, T] \rightarrow \mathbb{R}^\ell$$
If we assume that \(p^\ell(T) = -\sigma \Omega y^\ell(T) \) holds, then we infer from \(\hat{\theta}(T) = \sigma \Omega (y_\Omega - \hat{y}(T)) \) and (3.17) that
\[
p^\ell(T) = \hat{\theta}(T) - \sigma \Omega \sum_{i=1}^\ell y_i^\ell(t) \psi_i = \sigma \Omega (y_\Omega - y^\ell(T)).
\]
This motivates the following POD scheme for the approximation of \(p = \hat{\theta} + A u \) is given as follows:
\(p^\ell \in W(0, T) \) satisfies
\[
- \frac{d}{dt} (p^\ell(t), \psi)_H + a(t; p^\ell(t), \psi) = \sigma_\Omega \langle (y_\Omega - y^\ell(t), \psi)_H \quad \forall \psi \in X^\ell \text{ a.e.},
\]

\[
p^\ell(T) = -\sigma \Omega y^\ell(T).
\]
It follows by similar arguments as for (2.14) that there is a unique solution \(p^\ell \in W(0, T) \).

Remark 3.13. Recall that we have introduced the linear and bounded solution operator \(S^\ell : U \to W(0, T) \) as an approximation for the state solution operator \(S \); see Remark 2.8.2. Analogously, we define an approximation of the adjoint solution operator \(A \) as follows: Let \(A^\ell : U \to W(0, T) \) denote the solution operator to
\[
- \frac{d}{dt} (w^\ell(t), \psi)_H + a(t; w^\ell(t), \psi) = -\sigma_1 \langle (S^\ell u)(t), \psi \rangle_H \quad \forall \psi \in X^\ell \text{ a.e.},
\]

\[
w^\ell(T) = -\sigma_2 (S^\ell u)(T).
\]
Then \(p^\ell = \hat{\theta} + A^\ell u \) is the unique solution to (3.18). \(\Box \)

Lemma 3.14. Let Assumption 1 on page 28 be satisfied and \(u, v \in U \). We set \(y^\ell = S^\ell u \in W_0(0, T), \)
\(w^\ell = S^\ell v \in W(0, T) \), and \(p^\ell = A^\ell v \in W(0, T) \). Then,
\[
\int_0^T \langle (Bu)(t), p^\ell(t) \rangle_{V', V} dt = - \int_0^T \sigma_\Omega \langle w^\ell(t), y^\ell(t) \rangle_H dt - \sigma_\Omega \langle w^\ell(T), y^\ell(T) \rangle_H.
\]
Moreover, \(B^t A^\ell = -(S^\ell)^T \Theta S^\ell \in L(U) \), where linear and bounded operator \(\Theta \) has been defined in (3.9).

Proof. Since the POD basis for the state and adjoint coincide, the claim follows by the same arguments used to prove Lemmas 3.9 and 3.10. \(\square \)

Theorem 3.15. Suppose that Assumptions 1 and 2 hold. Let \(X = V \) and \(u \in U \) be arbitrarily given so that \(S u, A u \in H^1(0, T; V) \setminus \{0\} \). To compute a POD basis \(\{ \psi_i \}_{i=1}^\ell \) of rank \(\ell \) we choose \(\varphi = 4, \)
\(y^1 = S u, y^2 = (S u)_t, y^3 = A u \) and \(y^4 = (A u)_t \). Then, \(p = \hat{\theta} + A u \) and \(p^\ell = \hat{\theta} + A^\ell u \) satisfies the a-priori error estimate
\[
\| p^\ell - p \|^2_{H^1(0, T; V)} \leq \left\{ \begin{array}{ll}
\sum_{i=1}^\ell \lambda_i^V & \text{if } X = V, \\
\sum_{i=1}^\ell \lambda_i^H \| \psi_i^H - \mathcal{P}_H^\ell \psi_i^H \|^2_V & \text{if } X = H
\end{array} \right.
\]
for a constant \(C \) which depends on \(\gamma, \gamma_1, \gamma_2, T, \sigma_\Omega \) and \(\sigma_\Omega \).

Proof. Analogous to (2.20) we have \(\theta^\ell(t) - p(t) = \theta^\ell(t) + p(t) \) for almost all \(t \in [0, T] \) with \(\theta^\ell = A^\ell u - \mathcal{P}_V^\ell(A u) \) and \(p^\ell = \mathcal{P}_V^\ell(A u) - A u \). Here, \(\mathcal{P}_V^\ell \) for \(X = V \) and \(\mathcal{P}_H^\ell \) for \(X = H \). Now, the proof of the claims follows by similar arguments as the proofs of Theorem 2.9 Proposition 4.7 in [HV08], Proposition 4.6 in [TV09] and Theorem 6.3 in [Sin14]. To estimate the terminal term \(\theta^\ell(T) \) we use observe that
\[
\| \theta^\ell(T) \|^2_H = \| \mathcal{P}_H^\ell((A u)(T)) - (A^\ell u)(T) \|^2_H \\
\leq \sigma_\Omega \left(\| \mathcal{P}_V^\ell((S u)(T)) - (S u)(T) \|^2_H + \| (S u)(T) - (S u^\ell)(T) \|^2_H \right) \\
\leq \sigma_\Omega \left(\| \mathcal{P}_V^\ell(S u) - S u \|_{C([0, T]; H)} + \| S u - S u^\ell \|_{C([0, T]; H)} \right) \\
\leq \sigma_\Omega \left(\| \mathcal{P}_V^\ell(S u) - S u \|_{H^1(0, T; V)} + \| S u - S u^\ell \|_{H^1(0, T; V)} \right)
\]
A first-order sufficient optimality condition is given by the variational inequality

$$\lim_{\ell \to \infty} \| \hat{p} + A^\ell \bar{u} - \hat{p} - A \bar{u} \|_{W(0,T)} = 0$$

for any $\bar{u} \in U$.

1) Analogous to Remark 2.10-2) the a-priori estimate (3.19) holds for an arbitrarily chosen, but fixed control $u \in U$. Argueing as in the proof of Corollary 2.12 we find that

$$\lim_{\ell \to \infty} \| \hat{p} + A^\ell u - \hat{p} - A u \|_{W(0,T)} = 0$$

2) We can also extend the results in Proposition 2.13 for the adjoint equation and get an a-priori error estimate choosing $\varphi = 2$, $y^1 = Su$ and $y^2 = Au$.

The POD Galerkin approximation for (\bar{P}) is as follows:

$$\min \hat{J}(u) \quad \text{s.t.} \quad u \in U_{ad}.$$

where the cost is defined by $\hat{J}(u) = J(\bar{y} + S^\ell u, u)$ for $u \in U$. Let \bar{u}^ℓ be the solution to (\bar{P}). Then, a first-order sufficient optimality condition is given by the variational inequality

$$\langle \sigma \bar{u}^\ell - B^\ell \bar{p}^\ell, u - \bar{u}^\ell \rangle_U \geq 0 \quad \text{for all} \quad u \in U_{ad},$$

(3.20)

where $\bar{p}^\ell = \bar{p}^\ell + A^\ell \bar{u}^\ell$ holds.

Theorem 3.17. Suppose that Assumptions 1 and 2 hold. Let $u \in U$ be arbitrarily given so that $Su, Au \in H^1(0,T;\mathcal{V}) \setminus \{0\}$.

1) To compute a POD basis $\{\psi_i\}_{i=1}^\ell$ of rank ℓ we choose $\varphi = 4$, $y^1 = Su$, $y^2 = (Su)_t$, $y^3 = Au$ and $y^4 = (Au)_t$. Then, the optimal solution \bar{u} to (\bar{P}) and the associated POD suboptimal solution \bar{u}^ℓ to (\bar{P}) satisfy

$$\lim_{\ell \to \infty} \| \bar{u}^\ell - \bar{u} \|_U = 0$$

for $X = V$ and $X = H$.

2) If an optimal POD basis of rank is computed by choosing $\varphi = 4$, $y^1 = Su$, $y^2 = (Su)_t$, $y^3 = Au$ and $y^4 = (Au)_t$, then we have

$$\| \bar{u}^\ell - \bar{u} \|_U \leq \begin{cases} \frac{C}{\sigma} \sum_{i=\ell+1}^{d_u} \lambda_i^V & \text{if} \ X = V, \\ \frac{C}{\sigma} \sum_{i=\ell+1}^{d_u} \lambda_i^H \| \psi_i^H - \mathcal{P}_H \psi_i^H \|_V^2 & \text{if} \ X = H, \end{cases}$$

(3.22)

where the constant C depends on γ, γ_1, γ_2, T, σ_Ω, σ_Q and the norm $\|B^\ell \|_{L^2(0,T;\mathcal{V})}$.

Proof. Choosing $u = \bar{u}^\ell$ in (3.16) and $u = \bar{u}$ in (3.20) we get the variational inequality

$$0 \leq \langle \sigma(\bar{u} - \bar{u}^\ell) - B^\ell(\bar{p} - \bar{p}^\ell), \bar{u} - \bar{u}^\ell \rangle_U.$$

(3.23)

Utilizing Lemma 3.14 and $(\Theta \varphi, w_6(0,T), w_6(0,T)) \geq 0$ for all $\varphi \in W_0(0,T)$ we infer from (3.23) that

$$0 \leq \langle B^\ell A^\ell \bar{u} - B^\ell A \bar{u}, \bar{u} - \bar{u}^\ell \rangle_U - \sigma \| \bar{u} - \bar{u}^\ell \|_U^2$$

$$= \langle B^\ell A^\ell (\bar{u} - \bar{u}) + B^\ell (A^\ell - A) \bar{u}, \bar{u} - \bar{u}^\ell \rangle_U - \sigma \| \bar{u} - \bar{u}^\ell \|_U^2$$

$$\leq \langle \Theta S^\ell (\bar{u} - \bar{u}), S^\ell (\bar{u} - \bar{u}) \rangle_U + \| B^\ell (A^\ell - A) \bar{u} \|_U \| \bar{u}^\ell - \bar{u} \|_U - \sigma \| \bar{u} - \bar{u}^\ell \|_U^2$$

$$\leq \| B^\ell (A^\ell - A) \bar{u} \|_U \| \bar{u}^\ell - \bar{u} \|_U - \sigma \| \bar{u} - \bar{u}^\ell \|_U^2.$$

Consequently,

$$\| \bar{u} - \bar{u}^\ell \|_U \leq \frac{1}{\sigma} \| B^\ell (A^\ell - A) \bar{u} \|_U.$$

Now (3.21) and (3.22) follow from Remark 3.16-1) and (3.19), respectively. \qed
3.5 POD a-posteriori error analysis

In [TV09] a POD a-posteriori error estimates are presented which can be applied to our optimal control problem as well. It is deduced how far the suboptimal control \(\tilde{u}^k \) is from the (unknown) exact optimal control \(\bar{u} \). Thus, our goal is to estimate the norm \(\| \bar{u} - \tilde{u}^k \|_U \) without the knowledge of the optimal solution \(\bar{u} \). In general, \(\tilde{u}^k \neq \bar{u} \) holds, so that \(\bar{u} \) does not satisfy the variational inequality (3.16). However, there exists a function \(\zeta^k \in U \) such that

\[
\langle \sigma \bar{u}^k - B' \bar{p}^k + \zeta^k, u - \tilde{u}^k \rangle_U \geq 0 \quad \forall v \in U_{ad},
\]

(3.24)

with \(\bar{p}^k = \bar{p} + A \bar{u}^k \). Therefore, \(\tilde{u}^k \) satisfies the optimality condition of the perturbed parabolic optimal control problem

\[
\min_{u \in U_{ad}} J(u) = J(\bar{y} + Su, u) + \langle \zeta^k, u \rangle_U
\]

with “perturbation" \(\zeta^k \). The smaller \(\zeta^k \) is, the closer \(\tilde{u}^k \) is to \(\bar{u} \). Next we estimate \(\| \bar{u} - \tilde{u}^k \|_U \) in terms of \(\| \zeta^k \|_U \). By Lemma 3.10 we have

\[
B'(\bar{p} - \bar{p}) = B' A (\bar{u} - \tilde{u}^k) = - S' \Theta S (\bar{u} - \tilde{u}^k) = S' \Theta (\tilde{y}^k - \bar{y})
\]

(3.25)

with \(\tilde{y}^k = \bar{y} + S \tilde{u}^k \). Choosing \(u = \tilde{u}^k \) in (3.16), \(u = \bar{u} \) in (3.24) and using (3.25) we obtain

\[
0 \leq \langle - \sigma (\bar{u} - \tilde{u}^k) + B'(\bar{p} - \bar{p}) + \zeta^k, \bar{u} - \tilde{u}^k \rangle_U = - \sigma \| \bar{u} - \tilde{u}^k \|_U^2 + \langle S' \Theta (\tilde{y}^k - \bar{y}), \bar{u} - \tilde{u}^k \rangle_U + \langle \zeta^k, \bar{u} - \tilde{u}^k \rangle_U
\]

\[
= - \sigma \| \bar{u} - u_0 \|_U^2 + \langle \Theta (\bar{y} - \tilde{y}^k), \bar{y} - \tilde{y}^k \rangle U_0, t \rangle, W_0(0,T) + \langle \zeta^k, \bar{u} - \tilde{u}^k \rangle_U
\]

\[
= - \sigma \| \bar{u} - u_0 \|_U^2 + \langle \zeta^k, \bar{u} - \tilde{u}^k \rangle_U \leq - \sigma \| \bar{u} - \tilde{u}^k \|_U^2 + \| \zeta^k \|_U \| \bar{u} - \tilde{u}^k \|_U.
\]

Hence, we get the a-posteriori error estimation

\[
\| \bar{u} - \tilde{u}^k \|_U \leq \frac{1}{\sigma} \| \zeta^k \|_U.
\]

Theorem 3.18. Suppose that Assumptions 1 and 2 hold. Let \(u \in U \) be arbitrarily given so that \(Su, Au \in H^1(0,T;V) \setminus \{0\} \). To compute a POD basis \(\{ \psi_i \}_{i=1}^\ell \) of rank \(\ell \) we choose \(\varphi = 4, y^1 = Su, y^2 = (Su)_t, y^3 = Au \) and \(y^4 = (Au)_t \). Define the function \(\zeta^k \in U \) by

\[
\zeta^k(t) = \begin{cases}
- \min(0, \xi^k_i(t)) \quad \text{a.e. in } A_{ai}^k \setminus \{ t \in [0,T] \mid \bar{u}^i(t) = u_{ai}(t) \}, \\
- \max(0, \xi^k_i(t)) \quad \text{a.e. in } A_{bi}^k \setminus \{ t \in [0,T] \mid \bar{u}^i(t) = u_{bi}(t) \}, \\
- \xi^k_i(t) \quad \text{a.e. in } [0,T] \setminus (A_{ai}^k \cup A_{bi}^k),
\end{cases}
\]

where \(\xi^k = \sigma \bar{u}^k - B'(\bar{p}^k + A \bar{u}^k) \) in \(U \). Then, the a-posteriori error estimate

\[
\| \bar{u} - \tilde{u}^k \|_U \leq \frac{1}{\sigma} \| \zeta^k \|_U.
\]

In particular, \(\lim_{\ell \to \infty} \| \zeta^k \|_U = 0 \).

Proof. Estimate (3.26) has already be shown. We proceed by constructing the function \(\zeta^k \). Here we adapt the lines of the proof of Proposition 3.2 in [TV09] to our optimal control problem. Suppose that we know \(\bar{u}^k \) and \(\bar{p}^k = \bar{p} + A \bar{u}^k \). The goal is to determine \(\zeta^k \in U \) satisfying (3.24). We distinguish three different cases.

- Case \(u_{ai}(t) = u_{ai}(t) \) for fixed \(t \in [0,T] \) and \(i \in \{1, \ldots, N_u\} \): Then, \(u(t) - \bar{u}^i(t) = u(t) - u_{ai}(t) \geq 0 \) for all \(u \in U_{ad} \). Hence, \(\zeta^k(t) \) for satisfies

\[
(\sigma \bar{u}^k - B'(\bar{p}))_i(t) + \xi^k_i(t) \geq 0.
\]

(3.27)

Setting \(\zeta^k(t) = - \min(0, (\sigma \bar{u}^k - B'(\bar{p}))_i(t)) \) the value \(\zeta^k(t) \) satisfies (3.27).
• Case $\bar{u}^k_i(t) = u_{b,i}(t)$ for fixed $t \in [0, T]$ and $i \in \{1, \ldots, N_u\}$: Now, $u_i(t) - \bar{u}^k_i(t) = u(t) - u_{b,i}(t) \leq 0$ for all $u \in U_{ad}$. Analogously to the first case we define $\zeta_i^k(t) = -\max(0, (\sigma \bar{u}^k - B'\bar{p}^k), (t))$ to ensure (3.27).

• Case $u_{a,i}(t) < \bar{u}^k_i(t) < u_{b,i}(t)$ for fixed $t \in [0, T]$ and $i \in \{1, \ldots, N_u\}$: Consequently, $(\sigma \bar{u}^k - B'\bar{p}^k), (t) + \zeta_i^k(t) = 0$ holds so that $\zeta_i^k(t) = -(\sigma \bar{u}^k - B'\bar{p}^k), (t)$ guarantees (3.27).

It remains to prove that ζ_i^k tends to zero for $k \to \infty$. Here we adapt the proof of Theorem 4.11 in [1V09]. By Theorem 3.17(1), the sequence $\{\bar{u}^k\}_{k \in \mathbb{N}}$ converges to \bar{u} in U. Since the linear operator $B'\bar{A}$ is bounded and $\bar{p} = \bar{u} - A\bar{u}$ holds, $\{B'\bar{p}^k\}_{k \in \mathbb{N}}$ tends to $B'\bar{p} = B'\bar{A}\bar{u}$ as well. Hence, there exist subsequences $\{\bar{u}^k_i\}_{k \in \mathbb{N}}$ and $\{B'\bar{p}^k\}_{k \in \mathbb{N}}$ satisfying

$$\lim_{k \to \infty} \bar{u}^k_i(t) = \bar{u}_i(t) \quad \text{and} \quad \lim_{k \to \infty} \left(B'\bar{p}^k\right)(t) = \left(B'\bar{p}\right)(t)$$

f.a.a. $t \in [0, T]$ and for $1 \leq i \leq N_u$. Next we consider the active and inactive sets for \bar{u}.

• Let $t \in \mathcal{A}_i = \{t \in [0, T] \mid u_{a,i}(t) < \bar{u}_i(t) < u_{b,i}(t)\}$ for $i \in \{1, \ldots, N_u\}$. For $k_0 = k_0(t) \in \mathbb{N}$ sufficiently large, $\bar{u}^k_i(t) \in (u_{a,i}(t), u_{b,i}(t))$ for all $k \geq k_0$ and f.a.a. $t \in \mathcal{A}_i$. Thus, $(\sigma \bar{u}^k - B'\bar{p}^k), (t) = 0$ for all $k \geq k_0(t)$ in \mathcal{A}_i a.e. This implies

$$\zeta_i^k(t) = 0 \quad \forall k \geq k_0(t) \text{ and f.a.a. } t \in \mathcal{A}_i. \quad (3.28)$$

• Suppose that $t \in \mathcal{A}_{a,i} = \{t \in [0, T] \mid u_{a,i}(t) = \bar{u}_i(t)\}$ for $i \in \{1, \ldots, N_u\}$. From $(\sigma \bar{u}_i - B'\bar{p}), (t) \geq 0$ in $\mathcal{A}_{a,i}$ a.e. we deduce

$$\lim_{k \to \infty} \zeta_i^k(t) = -\lim_{k \to \infty} \min(0, (\sigma \bar{u}^k - B'\bar{p}^k), (t)) = 0 \quad \text{f.a.a. } t \in \mathcal{A}_{a,i}. \quad (3.29)$$

Combining (3.28)–(3.29) we conclude that $\lim_{k \to \infty} \zeta_i^k = 0$ a.e. in $[0, T]$ and for $1 \leq i \leq N_u$. Moreover, the sequence $\{\|\zeta_i^k(\cdot)\|_{U_{ad}}\}_{k \in \mathbb{N}} \subset L^2(0, T)$ is bounded. Utilizing the dominated convergence theorem [DR11 Satz 13.28] we have

$$\lim_{k \to \infty} \|\zeta_i^k\|_U = 0.$$

Since all subsequences contain a subsequence converging to zero, the claim follows from a standard argument. \hfill \Box

Remark 3.19. 1) Theorem 3.18 shows that $\|\zeta_i^k\|_U$ tends to zero as k goes to infinity. Thus, $\|\zeta_i^k\|_U$ is smaller than any tolerance $\epsilon > 0$ provided that k is taken sufficiently large. Motivated by this result we set up Algorithm 1. Note that the approximation quality of the POD Galerkin scheme is improved by only increasing the number of POD basis elements: A rank-ℓ POD basis can be extended to a rank-$(\ell + 1)$ POD basis by adding a new eigenfunction and keeping all the old ones. Especially, the system matrices and projected data functions can be extended by the new element, they do not have to be reconstructed in all components.

2) We infer from Proposition 2.13 and Remark 3.16(3) that Theorem 3.18 holds still true if we take $\varphi = 2$, $y^1 = Su$ and $y^2 = Au$. \hfill \Diamond
Algorithm 1 POD reduced-order method with a-posteriori estimator

Require: Initial control $u^0 \in U$, initial number ℓ for the POD ansatz functions, a maximal number $\ell_{\text{max}} > \ell$ of POD ansatz functions, and a stopping tolerance $\epsilon > 0$.

1: Determine $\hat{y}, \hat{\beta}, y^1 = Su^0, y^2 = Au^0$.
2: Compute a POD basis $\{\psi_i\}_{i=1}^{\ell_{\text{max}}}$ choosing y^1 and y^2. Set $\ell = 1$.
3: repeat
4: Establish the POD Galerkin discretization using $\{\psi_i\}_{i=1}^{\ell}$.
5: Compute suboptimal control \bar{u}^ℓ.
6: Determine ζ^ℓ according to Theorem 3.15 and compute $\epsilon_{\text{ape}} = ||\zeta^\ell||_U/\sigma$.
7: if $\epsilon_{\text{ape}} < \epsilon$ or $\ell = \ell_{\text{max}}$ then
8: Return ℓ and suboptimal control \bar{u}^ℓ and STOP.
9: end if
10: Set $\ell = \ell + 1$.
11: until $\ell > \ell_{\text{max}}$

3.5. POD A-POSTERIORI ERROR ANALYSIS
<table>
<thead>
<tr>
<th>Literaturverzeichnis</th>
</tr>
</thead>
</table>

Stichwortverzeichnis

basis rank, 4

dual pairing, 4

Fourier coefficients, 4
Fourier sum, 3

heuristic a-priori rule, 9
Hilbert space, 3
separable, 8

inequality
Cauchy-Schwarz, 5 13 17

Kronecker symbol, 3

Lagrangian framework, 8
Lanczos method, 9

method of snapshots, 10

nonlinear programming, 8

operator
adjoint, 4
bounded, 4
compact, 5
dual, 4
eigenvalue, 6
eigenvector, 6
finite rank, 5
inverse, 5
linear, 4
multiplication, 13
nonnegative, 5
norm, 4
point spectrum, 6
selfadjoint, 5
spectrum, 5
operator kernel, 14
optimality condition, 8
optimization problem, 8

perturbation theory, 16
POD, 3
basis, 4
snapshot, 3

POD for weighted inner product, 10
POD in Euclidean space, 9
POD in function spaces, 12
POD with multiple snapshots, 11

resolvent set, 5
Riesz isomorphisms, 5

singular value decomposition, 9 15
snapshot subspace, 3

theorem
Hilbert-Schmidt, 6
Riesz-Schauder, 6
transposed POD problem, 9
trapezoidal weights, 16