BASIC FUNCTIONAL ANALYSIS FOR THE OPTIMIZATION OF PARTIAL DIFFERENTIAL EQUATIONS

S. VOLKWEIN

ABSTRACT. Infinite-dimensional optimization requires – among other things – many results from functional analysis. In this script basics from functional analytic theory is reviewed. The purpose of this work is to give a summary of important facts needed to work in our research group.

1. Functional Analysis – Results and Definitions

If M is a set and $M_1 \subset M$, the symbol $M \setminus M_1$ represents the complement of M_1 in M, i.e. $M \setminus M_1 = \{x \in M : x \notin M_1\}$. \overline{M} will always denote the closure of the set M, which is the smallest closed set containing in M. The interior of the set M, M° , is the largest open set containing in M. The boundary of M is the set $\partial M = \overline{M} \setminus M^{\circ}$. The set of ordered pairs $\{(x, y) : x \in M_1, y \in M_2\}$ is called the Cartesian product of the sets M_1 and M_2 and it is denoted $M_1 \times M_2$.

Let $f: M \to M_1$ be a function (or mapping). f(M) will usually called the range of f and will denoted ran (f). The set $\{x \in M : f(x) = 0\}$ is said to be the kernel of f and is denoted ker (f). A function f will be called *injective* if for each $y \in \text{ran } (f)$ there is at most one $x \in M$ such that f(x) = y; f is called *surjective* if ran $(f) = M_1$. If f is both injective and surjective, we will say it is *bijective*.

Let $f: M \to M_1$ and $g: M_1 \to M_2$ be two functions. The composite mapping $r = g \circ f$ is defined by $r: M \to M_2, x \mapsto r(x) = g(f(x))$.

Definition 1.1. A (real) linear space is a set, V, over \mathbb{R} , whose elements satisfy the following properties

- 1) v + w = w + v for all $v, w \in V$,
- 2) v + (w + u) = (v + w) + u for all $v, w, u \in V$,
- 3) There is in V a unique element, denoted by 0 and called the zero element, such that v + 0 = v for each v,
- 4) To each v in V corresponds a unique element, denoted by -v, such that v + (-v) = 0,
- 5) $\alpha (v+w) = \alpha v + \alpha w$ for all $v, w \in V$ and $\alpha \in \mathbb{R}$,
- 6) $(\alpha + \beta) v = \alpha v + \beta v$ for all $v \in V$ and $\alpha, \beta \in \mathbb{R}$,
- 7) $\alpha(\beta v) = (\alpha \beta) v$ for all $v \in V$ and $\alpha, \beta \in \mathbb{R}$,
- 8) $1 \cdot v = v$ for all $v \in V$,
- 9) $0 \cdot v = 0$ for all $v \in V$.

Date: January 8, 2003.

¹⁹⁹¹ Mathematics Subject Classification. 35Kxx, 46Axx, 46Bxx, 46Exx, 46Exx, 49Kxx. Key words and phrases. Functional analysis, optimality conditions, function spaces, evolution problems.

A (real) normed linear space is a linear space, V, over \mathbb{R} and a function, $\|\cdot\|_V$, from V to \mathbb{R} which satisfies:

- 1) $||v||_V \ge 0$ for all v in V,
- 2) $||v||_V = 0$ if and only if v = 0,
- 3) $\|\alpha v\|_V = |\alpha| \|v\|_V$ for all v in V and α in \mathbb{R} ,
- 4) $||v+w||_V \le ||v||_V + ||w||_V$ for all v and w in V.

A system of sets $M_{\alpha}, \alpha \in I$, is called a *covering* of the set M if M is contained as a subset of the union $\bigcup_{\alpha \in I} M_{\alpha}$. A subset M of a linear space V is called *compact* if every system of open sets of V which covers M contains a finite system also covering M. A subset M in a linear space V is *precompact*, if \overline{M} is compact in V. Further we call $M \subset V$ bounded, if there exists a constant K > 0 such that $\|v\|_{V} \leq K$ for all $v \in M$.

Definition 1.2. A linear operator from a normed linear space $(V_1, \|\cdot\|_{V_1})$ to a normed linear space $(V_2, \|\cdot\|_{V_2})$ is a mapping, \mathcal{A} , from V_1 to V_2 which has the following property:

$$\mathcal{A}(\alpha v + \beta w) = \alpha \mathcal{A}(v) + \beta \mathcal{A}(w) \text{ for all } v, w \in V_1 \text{ and } \alpha, \beta \in \mathbb{R}$$

 \mathcal{A} is called a bounded (linear) operator if \mathcal{A} is linear and there is some K > 0 such that $\|\mathcal{A}(v)\|_{V_2} \leq K \|v\|_{V_1}$ for all $v \in V_1$.

The smallest such K is called the norm of \mathcal{A} . By (1.1) we will introduce a notation for the norm of a bounded linear operator. A sequence of elements $\{v_n\}_{n\in\mathbb{N}}$ of a normed linear space V is said to converge (strongly) to an element $v \in V$, $v_n \to v, n \to \infty$, if $\lim_{n\to\infty} ||v - v_n||_V = 0$. The sequence $\{v_n\}_{n\in\mathbb{N}}$ is called a Cauchy sequence if for all $\varepsilon > 0$ there exists one $N \in \mathbb{N}$ such that

$$\|v_m - v_n\|_V < \varepsilon$$
 for all $m, n \ge N$.

A normed linear space in which all Cauchy sequences converge is called *complete*. A set M in a normed linear space V is called *dense* if every $v \in V$ is a limit of elements in M. A function f from a normed linear space $(V_1, \|\cdot\|_{V_1})$ to a normed space $(V_2, \|\cdot\|_{V_2})$ is called *continuous at* v if $\|f(v_n) - f(v)\|_{V_2} \to 0$ as $n \to \infty$ whenever $\|v_n - v\|_{V_1} \to 0$ as n tends to zero. We say f is Lipschitz-continuous if there exists a constant $\gamma_f > 0$ such that

$$||f(v) - f(w)||_{V_2} \le \gamma_f ||v - w||_{V_1}$$
 for all $v, w \in V_1$

<u>f</u> is called *locally Lipschitz continuous* if for all open and bounded $O \subset V_1$ with $\overline{O} \subset V_1$ there exists $\gamma_f = \gamma_f(O) > 0$ such that

$$||f(v) - f(w)||_{V_2} \le \gamma_f ||v - w||_{V_1}$$
 for all $v, w \in O$.

Let V_1 and V_2 be normed linear spaces. A bijection f from V_1 to V_2 which preserves the norm, i.e.,

$$|f(v) - f(w)||_{V_2} = ||v - w||_{V_1}$$
 for all $v, w \in V_1$

is called an *isometry*. It is automatically continuous. V_1 and V_2 are said to be *isometric* if such an isometry exists.

Let V be a normed linear space. The set $\{w \in V : \|v - w\|_V < \rho\}$ is called the open ball, $B(v; \rho)$, of radius ρ about the point v. A set $U(v) \subset X$ is called a neighborhood of $v \in U(v)$ if $B(v; \rho) \subset U(v)$ for some $\rho > 0$. Let $M \subset V$. A point v is called a *limit point* of M, if for all $\rho > 0$ $B(v; \rho) \cap (M \setminus \{v\}) \neq \emptyset$, i.e., x is a limit point of M if M contains points other than v arbitrarily near v. **Lemma 1.3.** Let \mathcal{A} be linear operator between two normed linear spaces. The following properties are equivalent:

- 1) \mathcal{A} is continuous at one point.
- 2) \mathcal{A} is continuous at all points.
- 3) \mathcal{A} is bounded.

Proof. For the proof we refer the reader to Theorem 6.1.1 on page 97 in [15]. \Box

 V_1 and V_2 are normed linear spaces. We define

 $L(V_1, V_2) = \{ \mathcal{A} : V_1 \to V_2, \mathcal{A} \text{ is linear and continuous} \}.$

Due to Lemma 1.3 linear operators in $L(V_1, V_2)$ are bounded linear operators, which we also call continuous operators. Let us introduce the following norm on $L(V_1, V_2)$:

(1.1)
$$\|\mathcal{A}\|_{L(V_1,V_2)} = \sup_{\|v\|_{V_1} \le 1} \|\mathcal{A}(v)\|_{V_2} = \sup_{\|v\|_{V_1} = 1} \|\mathcal{A}(v)\|_{V_2}$$
 for all $\mathcal{A} \in L(V_1,V_2)$.

Definition 1.4. A complete normed linear space is called a Banach space.

We mention the inverse mapping theorem.

Theorem 1.5. A continuous bijection of one Banach space onto another has a continuous inverse.

Proof. We refer the reader to Theorem III.11 on page 83 in [13]. \Box

Lemma 1.6. Let B_1 , B_2 be two Banach spaces and \mathcal{A} belong to $L(B_1, B_2)$. The passage to the inverse $\mathcal{A} \to \mathcal{A}^{-1}$ is continuous (non-linear) mapping of $L(B_1, B_2)$ into $L(B_2, B_1)$ for the norm.

Proof. For a proof we refer to Theorem 3 on page 321 in [5]. \Box

Remark 1.7. If the perturbation \mathcal{B} of \mathcal{A} is sufficiently small, i.e., $\|\mathcal{B}\|_{L(B_1,B_2)} < \|\mathcal{A}\|_{L(B_1,B_2)}^{-1}$ holds, then $\mathcal{A}-\mathcal{B}$ is invertible. Let $\{\mathcal{A}_n\}_{n\in\mathbb{N}}$ be a sequence in $L(B_1,B_2)$ and $\mathcal{A} \in L(B_1,B_2)$ such that \mathcal{A}^{-1} exists and

$$\lim_{n \to \infty} \|\mathcal{A}_n - \mathcal{A}\|_{L(B_1, B_2)} = 0.$$

Thus, there exists $N \in \mathbb{N}$ with $\|\mathcal{A}_n - \mathcal{A}\|_{L(B_1, B_2)} < \|\mathcal{A}\|_{L(B_1, B_2)}^{-1}$ for all $n \geq N$. This leads to \mathcal{A}_n^{-1} exists for all $n \geq N$.

Lemma 1.8. Let V, V_1 and V_2 be normed linear spaces. Then $L(V_1, V_2)$ with the norm $\|\cdot\|_{L(V_1, V_2)}$ is a normed linear space, and a Banach space, if V_2 is complete. If $\mathcal{A} \in L(V_1, V_2)$ and $\mathcal{B} \in L(V_2, V)$ we have $\mathcal{B} \circ \mathcal{A} \in L(V_1, V)$ and

$$\left\|\mathcal{B} \circ \mathcal{A}\right\|_{L(V_1,V)} \le \left\|\mathcal{B}\right\|_{L(V_2,V)} \left\|\mathcal{A}\right\|_{L(V_1,V_2)}.$$

Proof. Let us refer to Satz 3.3 on page 102 in [2].

We set L(V) = L(V, V). The *identity* on V is the continuous operator $\mathcal{I}_V : V \to V$ given by $\mathcal{I}_V(v) = v$ for all v in V.

Definition 1.9. A (real) vector space X is called (real) inner product space if there is a real-valued function $\langle \cdot, \cdot \rangle_X$ on $X \times X$ that satisfies the following four conditions for all $x, y, z \in X$ and $\alpha \in \mathbb{R}$:

- 1) $\langle x, x \rangle_X \geq 0$ and $\langle x, x \rangle_X = 0$ if and only if x = 0,
- 2) $\langle x, y + z \rangle_X = \langle x, y \rangle_X + \langle x, z \rangle_X$,

3) $\langle x, \alpha y \rangle_X = \alpha \langle x, y \rangle_X$,

4) $\langle x, y \rangle_X = \langle y, x \rangle_X.$

4

The function $\langle \cdot, \cdot \rangle_X : X \times X \to \mathbb{R}$ is called (real) inner product.

Example 1.10. Let \mathbb{R}^n denote the set of all *n*-tupels of real numbers. We define the inner product

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\mathbb{R}^n} = \mathbf{x}^T \mathbf{y} = \sum_{j=1}^n x_j y_j.$$

for all $\mathbf{x} = (x_1, \dots, x_n)^T$ and $\mathbf{y} = (y_1, \dots, y_n)^T$ in \mathbb{R}^n .

Let X and Y be inner product spaces. The mapping $a:X\times X\to Y$ with the properties

- 1) $a(\alpha x + \beta y, z) = \alpha a(x, z) + \beta a(y, z)$ for all $x, y, z \in X$ and $\alpha, \beta \in \mathbb{R}$,
- 2) a(x,y) = a(y,x) for all $x, y \in X$,

3) $|a(x,y)| \leq K ||x||_X ||y||_X$ for some K > 0 and for all $x, y \in X$

is said to be a *(real) continuous bilinear form.* Two vectors, x and y, in an inner product space X are said to be orthogonal if $\langle x, y \rangle_X = 0$. A collection $\{x_i\}_{i \in \mathbb{N}}$ of vectors in X is called an orthonormal set if $\langle x_i, x_i \rangle_X = 1$ for all i, and $\langle x_i, x_j \rangle_X = 0$ if $i \neq j$.

Definition 1.11. A family $\{x_{\lambda}\}_{\lambda \in \Lambda}$ (Λ an index set) is said to be total (or complete) in the Hilbert space X if

$$\langle x, x_{\lambda} \rangle_{X} = 0 \text{ for all } \lambda \in \Lambda \implies x = 0.$$

A total orthonormal family is called an orthonormal base.

Lemma 1.12. Every inner product space X is a normed linear space with the norm $||x||_X = \sqrt{\langle x, x \rangle_X}$.

Proof. Let us refer to Theorem II.2 on page 38 in [13].

Definition 1.13. A complete (real) inner product space is called a (real) Hilbert space.

Suppose X and Y are Hilbert spaces. Then the set of pairs (x, y) with $x \in X$, $y \in Y$ is a Hilbert space called the *direct sum* of the spaces X and Y and denoted by $X \oplus Y$. The natural inner product on $X \oplus Y$ is given by

(1.2)
$$\langle (x_1, y_1), (x_2, y_2) \rangle_{X \oplus Y} = \langle x_1, x_2 \rangle_X + \langle y_1, y_2 \rangle_Y$$

for all $(x_1, y_1), (x_2, y_2) \in X \oplus Y$.

Let M be a closed subspace of a given Hilbert space X. Under the natural inner product that it inherits as a subspace of X, M is a Hilbert space. We denote by M^{\perp} the set of vectors in X which are orthogonal to M; M^{\perp} is called the *orthogonal complement* of M. It follows from the linearity of the inner product that M^{\perp} is a linear subspace of X. Further, we can prove, that M^{\perp} is closed. Thus M^{\perp} is also a Hilbert space. M and M^{\perp} have only the zero element in common. The next Theorem 1.14 is usually called the projection theorem.

Theorem 1.14. Let X be a Hilbert space, M a closed subspace. Then every $x \in X$ can be uniquely written x = z + w where $z \in M$ and $w \in M^{\perp}$.

Proof. We refer the reader to Theorem II.3 on page 42 in [13].

Remark 1.15. Theorem 1.14 sets up a natural isomorphism between $M \oplus M^{\perp}$ and X given by

$$(1.3) (z,w) \mapsto z+w.$$

We will suppress the isomorphism and simply write $X = M \oplus M^{\perp}$. Let us choose $x_1, x_2 \in X, z_1, z_2 \in M$ and $w_1, w_2 \in M^{\perp}$ such that $x_1 = z_1 + w_1$ and $x_2 = z_2 + w_2$. By (1.3) we identify x_1 and (z_1, w_1) respectively x_2 and (z_2, w_2) . On the Hilbert spaces M and M^{\perp} we use the inner product $\langle \cdot, \cdot \rangle_X$ that M and M^{\perp} inherit as a subspace of X. Then it follows

$$\begin{aligned} \langle x_1, x_2 \rangle_X &= \langle z_1 + w_1, z_2 + w_2 \rangle_X \\ &= \langle z_1, z_2 \rangle_X + \underbrace{\langle w_1, z_2 \rangle_X + \langle z_1, w_2 \rangle_X}_{=0} + \langle w_1, w_2 \rangle_X \\ &\underbrace{\langle (1.2) \\ =} \langle (z_1, w_1), (z_2, w_2) \rangle_{M \oplus M^\perp} \,. \end{aligned}$$

Thus, the inner product on $M \oplus M^{\perp}$ given by (1.2) coincides with $\langle \cdot, \cdot \rangle_X$.

An important class of bounded operators on Hilbert spaces is that of the projections.

Definition 1.16. Let X be a Hilbert space. A bounded operator \mathcal{P} into itself is said to be a projection if $\mathcal{P}^2 \equiv \mathcal{P}$ holds. \mathcal{P} is called orthogonal if $\langle x - \mathcal{P}(x), \mathcal{P}(x) \rangle_X = 0$ for all $x \in X$.

The following result is known as the principle of uniform boundedness or the Banach-Steinhaus theorem.

Theorem 1.17. Let $\{\mathcal{A}\}$ be a set in $L(B_1, B_2)$ for two Banach spaces B_1 and B_2 . If $\|\mathcal{A}(x)\|_{B_2}$ is bounded for each fixed $x \in B_1$, as \mathcal{A} ranges over $\{\mathcal{A}\}$, then there exists K > 0 such that $\|\mathcal{A}\|_{L(B_1, B_2)} \leq K$ for all of $\{\mathcal{A}\}$.

Proof. Let us refer to Theorem 6.3.1 on page 112 in [15].

Now we introduce the dual space of a given Banach space.

Definition 1.18. Let B be a Banach space. The space $L(B, \mathbb{R})$ is called the dual space of B and it is denoted by B'. The elements of B' are continuous linear functionals. We write $\langle f, x \rangle_{B',B}$ for the duality pairing of $f \in B'$ with an element $x \in B$.

Since \mathbb{R} is complete, B' is a Banach space (Lemma 1.8). We define $\|\cdot\|_{B'} = \|\cdot\|_{L(B,\mathbb{R})}$. In the applications we will often consider the dual X' of a Hilbert space X. Let us recall the *Riesz representation theorem*. For a proof we refer to Theorem II.4 on page 43 in [13].

Theorem 1.19. Let X be a Hilbert space with dual X'. For each $f \in X'$, there is a unique $y_f \in X$ such that $\langle f, x \rangle_{X',X} = \langle y_f, x \rangle_X$ for all $x \in X$. In addition $\|y_f\|_X = \|f\|_{X'}$.

A bounded linear operator from a normed linear space V_1 to a normed linear space V_2 is called an *isomorphism* if it is bijective and continuous and if it possesses a continuous inverse. If it preserves the norm, it is called *isometric isomorphism*. Due to Theorem 1.5 a bounded linear operator possesses a continuous inverse if it is bijective and both V_1 and V_2 are Banach spaces. Obviously, an isometric isomorphism has norm one. **Remark 1.20.** By Theorem 1.19 we define the Riesz isomorphism \mathcal{J}_X which maps the Hilbert space X onto its dual X' by $y_f \mapsto f$ and

$$\langle f, x \rangle_{X', X} = \langle \mathcal{J}_X(y_f), x \rangle_{X', X} = \langle y_f, x \rangle_X$$

for all $x \in X$. Often there is made no difference between an element $y_f \in X$ and the corresponding element (the riesz representant) $f \in X'$. We point out that we have $\|\mathcal{J}_X\|_{L(X,X')} = 1$. Thus, \mathcal{J}_X is an isometric isomorphism. The dual space X'is also a Hilbert space: Due to Theorem 1.19 the natural inner product on X' is given by

(1.4)
$$\langle f,g\rangle_{X'} = \langle \mathcal{J}_X^{-1}(f), \mathcal{J}_X^{-1}(g)\rangle_X$$

for all $f, g \in X'$.

If the normed linear space V has a countable dense subset it is called to be separable.

Proposition 1.21. Let X and Y be Hilbert spaces. We define

$$\mathcal{A}: X' \oplus Y' \to (X \oplus Y)'$$
$$\langle \mathcal{A}(f,g), (x,y) \rangle_{(X \oplus Y)', X \oplus Y} = \langle f, x \rangle_{X', X} + \langle g, y \rangle_{Y', Y}$$

for all $(f,g) \in X' \oplus Y'$ and $(x,y) \in X \oplus Y$. Then \mathcal{A} is an isometric isomorphism.

Proof. We have mentioned that $X \oplus Y$ is a Hilbert space with the inner product (1.2). Due to Remark 1.20 the dual space $(X \oplus Y)'$ is also a Hilbert space. Since elements of X' and Y' are continuous, \mathcal{A} is also continuous. \mathcal{J}_Y and $\mathcal{J}_{X \oplus Y}$ are the Riesz isomorphisms which map Y onto Y' respectively $X \oplus Y$ onto $(X \oplus Y)'$. For $(f, g), (\tilde{f}, \tilde{g}) \in X' \oplus Y'$ and $\alpha, \beta \in \mathbb{R}$ we obtain

$$\begin{aligned} \langle \mathcal{A}(\alpha(f,g) + \beta(f,\tilde{g}),(x,y)\rangle_{(X\oplus Y)',X\oplus Y} \\ &= \langle \alpha f + \beta \tilde{f},x \rangle_{X',X} + \langle \alpha g + \beta \tilde{g},y \rangle_{Y',Y} \\ &= \langle \alpha \mathcal{A}(f,g) + \beta \mathcal{A}(\tilde{f},\tilde{g}),(x,y)\rangle_{(X\oplus Y)',X\oplus Y} \end{aligned}$$

for all $(x, y) \in X \oplus Y$. Therefore, \mathcal{A} is linear and belongs to $L(X' \oplus Y', (X \oplus Y)')$. Let us assume $\mathcal{A}(f, g) = 0$ for f in X' and g in Y'. Then it follows

$$\langle \mathcal{A}(f,g), (x,y) \rangle_{(X \oplus Y)', X \oplus Y} = 0$$

for all $(x, y) \in X \oplus Y$. So, $\langle f, x \rangle_{X',X} = -\langle g, y \rangle_{Y',Y}$ for all $(x, y) \in X \oplus Y$. This is only true if (f, g) = (0, 0). Thus, \mathcal{A} in injective. Let us choose $r \in (X \oplus Y)'$. \mathcal{A} is surjective if and only if there exists $(f, g) \in X' \oplus Y'$ such that $\mathcal{A}(f, g) = r$. $\tilde{x} \in X$ and $\tilde{y} \in Y$ are defined by

(1.5)
$$(\tilde{x}, \tilde{y}) = \mathcal{J}_{X \oplus Y}^{-1}(r)$$

If we set $f = \mathcal{J}_X(\tilde{x})$ and $g = \mathcal{J}_Y(\tilde{y})$. We achieve

$$\begin{split} \langle \mathcal{A}(f,g),(x,y)\rangle_{(X\oplus Y)',X\oplus Y} &= \langle \mathcal{J}_X(\tilde{x}),x\rangle_{X',X} + \langle \mathcal{J}_Y(\tilde{y}),y\rangle_{Y',Y} \\ &= \langle \tilde{x},x\rangle_X + \langle \tilde{y},y\rangle_Y \\ \begin{pmatrix} 1.2 \\ = & \langle (\tilde{x},\tilde{y}),(x,y)\rangle_{X\oplus Y} \\ \begin{pmatrix} 1.5 \\ = & \langle r,(x,y)\rangle_{(X\oplus Y)',X\oplus Y} \end{split}$$

for all $(x, y) \in X \oplus Y$. This imply the surjectivity of \mathcal{A} . Hence, \mathcal{A} is a bijection. By applying Theorem 1.5 \mathcal{A} is an isomorphism. Finally, we prove the isometry of \mathcal{A} : Let $(f,g) \in X' \oplus Y'$. For $(x,y) = \mathcal{J}_{X \oplus Y}^{-1}(\mathcal{A}(f,g))$ the proof of the surjectivity has shown $f = \mathcal{J}_X(x)$ and $g = \mathcal{J}_Y(y)$. Further we have $\|\mathcal{J}_X(x)\|_{X'} = \|x\|_X$ and $\|\mathcal{J}_Y(y)\|_{Y'} = \|y\|_Y$ (Theorem 1.19). This yields

$$\begin{split} \left\| \mathcal{A}(f,g) \right\|_{(X\oplus Y)'}^{2} & \stackrel{\text{Lem. 1.12}}{=} \langle \mathcal{A}(f,g), \mathcal{A}(f,g) \rangle_{(X\oplus Y)'} \\ \begin{pmatrix} (1.4) \\ = & \langle \mathcal{J}_{X\oplus Y}^{-1} \mathcal{A}(f,g), \mathcal{J}_{X\oplus Y}^{-1} \mathcal{A}(f,g) \rangle_{X\oplus Y} \\ & = & \langle (x,y), (x,y) \rangle_{X\oplus Y} \\ \begin{pmatrix} (1.2) \\ = & \langle X, x \rangle_{X} + \langle y, y \rangle_{Y} \\ \begin{pmatrix} (1.4) \\ = & \langle \mathcal{J}_{X}(x), \mathcal{J}_{X}(x) \rangle_{X'} + \langle \mathcal{J}_{Y}(y), \mathcal{J}_{Y}(y) \rangle_{Y'} \\ & = & \langle f, f \rangle_{X'} + \langle g, g \rangle_{Y'} \\ \begin{pmatrix} (1.2) \\ = & \langle (f,g), (f,g) \rangle_{X'\oplus Y'} \\ & \stackrel{\text{Lem. 1.12}}{=} & \| (f,g) \|_{X'\oplus Y'}^{2} . \end{split}$$

Therefore, \mathcal{A} is isometric, and the proof is complete.

Remark 1.22. Due to Proposition 1.21 we identify $X' \oplus Y'$ with $(X \oplus Y)'$, so that we use $X' \oplus Y'$ as the dual space of $X \oplus Y$. The natural inner product on $X' \oplus Y'$ is

$$\begin{array}{ll} \langle (f,g), (\tilde{f},\tilde{g}) \rangle_{X' \oplus Y'} &=& \langle f, \tilde{f} \rangle_{X'} + \langle g, \tilde{g} \rangle_{Y'} \\ &\stackrel{(1.4)}{=}& \langle \mathcal{J}_X^{-1}(f), \mathcal{J}_X^{-1}(\tilde{f}) \rangle_X + \langle \mathcal{J}_Y^{-1}(g), \mathcal{J}_Y^{-1}(\tilde{g}) \rangle_Y \end{array}$$

for all $(f,g), (\tilde{f},\tilde{g}) \in X' \oplus Y'$.

Definition 1.23. A sequence $\{x_n\}_{n \in \mathbb{N}}$ converges weakly to an element x of the Hilbert space X, $x_n \rightarrow x$, $n \rightarrow \infty$, if we have

$$\lim_{n \to \infty} \langle f, x_n \rangle_{X', X} = \langle f, x \rangle_{X', X}$$

for all $f \in X'$.

By the Theorem 1.19, a sequence $\{x_n\}_{n \in \mathbb{N}}$ converges weakly to an element x of the Hilbert space X if $\lim_{n\to\infty} \langle y, x_n \rangle_X = \langle y, x \rangle_X$ for all $y \in X$. The following results are useful in the Hilbert space approach to differential equations.

Lemma 1.24. A bounded sequence in a Hilbert space contains a weakly convergent subsequence.

Proof. Let us refer to Theorem 5.12 on page 80 in [9].

Lemma 1.25. Let X be a Hilbert space. Then the weak convergence of $\{x_n\}_{n \in \mathbb{N}}$ in X implies the boundedness of $||x_n||_X$.

Proof. We refer the reader to Korollar 13.3 on page 61 in [10]. \Box

Lemma 1.26. Let X be a finite dimensional Hilbert space. Then every weak convergent sequence converge strongly in X.

Proof. We choose a sequence $\{x_n\}_{n \in \mathbb{N}}$ such that $x_n \to x, n \to \infty$, for some $x \in X$. Further let $\{\varphi_1, \ldots, \varphi_N\}$ be a orthonormal base for the N-dimensional Hilbert

space X and $x = \sum_{i=1}^{N} x^i \varphi_i$, $x_n = \sum_{i=1}^{N} x_n^i \varphi_i$. Hence the weak convergence and the linearity of the inner product imply

$$0 = \lim_{n \to \infty} \left| \langle x_n - x, \varphi_j \rangle_X \right| \le \lim_{n \to \infty} \sum_{i=1}^N \left| x_n^i - x^i \langle \varphi_i, \varphi_j \rangle_X \right| = \lim_{n \to \infty} \left| x_n^j - x^j \right|$$

for $j = 1, \ldots, N$. Thus,

$$0 \le \lim_{n \to \infty} \|x_n - x\|_X = \lim_{n \to \infty} \left\| \sum_{i=1}^N (x_n^i - x^i)\varphi_i \right\|_X \le \sum_{i=1}^N \lim_{n \to \infty} |x_n^i - x^i| = 0.$$

Definition 1.27. Let V_1 and V_2 be two normed linear spaces. A linear operator $\mathcal{K} \in L(V_1, V_2)$ is called compact if \mathcal{K} takes bounded sets in V_1 into precompact sets in V_2 .

An important property of compact operators is given by:

Lemma 1.28. A compact operator maps weakly convergent sequences into norm convergent sequences.

Proof. Let us refer to Theorem VI.11 on page 199 in [13]. \Box

The following lemma is important since one can use it to prove that an operator is compact. For a proof we refer to Theorem VI.12 on page 200 in [13].

Lemma 1.29. Let B_1 , B_2 and B be Banach spaces and $A \in L(B_1, B_2)$. If $\mathcal{B} \in L(B_2, B)$ and if A or \mathcal{B} is compact, then $\mathcal{B} \circ A$ is compact.

Let us recall the *Fredholm alternative*. For a proof we refer to the corollary on page 203 in [13].

Theorem 1.30. If \mathcal{K} is a compact operator from a Hilbert space X into itself, then either $(\mathcal{I}_X - \mathcal{K})^{-1}$ exists or $\mathcal{K}(v) = v$ has a solution.

A further important theorem about compact operators is given by *Riesz-Schauder* theorem. Therefore we need some more definitions.

Definition 1.31. Let B be a Banach space and $\mathcal{A} \in L(B)$. A complex number λ is said to be in the resolvent set $\rho(\mathcal{A})$ of \mathcal{A} if $\lambda \mathcal{I}_B - \mathcal{A}$ is a bijection with a bounded inverse. If $\lambda \notin \sigma(\mathcal{A})$, then λ is said to be in the spectrum $\sigma(\mathcal{A})$ of \mathcal{A} .

We note that by Theorem 1.5, $\lambda \mathcal{I}_B - \mathcal{A}$ automatically has a bounded inverse if it is bijective. We consider a subset of the spectrum.

Definition 1.32. Let B be a Banach space and $\mathcal{A} \in L(B)$. An element $v \neq 0$ which satisfies $\mathcal{A}(v) = \lambda v$ for some $\lambda \in \mathbb{C}$ is called an eigenvector (or eigenfunction) of \mathcal{A} ; λ is called the corresponding eigenvalue.

Theorem 1.33. Let \mathcal{K} be a compact operator on a Hilbert space X, then $\sigma(\mathcal{K})$ is a discrete set having no limit points except perhaps $\lambda = 0$. Further any nonzero $\lambda \in \sigma(\mathcal{K})$ is an eigenvalue of finite multiplicity (i.e., the corresponding space of eigenvectors is finite dimensional).

Proof. We refer to Theorem VI.15 on page 203 in [13].

If $x_n \to x$, $n \to \infty$, we do not have $\lim_{n\to\infty} ||x_n||_X = ||x||_X$ in general. But we get the following result.

Lemma 1.34. Let X be a Hilbert space. If $x_n \rightharpoonup x$, $n \rightarrow \infty$, then $||x||_X \leq \lim_{n \to \infty} \inf ||x_n||_X$.

Proof. Let us refer to Lemma 13.2.1 on page 351 in [15].

Definition 1.35. Let X be a Hilbert space. $f : X \to \mathbb{R}$ is called weakly lower semicontinuous if

$$f(x) \le \lim_{n \to \infty} \inf f(x_n)$$

as $x_n \rightharpoonup x, n \rightarrow \infty$.

Remark 1.36. From Lemma 1.34 we infer that the norm is weakly lower semicontinuous.

Definition 1.37. Let X and Y be two Hilbert spaces with duals X' and Y' respectively. Then we associate with every bounded operator $\mathcal{A} : X \to Y'$ defined on all of X, an adjoint, denoted by \mathcal{A}^* and defined by

$$\langle \mathcal{A}^{\star}(y), x \rangle_{X', X} = \langle \mathcal{A}(x), y \rangle_{Y', Y}$$
 for all $x \in X$ and $y \in Y$.

Lemma 1.38. Let X and Y be two Hilbert spaces with duals X' and Y', respectively, and $\mathcal{A} \in L(X, Y')$ be a bounded operator; its adjoint \mathcal{A}^* has the following properties:

- 1) $\mathcal{A}^{\star} \in L(Y, X');$
- 2) $\|\mathcal{A}^{\star}\|_{L(Y,X')} = \|\mathcal{A}\|_{L(X,Y')}$: the mapping $\mathcal{A} \mapsto \mathcal{A}^{\star}$ is thus an isometry of L(X,Y') into L(Y,X');
- 3) We have

$$\overline{\operatorname{ran} (\mathcal{J}_X^{-1} \mathcal{A}^{\star})} = (\ker (\mathcal{J}_Y^{-1} \mathcal{A})^{\perp},
\overline{\operatorname{ran} (\mathcal{J}_Y^{-1} \mathcal{A})} = \ker (\mathcal{J}_X^{-1} \mathcal{A}^{\star})^{\perp},
\ker (\mathcal{J}_X^{-1} \mathcal{A}^{\star}) = \ker (\mathcal{J}_Y^{-1} \mathcal{A} \mathcal{J}_X^{-1} \mathcal{A}^{\star}),
\overline{\operatorname{ran} (\mathcal{J}_Y^{-1} \mathcal{A})} = \overline{\operatorname{ran} \mathcal{J}_Y^{-1} \mathcal{A} \mathcal{J}_X^{-1} \mathcal{A}^{\star})}.$$

4) If any of the two subspaces ran $(\mathcal{J}_Y^{-1}\mathcal{A})$, ran $(\mathcal{J}_Y^{-1}\mathcal{A}\mathcal{J}_X^{-1}\mathcal{A}^*)$ is closed, than so the other.

Proof. We refer the reader to Theorem 4 on page 322 in [5], Theorem 8.4 on page 232 and Theorem 11.2 on page 244 in [14].

Lemma 1.39. Let X and Y be two Hilbert spaces with duals X' and Y' respectively. Then we have for every $A \in L(X, Y')$:

$$\mathcal{A} \text{ is surjective } \implies \mathcal{A}^{\star} \text{ is injective.}$$

Proof. Since \mathcal{A} is surjective, we get ran $(\mathcal{A}) = Y'$ and ran $(\mathcal{J}_Y^{-1}\mathcal{A}) = Y$. Due to Lemma 1.38 we obtain ker $(\mathcal{J}_X^{-1}\mathcal{A}^*)^{\perp} = Y$. This leads to ker $(\mathcal{J}_X^{-1}\mathcal{A}^*) = \{0\}$, and therefore we have ker $(\mathcal{A}^*) = \{0\}$. Hence, \mathcal{A}^* is injective. \Box

Remark 1.40. If \mathcal{A}^* is injective then ran $(\mathcal{J}_Y^{-1}\mathcal{A}) = Y$ by Lemma 1.38. From this we derive ran $(\mathcal{A}) = Y'$. Therefore, ran (\mathcal{A}) is only dense in Y'. If ran (\mathcal{A}) is closed, \mathcal{A} is surjective. In Theorem 1.42 we will give equivalent assertions for surjectivity of \mathcal{A} .

Example 1.41. We shall give an example for an injective operator that is not surjective. Let us choose $\Omega \subset \mathbb{R}^n$ and $\mathcal{A}^* = (-\Delta)^{-1} : L^2(\Omega) \to L^2(\Omega)^i$, $u = \mathcal{A}^*(f)$ is a weak solution of

$$\begin{cases} -\Delta u = f & \text{in } \Omega,^{\text{ii}} \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

i.e., $u \in H_0^1(\Omega)$ solves

(1.6)
$$\sum_{i=1}^{n} \int_{\Omega} u_{x_{i}} \varphi_{x_{i}} dx = \int_{\Omega} f\varphi dx \quad \text{for all } \varphi \in H_{0}^{1}(\Omega) \,.$$

It can be proved that (1.6) has a unique solution $u \in H_0^1(\Omega)$. It is clear, that \mathcal{A}^* is linear. Further, if $u = \mathcal{A}^{\star}(f)$ and $v = \mathcal{A}^{\star}(g)$ then $w = u - v \in H_0^1(\Omega)$ is a solution of

$$\sum_{i=1}^{n} \int_{\Omega} w_{x_{i}} \varphi_{x_{i}} dx = \int_{\Omega} (f - g) \varphi dx \quad \text{for all } \varphi \in H_{0}^{1}(\Omega).$$

 $f \neq g$ leads to $w \neq 0$. Thus, \mathcal{A}^* is injective. Further the linear operator $-\Delta$: $L^2(\Omega) \to L^2(\Omega)$ is selfadjoint. This yields

$$\begin{split} \langle \mathcal{A}^{\star}(f),g\rangle_{L^{2}(\Omega)} & \stackrel{(4.1)}{=} & -\int_{\Omega} \mathcal{A}^{\star}(f) \, g \, dx = -\int_{\Omega} \mathcal{A}^{\star}(f) \underbrace{\Delta\left(\mathcal{A}^{\star}(g)\right)}_{=g} \, dx \\ & \stackrel{\text{Int. by parts}}{=} & -\int_{\Omega} \underbrace{\Delta\left(\mathcal{A}^{\star}(f)\right)}_{=f} \mathcal{A}^{\star}(g) \, dx = \int_{\Omega} \mathcal{A}^{\star}(g) \, f \, dx \\ & = & \langle \mathcal{A}^{\star}(g), f \rangle_{L^{2}(\Omega)} \end{split}$$

for all $f,g \in L^2(\Omega)$. Therefore, $\mathcal{A}^* \equiv \mathcal{A}$. Since $\operatorname{ran}(\mathcal{A}) \subset H^1_0(\Omega) \stackrel{\subseteq}{\neq} L^2(\Omega)$ we conclude that $\mathcal{A} = (-\Delta)^{-1}$ is not surjective.

Let V_1 and V_2 be two Hilbert spaces and $f: M \subset V_1 \to V_2$. f is said to be closed if its graph, $\{(x, f(x) : x \in M)\}$, is a closed set in $V_1 \times V_2$. By D(f) we denote the domain of f.

Theorem 1.42. Let \mathcal{A} be a closed densely defined linear operator from a Hilbert space X into the dual Y' of a Hilbert space Y. Then the following assertions are equivalent:

- 1) \mathcal{A} is surjective, i.e., ran $(\mathcal{A}) = Y'$.
- 2) There exists a constant $K \ge 0$ such that

$$\|v\|_{Y} \le K \|\mathcal{A}^{\star}(v)\|_{X'} \quad for \ all \ v \in D(\mathcal{A}^{\star}) \subset Y.$$

3) ker $(\mathcal{A}^{\star}) = \{0\}$ and ran (\mathcal{A}^{\star}) is closed.

Proof. Let us refer to Theorem II.19 on page 29 in [3].

Lemma 1.43. Let X and Y be two Hilbert spaces with duals X' and Y', respectively, and $\mathcal{A} \in L(X, Y')$ be surjective. Then the linear operator $\mathcal{B} = \mathcal{A} \circ \mathcal{J}_X^{-1} \circ \mathcal{A}^*$: $Y \to Y'$ is bounded and invertible, and $\mathcal{B}^{-1} \in L(Y', Y)$ holds.

ⁱWe introduce the Hilbert spaces $L^2(\Omega)$ and $H_0^1(\Omega)$ in Section 4. ⁱⁱThe Laplacian is given by $\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}$.

Proof. Since \mathcal{A} is surjective we have ker $(\mathcal{A}^*) = \{0\}$ by Lemma 1.39. Due to Lemma 1.38 we get ker $(\mathcal{A}\mathcal{J}_X^{-1}\mathcal{A}^*) = \{0\}$. Thus, \mathcal{B} is injective. The surjectivity of \mathcal{A} leads to the surjectivity of $\mathcal{J}_Y^{-1}\mathcal{A}$ and the closedness of ran $(\mathcal{J}_Y^{-1}\mathcal{A})$. Applying Lemma 1.38 again we obtain ran $(\mathcal{J}_Y^{-1}\mathcal{B})$ is closed, too. This leads to

$$Y = \operatorname{ran}\left(\mathcal{J}_{Y}^{-1}\mathcal{A}\right) = \overline{\operatorname{ran}\left(\mathcal{J}_{Y}^{-1}\mathcal{A}\right)} \stackrel{\text{Lem. 1.38}}{=} \overline{\operatorname{ran}\left(\mathcal{J}_{Y}^{-1}\mathcal{B}\right)} = \operatorname{ran}\left(\mathcal{J}_{Y}^{-1}\mathcal{B}\right)$$

Thus, \mathcal{B} is surjective and therefore bijective. Since $\mathcal{A} \in L(X, Y')$ holds \mathcal{A}^* is bounded (Lemma 1.38). By Lemma 1.8 the operator \mathcal{B} is continuous. Due to Theorem 1.5 we get \mathcal{B}^{-1} exists and is continuous.

2. Local theory of optimization

In this section we recall optimality conditions for infinite dimensional optimization problems.

Definition 2.1. Let B_1 and B_2 be Banach spaces and $f : B_1 \to B_2$. If there exists $\mathcal{A} \in L(B_1, B_2)$, such that at some point $x \in B_1$

$$\lim_{\|y\|_{B_1} \to 0} \frac{\|f(x+y) - f(x) - \mathcal{A}(y)\|_{B_2}}{\|y\|_{B_1}} = 0,$$

then $\mathcal{A}(y)$ is called the Fréchet-differential of f(x) at x, written $\delta f(x; y)$. The operator \mathcal{A} is called the Fréchet-derivative of f(x) at x, and we write $\mathcal{A} = f'(x)$ and $\delta f(x; y) = f'(x)y$.

If $f: B_1 \to B_2$ has a Fréchet-derivative at x, it is unique (see Proposition 1 on page 172 in [11]) and f is continuous at x (see Proposition 3 on page 173 in [11]). Further we have

(2.1)
$$\langle f'(x), y \rangle_{B'_2, B_2} = \lim_{t \to 0} \frac{1}{t} \left(f(x+ty) - f(x) \right)$$

for each $y \in B_2$ (see Proposition 2 on page 173 in [11]). If the correspondence $x \mapsto f'(x)$ is continuous at the point x_0 , we say that the Fréchet derivative of f is continuous at x_0 . If the derivative of f is continuous on some open set O, we say that f is continuously Fréchet-differentiable on O.

Let X be a Hilbert space and $J:X\to {\rm I\!R}$ be a cost functional. We consider the constrained minimizing problem

(2.2) minimize
$$J(x)$$
 subject to $e(x) = 0$,

where e is a constraint function from X into the dual space Y' of a Hilbert space Y. The Lagrange functional associated with (2.2) is denoted

$$\mathcal{L}(x,\lambda) = J(x) + \langle e(x), \lambda \rangle_{Y',Y}$$

and the Lagrange multiplier is some specific $\lambda \in Y$. Partial derivatives with respect to the variable $x \in X$ will be denoted by primes.

Definition 2.2. We consider the constrained minimizing problem (2.2). If $x_0 \in X$ is such that $e'(x_0)$ maps X onto Y', the point x_0 is said to be a regular point of e.

Theorem 2.3. Let x_0 be a regular point of the continuously Fréchet-differentiable function e mapping the Hilbert space X into the dual space Y' of a Hilbert space Y. Then there is a neighborhood $U(x_0) \subset X$ of the point x_0 , such that e'(x) is surjective for all $x \in U(x_0)$. *Proof.* We define the linear mapping

(2.3)
$$\mathcal{B}(x) = e'(x) \circ \mathcal{J}_X^{-1} \circ e'(x)^*$$

for all $x \in X$. From Lemma 1.43 and Definition 2.2 it follows that $\mathcal{B}(x_0)$ is invertible. Since the mapping $x \mapsto e(x)$ is continuously Fréchet-differentiable the function $x \mapsto \mathcal{B}(x)$ is continuous (Lemma 1.8). Due to Lemma 1.6 and Remark 1.7 there exists a neighborhood $U(x_0)$ of x_0 such that $\mathcal{B}(x)$ is invertible. By Lemma 1.38 this yields e'(x) is surjective for all $x \in U(x_0)$.

Remark 2.4. Due to Lemma 1.39 the operator $e'(x)^*$ is injective in the same neighborhood $U(x_0)$ of x_0 .

Our aim is to give necessary conditions for an extremum of J subject to e(x) = 0where J is a real-valued functional on a Hilbert space X and e is a mapping from X into the dual space Y' of a Hilbert space Y.

Theorem 2.5. If the continuously Fréchet-differentiable functional J has a local extremum under the constraint e(x) = 0 at a regular point x^* , then there exists an element $\lambda^* \in Y$ such that the Lagrangian functional is stationary at x^* , i.e.,

(2.4)
$$\mathcal{L}'(x^*, \lambda^*) = J'(x^*) + e'(x^*)^* \lambda^* = 0.$$

Proof. Let us refer to Theorem 1 on page 243 in [11].

Remark 2.6. The equations (2.4) and $e(x^*) = 0$ are called the first-order necessary optimality condition for a local extremum of J at the point x^* under the constraint e(x) = 0.

Now we mention the second-order sufficient optimality condition for a local minimum. We refer for a proof to Theorem 5.6 in [12].

Theorem 2.7. The twice continuously Fréchet-differentiable functional J has a local minimum at the point x^* under the constraint e(x) = 0, if there exists $\lambda^* \in Y$ and $\kappa > 0$ such that

$$\langle \mathcal{L}''(x^*, \lambda^*)v, v \rangle_{X', X} \ge \kappa \|v\|_X^2 \quad \text{for all } v \in \ker(e'(x^*)).$$

3. Analysis of an abstract variational problem

In optimization theory saddle-point problems arise very often. For that purpose we recall basic results for an abstract saddlepoint problem.

Let X and Y be two (real) Hilbert spaces with dual spaces X' and Y' respectively. The following bilinear forms are given:

$$a: X \times X \to \mathbb{R}, \quad b: X \times Y \to \mathbb{R}$$

with norms

$$\|a\| = \sup_{\substack{\varphi, \phi \in X \\ \varphi, \phi \neq 0}} \frac{a(\varphi, \phi)}{\|\varphi\|_X \|\phi\|_X}, \quad \|b\| = \sup_{\substack{\varphi \in X, \psi \in Y \\ \varphi \neq 0, \psi \neq 0}} \frac{b(\varphi, \psi)}{\|\varphi\|_X \|\psi\|_Y}.$$

Let $l \in X'$ and $g \in Y'$ be given. We seek $(x, \lambda) \in X \times Y$ such that

(3.1)
$$\begin{cases} a(x,\varphi) + b(\varphi,\lambda) = \langle l,\varphi \rangle_{X',X} & \text{for all } \varphi \in X, \\ b(x,\psi) = \langle g,\psi \rangle_{Y',Y} & \text{for all } \psi \in Y. \end{cases}$$

With the two bilinear forms a and b we define linear operators $\mathcal{A} \in L(X, X')$ and $\mathcal{B} \in L(X, Y')$:

$$\begin{aligned} \langle \mathcal{A}(\varphi), \phi \rangle_{X',X} &= a(\varphi, \phi) & \text{ for all } \varphi, \phi \in X \,, \\ \langle \mathcal{B}(\varphi), \psi \rangle_{Y',Y} &= b(\varphi, \psi) & \text{ for all } \varphi \in X, \, \psi \in Y \end{aligned}$$

The adjoint operator \mathcal{B}^{\star} of \mathcal{B} is defined by Definition 1.37. It can be shown that

$$\|\mathcal{A}\|_{L(X,X')} = \|a\|, \quad \|\mathcal{B}\|_{L(X,Y')} = \|b\|.$$

Using these operators (3.1) yields to

(3.2)
$$\begin{cases} \mathcal{A}(x) + \mathcal{B}^{\star}(\lambda) = l & \text{in } X' \\ \mathcal{B}(x) = g & \text{in } Y'. \end{cases}$$

Let $V = \ker(\mathcal{B})$ and $V(g) = \{\varphi \in X : \mathcal{B}(\varphi) = g\}$. It follows

$$\begin{cases} V(g) = \{\varphi \in X : b(\varphi, \psi) = \langle g, \psi \rangle_{Y', Y} \text{ for all } \psi \in Y \}, \\ V = V(0). \end{cases}$$

Since \mathcal{B} is continuous, V is a closed subspace of X.

Now, we associate with (3.1) the following problem: Find $u \in V(g)$ such that

(3.3)
$$a(x,\varphi) = \langle l,\varphi \rangle_{X',X} \text{ for all } \varphi \in V$$

It is clear, if $(x, \lambda) \in X \times Y$ is a solution to (3.1), then $u \in V(g)$ is a solution to (3.3). We want to find conditions, which ensure that the converse is true. Therefore, we define the *polar set* V^0 of V by

$$V^{0} = \{ f \in X' : \langle f, \varphi \rangle_{X', X} = 0 \text{ for all } \varphi \in V \}.$$

Lemma 3.1. The following properties are equivalent:

1) there exists a constant $\beta > 0$ such that

(3.4)
$$\inf_{\psi \in Y} \sup_{\varphi \in X} \frac{b(\varphi, \psi)}{\|\varphi\|_X \|\psi\|_Y} \ge \beta;$$

2) the operator \mathcal{B}^{\star} is an isomorphism from Y onto V^{0} and

$$\|\mathcal{B}^{\star}(\psi)\|_{X'} \ge \beta \|\psi\|_{Y} \quad for \ all \ \psi \in Y;$$

3) the operator \mathcal{B} is an isomorphism from V^{\perp} onto Y' and

$$\|\mathcal{B}(\varphi)\|_{Y'} \ge \beta \|\varphi\|_X \quad \text{for all } \varphi \in V^{\perp}.$$

Proof. Let us refer the reader to Lemma 4.1 on page 58 in [8].

The condition (3.4) is called *inf-sup condition* or Babuška-Brezzi condition. To formulate the next theorem, we introduce the linear continuous (restriction) operator $\mathcal{F} \in L(X', V')$:

$$\langle \mathcal{F}(f), \varphi \rangle_{V',V} = \langle f, \varphi \rangle_{X',X}$$
 for all $f \in X', \varphi \in V$.

Obviously, we derive

$$\|\mathcal{F}(h)\|_{V'} \le \|f\|_{X'}.$$

Theorem 3.2. (3.1) and (3.2) are well-posed (i.e., there is a unique solution) if and only if the following conditions hold:

- 1) the operator $\mathcal{F} \circ \mathcal{A}$ is an isomorphism from V onto V',
- 2) the bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition (3.4).

Proof. We refer to Theorem 4.1 on page 59 in [8].

The next corollary is an important application of Theorem 3.2.

Corollary 3.3. Let a be V-elliptic, i.e., there exists a constant $\kappa_0 > 0$ such that

$$a(\varphi,\varphi) \ge \kappa_0 \|\varphi\|_X^2 \quad \text{for all } \varphi \in V$$

Then, (3.1) respectively (3.2) is well-posed if and only if the bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition (3.4). Let $(x, \lambda) \in X \times Y$ be the unique solution to (3.1). Then we have the estimates

$$\begin{aligned} \|x\|_{X} &\leq \frac{1}{\kappa_{0}} \|l\|_{X'} + \left(\frac{1}{\beta} + \frac{\|a\|}{\kappa_{0}\beta}\right) \|g\|_{Y'}, \\ \|\lambda\|_{Y} &\leq \left(\frac{1}{\beta} + \frac{\|a\|}{\kappa_{0}\beta}\right) \|l\|_{X'} + \left(\frac{\|a\|}{\beta^{2}} + \frac{\|a\|^{2}}{\kappa_{0}\beta^{2}}\right) \|g\|_{Y'} \end{aligned}$$

Proof. Let us refer to Corollary 4.1 on page 61 in [8] and Theorem 1.1 on page 42 in [4]. \Box

Now we turn to the discretization of (3.1). Let X_N and Y_M be two finite dimensional spaces such that

$$X_N \subset X$$
, dim $X_N = N$, $Y_M \subset Y$, dim $Y_M = M$.

Let X'_N and Y'_M denote their dual spaces with the dual norms:

(3.5)
$$||l_N||_{X'_N} = \sup_{\varphi_N \in X_N} \frac{\langle l_N, \varphi_N \rangle_{X', X}}{\|\varphi_N\|_X}, \qquad ||g_M||_{Y'_M} = \sup_{\psi_M \in Y_M} \frac{\langle g_M, \psi_M \rangle_{Y', Y}}{\|\psi_M\|_Y}.$$

Clearly,

$$\|l\|_{X'_N} \le \|l\|_{X'}, \qquad \|g\|_{Y'_M} \le \|g\|_{Y'} \quad \text{for all } (l,g) \in X' \times Y'.$$

Like in the continuous case, we associate with $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$ the operators $\mathcal{A}_N \in L(X, X'_N)$, $\mathcal{B}_M \in L(X, Y'_M)$ and $\mathcal{B}^{\star}_N \in L(Y, X'_N)$ defined by

$$\langle \mathcal{A}_{N}(\phi), \varphi_{N} \rangle_{X',X} = a(\phi, \varphi_{N}) \quad \text{for all } \varphi_{N} \in X_{N}, \quad \text{for all } \phi \in X, \\ \langle \mathcal{B}_{M}(\varphi), \psi_{M} \rangle_{Y',Y} = b(\varphi, \psi_{M}) \quad \text{for all } \psi_{M} \in Y_{M}, \quad \text{for all } \varphi \in X, \\ \langle \mathcal{B}_{N}^{\star}(\psi), \varphi_{N} \rangle_{X',X} = b(\varphi_{N}, \psi) \quad \text{for all } \varphi_{N} \in X_{N}, \quad \text{for all } \psi \in Y.$$

 \mathcal{B}_N^{\star} is not the dual operator of \mathcal{B}_M but if \mathcal{B}_M is restricted to X_N and \mathcal{B}_N^{\star} to Y_M , then \mathcal{B}_M and \mathcal{B}_N^{\star} are indeed dual operators. Moreover, we have:

$$\|\mathcal{B}_M(\varphi)\|_{Y'_M} \le \|\mathcal{B}(\varphi)\|_{Y'}$$
 for all $\varphi \in X$

with similar inequalities for $\|\mathcal{A}_N\|_{X'_N}$ and $\|\mathcal{B}_N^{\star}(\psi)\|_{X'_N}$. For each $g \in Y'$, we define the finite-dimensional analogue of V(g):

$$V_{NM}(g) = \{\varphi_N \in X_N : b(\varphi_N, \psi_M) = \langle g, \psi_M \rangle_{Y', Y} \text{ for all } \psi_M \in Y_M \}$$

and we set

 $V_{NM} = V_{NM}(0) = \ker (\mathcal{B}_M) \cap X_N = \{\varphi_N \in X_N : b(\varphi_N, \psi_M) = 0 \text{ for all } \psi_M \in Y_M\}.$ Right away we remark that generally $V_{NM} \not\subset V$ and $V_{NM}(g) \not\subset V(g)$ because Y_M is a proper subspace of Y. Now we approximate (3.1) by

(3.6)
$$\begin{cases} a(x_N, \varphi_N) + b(\varphi_N, \lambda_M) = \langle l, \varphi_N \rangle_{X', X} & \text{for all } \varphi_N \in X_N, \\ b(x_N, \psi_M) = \langle g, \psi_M \rangle_{Y', Y} & \text{for all } \psi_M \in Y_M \end{cases}$$

and we associate with (3.6) the following problem:

(3.7)
$$a(x_N, \varphi_N) = \langle l, \varphi_N \rangle_{X', X} \quad \text{for all } \varphi_N \in V_{NM}.$$

Here again, the first component x_N of any solution (x_N, λ_M) of (3.6) is also a solution of (3.7). The converse is true due to the next theorem.

Theorem 3.4. Let (x, λ) be a solution to (3.1).

- 1) Assume that the following conditions hold:
 - (a) $V_{NM}(g) \neq \emptyset$;
 - (b) there exists a constant $\kappa_{NM} > 0$ such that:

(3.8)
$$a(\varphi_N, \varphi_N) \ge \kappa_{NM} \|\varphi_N\|_X^2 \quad \text{for all } \varphi_N \in V_{NM}.$$

Then (3.7) has a unique solution $x_N \in V_{NM}(g)$ and the "error bound" holds

(3.9)
$$\|x - x_N\|_X \leq \left(1 + \frac{\|a\|}{\kappa_{NM}}\right) \inf_{\varphi_N \in V_{NM}(g)} \|x - \varphi_N\|_X + \frac{\|b\|}{\kappa_{NM}} \inf_{\psi_M \in Y_M} \|\lambda - \psi_M\|_Y.$$

2) Assume that hypothesis holds and, in addition, that: (c) there exists a constant $\beta_{NM} > 0$ such that

(3.10)
$$\sup_{\varphi_N \in X} \frac{b(\varphi_N, \psi_M)}{\|\varphi_N\|_X} \ge \beta_{NM} \|\psi_M\|_Y \quad \text{for all } \psi_M \in Y_M.$$

Then $V_{NM}(g) \neq \emptyset$ and there exists a unique λ_M in Y_M such that (x_N, λ_M) is the only solution of (3.6). Moreover, We get the estimate

(3.11)
$$\begin{aligned} \|x - x_N\|_X + \|\lambda - \lambda_M\|_Y \\ \leq K_{NM} \inf_{\varphi_N \in X_N} \|x - \varphi_N\|_X + C_{NM} \inf_{\psi_M \in Y_M} \|\lambda - \psi_M\|_Y, \end{aligned}$$

where the constants are given by

$$K_{NM} = \left(1 + \frac{1}{\beta_{NM}} + \frac{\|a\|}{\kappa_{NM}}\right) \left(1 + \frac{\|b\|}{\beta_{NM}}\right), \quad C_{NM}^2 = \beta_{NM} + \|b\| + \frac{\|b\|}{\kappa_{NM}}.$$

Proof. For the proof we refer the reader to Theorem 1.1 on page 114 in [8] and Proposition 2.4 on page 54 in [4]. \Box

Remark 3.5. 1) It can be shown that

$$\inf_{\varphi_N \in V_{NM}(g)} \|x - \varphi_N\|_X \le \left(1 + \frac{1}{\beta_{NM}}\right) \inf_{\phi_N \in X_N} \|x - \phi_N\|_X$$

holds. The condition

(3.12)
$$\sup_{\varphi_N \in X} \frac{b(\varphi_N, \psi_M)}{\|\varphi_N\|_X} \ge \beta^* \|\psi_M\|_Y \quad \text{for all } \psi_M \in Y_M.$$

is called the inf-sup condition.

2) If there exists two positive constants $\kappa^* > 0$ and $\beta^* > 0$ such that $\kappa_{NM} \ge \kappa^*$ and $\beta_{NM} \ge \beta^*$, then both K_{NM} and C_{NM} are independent of N and M:

$$K = \left(1 + \frac{1}{\beta^*} + \frac{\|a\|}{\kappa^*}\right) \left(1 + \frac{\|b\|}{\beta^*}\right), \quad C = \beta^* + \|b\| + \frac{\|b\|}{\kappa^*}.$$

3) The bound (3.9) can be slightly improved without making use of condition (3.10). Indeed, it can be proved (see Remark 1.1 on page 116 in [8])

$$\begin{aligned} \|x - x_N\|_X \\ &\leq \left(1 + \frac{\|a\|}{\kappa^*}\right) \inf_{\varphi_N \in V_{NM}(g)} \|x - \varphi_N\|_X + \frac{1}{\kappa^*} \inf_{\psi_M \in Y_M} \sup_{\varphi_N \in V_{NM}} \frac{b(\varphi_N, \lambda - \psi_M)}{\|\varphi_N\|_X}. \end{aligned}$$

Note that the expression

$$\inf_{\psi_M \in Y_M} \sup_{\varphi_N \in V_{NM}} \frac{b(\varphi_N, \lambda - \psi_M)}{\|\varphi_N\|_X}$$

takes into account the fact that $V_{NM} \not\subset V$. It vanishes when $V_{NM} \subset V$.

(1) Observe that the bilinear form a is V_{NM} -elliptic as soon as $a(\varphi_N, \varphi_N) > 0$ for all $\varphi_N \neq 0$. Analogously, the bilinear form b satisfies the discrete inf-sup condition (3.8) provided ker $(\mathcal{B}_M) \cap Y_M = \{0\}$. But in the general case both assumptions have to be checked.

The following lemma established a useful criterion for (3.12)

Lemma 3.6. The inf-sup condition (3.12) holds with a constant $\beta^* > 0$ independent of N, M if and only if there is a restriction operator $r^N \in L(X, X_N)$ satisfying:

$$b(\varphi - r^N(\varphi), \psi_M) = 0 \quad for \ all \ (\psi_M, \varphi) \in Y_M \times X$$

and

$$||r^{N}(\varphi)||_{X} \leq K ||\varphi||_{X} \text{ for all } \varphi \in X$$

with a constant K > 0 independent of N.

Proof. Let us refer to Lemma 1.1 on page 117 in [8].

4. Function spaces

Since we are interested in optimal control of partial differential equations, we require basic definitions of function spaces and associated results.

The term domain and the symbol Ω shall be reserved for an open set in the *n*-dimensional, real Eucledian space \mathbb{R}^n . A typical point of \mathbb{R}^n is denoted by $x = (x_1, \ldots, x_n)$; its norm $|x|_2 = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}$.

Definition 4.1. Let Ω be an open set of \mathbb{R}^n with boundary Γ . If boundary Γ is a (N-1)-dimensional manifold of class C^r $(r \ge 1$ which must be specified) and Ω is locally located on one side of Γ , we will say, Ω is of class C^r . The boundary Γ is locally Lipschitz if for any $x \in \Gamma$, there is a neighborhood such that Γ admits a representation as a hypersurface $x_n = \theta(x_1, \ldots, x_{n-1})$, where θ is Lipschitz continuous and x_1, \ldots, x_{n-1} are rectangular coordinates in \mathbb{R}^n in a basis that may be different from the canonical basis.

Remark 4.2. If Ω is of class C^1 , then Ω is locally Lipschitz.

Definition 4.3. $\Omega \subset \mathbb{R}^n$ is said to be disconnected if there exists two nonempty subsets $\Omega_1, \Omega_2 \subset \Omega$ such that

$$\Omega_1 \cap \Omega_2 = \emptyset, \quad \Omega = \Omega_1 \cup \Omega_2.$$

If Ω is not disconnected, Ω is called connected.

If $\mathbf{a} = (a_1, \ldots, a_n)$ is an *n*-tupel of nonnegative integers a_j , we call \mathbf{a} a multiindex and denote by $x^{\mathbf{a}}$ the monomial $x_1^{a_1} \cdots x_n^{a_n}$, which has degree $|\mathbf{a}| = \sum_{j=1}^n a_j$. Similarly

$$D^{\mathbf{a}} = \frac{\partial^{a_1}}{\partial x_1^{a_1}} \cdots \frac{\partial^{a_n}}{\partial x_n^{a_n}}$$

denotes a differential operator of order $|\mathbf{a}|$. $D^{(0,\ldots,0)}\varphi = \varphi$ for a function φ on Ω . We shall write $G \subset \subset \Omega$ provided $\overline{G} \subset \Omega$ and \overline{G} is a compact subset of \mathbb{R}^n . If φ is a function defined on G, we define the support of φ as

$$\operatorname{supp} \varphi = \overline{\{x \in G : \varphi(x) \neq 0\}}.$$

We say that φ has compact support in Ω if $\sup \varphi \subset \subset \Omega$. We shall denote by ∂G the boundary of G in \mathbb{R}^n . For any nonnegative integer m let $C^m(\Omega)$ be the vector space consisting of all functions φ which, together with all their partial derivatives $D^{\mathbf{a}}\varphi$ of order $|\mathbf{a}| \leq m$, are continuous on Ω . We abbreviate $C^0(\Omega) = C(\Omega)$. Let $C^{\infty}(\Omega) = \bigcap_{m=1}^{\infty} C^m(\Omega)$. The subspaces $C_0(\Omega)$ and $C_0^{\infty}(\Omega)$ consist of all those functions in $C(\Omega)$ and $C^{\infty}(\Omega)$, respectively, which have compact support in Ω .

Since Ω is open, functions in $C^m(\Omega)$ need not be bounded on Ω . If $\varphi \in C(\Omega)$ is bounded and uniformly continuous on Ω , then it possesses a unique, bounded, continuous extension to the closure $\overline{\Omega}$ of Ω . Accordingly, we define the vector space $C^m(\overline{\Omega})$ to consist of all those functions $\varphi \in C^m(\Omega)$ for which $D^{\mathbf{a}}\varphi$ is bounded and uniformly continuous on Ω for $0 \leq |\mathbf{a}| \leq m$. $C^m(\overline{\Omega})$ is a Banach space with norm given by

$$\|\varphi\|_{C^{m}(\overline{\Omega})} = \max_{0 \le |\mathbf{a}| \le m} \sup_{x \in \Omega} |D^{\mathbf{a}}\varphi(x)|.$$

If $0 < s \leq 1$, we define $C^{m,s}(\overline{\Omega})$ to be the subspace of $C^m(\overline{\Omega})$ consisting of those functions φ , for which, $0 \leq |\mathbf{a}| \leq m$, $D^{\mathbf{a}}\varphi$ satisfies in Ω a Hölder condition of exponent s, that is, there exists a constant K > 0 such that

$$D^{\mathbf{a}}\varphi(x) - D^{\mathbf{a}}\varphi(y) \le K |x - y|^s, \quad x, y \in \Omega.$$

 $C^{m,s}(\overline{\Omega})$ is a Banach space with norm given by

$$\|\varphi\|_{C^{m,s}(\overline{\Omega})} = \|\varphi\|_{C^m(\overline{\Omega})} + \max_{0 \le |\mathbf{a}| \le m} \sup_{x,y \in \Omega} \frac{|D^{\mathbf{a}}\varphi(x) - D^{\mathbf{a}}\varphi(y)|}{|x-y|^s}.$$

Where no confusion of domains may occur we will write $\|\cdot\|_{C^m}$ in place of $\|\cdot\|_{C^m(\overline{\Omega})}$ and $\|\cdot\|_{C^{m,s}}$ instead of $\|\cdot\|_{C^{m,s}(\overline{\Omega})}$. It should be noted that for $0 < r < s \leq 1$,

$$C^{m+1}(\overline{\Omega}) \subsetneq C^{m,s}(\overline{\Omega}) \subsetneq C^{m,r}(\overline{\Omega}) \subsetneq C^m(\overline{\Omega})$$

We denote by $L^p(\Omega)$ the class of all measurable functions φ , defined on Ω , for which

$$\int_{\Omega} |\varphi|^p \, dx < \infty.$$

The function $\|\cdot\|_{L^p(\Omega)}$ defined by

$$\|\varphi\|_{L^p(\Omega)} = \left(\int_{\Omega} |\varphi|^p \, dx\right)^{\frac{1}{p}}$$

is a norm on $L^p(\Omega)$ provided $1 \le p < \infty$. $L^2(\Omega)$ is a separable Hilbert space with the inner product

(4.1)
$$\langle \varphi, \psi \rangle_{L^2(\Omega)} = \int_{\Omega} \varphi \psi \, dx \, .$$

$$\|\varphi\|_{L^{\infty}(\Omega)} = \mathrm{ess}\, \sup_{x\in\Omega} |\varphi(x)|$$

is a norm on $L^{\infty}(\Omega)$. In situations where no confusion of domains may occur we shall write $\|\cdot\|_{L^p}$ in place of $\|\cdot\|_{L^p(\Omega)}$ and $\langle\cdot,\cdot\rangle_{L^2}$ instead of $\langle\cdot,\cdot\rangle_{L^2(\Omega)}$. The next theorem is known as *Fischer-Riesz theorem*. For a proof we refer the reader to Theorem 2.10 on page 26 and Corollary 2.11 on page 27 in [1].

Theorem 4.4. $L^p(\Omega)$ is a Banach space if $1 \le p \le \infty$. Every convergent sequence in $L^p(\Omega)$ has a subsequence converging pointwise a.e. on Ω .

We shall have occasion to use a generalization of Hölders inequality.

Proposition 4.5. Let Ω be a bounded domain in \mathbb{R}^n . Assume $p_1, \ldots, p_m \in [1, \infty]$ and $\sum_{j=1}^m p_i^{-1} = 1$ (with $\infty^{-1} = 0$). If $\varphi_i \in L^{p_i}(\Omega)$ for $i = 1, \ldots, m$ then the function $\prod_{j=1}^m \varphi_j$ belongs to $L^1(\Omega)$ and we have the estimate

(4.2)
$$\int_{\Omega} |\prod_{j=1}^{m} \varphi_j| \, dx \leq \prod_{j=1}^{m} \|\varphi_j\|_{L^{p_i}}.$$

Proof. The proof follows by an induction argument.

- 1) The case m = 2 follows directly from Hölders inequality (Theorem 2.3 on page 23 and Remark 2.5 on page 24 in [1]).
- 2) Induction hypothesis: We assume that the statement is proved for $m \ge 2$.
- 3) Now let $p_1, \ldots, p_{m+1} \in [1, \infty], m \ge 2$ and $\sum_{j=1}^{m+1} p_j^{-1} = 1$. For $\varphi_i \in L^{p_i}(\Omega)$ we know

$$\int_{\Omega} |\prod_{j=1}^{m+1} \varphi_j| \, dx \stackrel{\text{H\"older's ineq.}}{\leq} \| \prod_{j=1}^m \varphi_j \|_{L^q} \| \varphi_{m+1} \|_{L^{p_{m+1}}}$$

with $q^{-1} + p_{m+1}^{-1} = 1$. Since $\varphi_i \in L^{p_i}(\Omega)$ we have $\varphi_j^q \in L^{\frac{p_i}{q}}(\Omega)$ and $\sum_{j=1}^m (\frac{p_i}{q})^{-1} = 1$. By applying the induction hypothesis we obtain:

$$\|\prod_{j=1}^{m}\varphi_{j}\|_{L^{q}} = \left(\int_{\Omega} |\prod_{j=1}^{m}\varphi_{j}^{q}| \, dx\right)^{\frac{1}{q}} \le \prod_{j=1}^{m} \|\varphi_{j}^{q}\|_{L^{\frac{p_{i}}{q}}}^{\frac{1}{q}} = \prod_{j=1}^{m} \|\varphi_{j}\|_{L^{p_{i}}}.$$

Therefore, we get $\prod_{j=1}^{m+1} \varphi_j \in L^1(\Omega)$, and the formula (4.2) is proved.

Next we introduce Sobolev spaces of integer. These spaces are defined over an arbitrary domain $\Omega \subset \mathbb{R}^n$ and are vector subspaces of various spaces $L^p(\Omega)$. We define a function $\|\cdot\|_{W^{m,p}(\Omega)}$, where *m* is a nonnegative integer and $1 \leq p \leq \infty$, as follows:

(4.3)
$$\|\varphi\|_{W^{m,p}(\Omega)} = \left(\sum_{0 \le |\mathbf{a}| \le m} \|D^{\mathbf{a}}\varphi\|_{L^p(\Omega)}^p\right)^{\frac{1}{p}} \quad \text{if } 1 \le p < \infty,$$

(4.4)
$$\|\varphi\|_{W^{m,\infty}(\Omega)} = \max_{0 \le |\mathbf{a}| \le m} \|D^{\mathbf{a}}\varphi\|_{L^{\infty}(\Omega)}$$

for any function φ for which the right side makes sense. In situations where no confusion of domains may occur we shall write $\|\cdot\|_{W^{m,p}}$ in place of $\|\cdot\|_{W^{m,p}(\Omega)}$. (4.3) and (4.4) are norms on any linear space on which the right side takes finite values provided functions are identified in the space if they are equal a.e. in Ω . We define to any given values of m and p the Sobolev spaces:

$$\begin{split} W^{m,p}(\Omega) &= \text{ the completation of } \{\varphi \in C^m(\Omega) : \|\varphi\|_{W^{m,p}} < \infty\} \text{ with } \\ \text{ respect to the norm } \|\cdot\|_{W^{m,p}(\Omega)} \,, \end{split}$$

(4.5)
$$W_0^{m,p}(\Omega) = \text{ the closure of } C_0^{\infty}(\Omega) \text{ in the space } W^{m,p}(\Omega).$$

Equipped with the appropriate norms (4.3) and (4.4), these are called Sobolev spaces over Ω . Clearly, $W^{0,p}(\Omega) = L^p(\Omega)$, and if $1 \leq p < \infty$, $W^{0,p}_0(\Omega) = L^p(\Omega)$ by Theorem 2.19 on page 31 in [1].

Lemma 4.6. $W^{m,p}(\Omega)$ is a Banach space.

Proof. Let us refer the reader to Theorem 3.2 on page 45 in [1].

A function φ defined a.e. on Ω is said to be *locally integrable* on Ω provided $\varphi \in L^1(M)$ for every measurable $M \subset \subset \Omega$. In this case we write $\varphi \in L^1_{loc}(\Omega)$. We now define the concept of weak derivative of a locally integrable function $\varphi \in L^1_{loc}(\Omega)$. If there exists a $\phi \in L^1_{loc}(\Omega)$, such that

$$\int_{\Omega} \varphi D^{\mathbf{a}} \psi \, dx = (-1)^{|\mathbf{a}|} \int_{\Omega} \phi \psi \, dx \quad \text{for all } \psi \in C_0^{\infty}(\Omega) \,,$$

it is unique up to sets of measure zero and it is called the weak or distributional partial derivative of φ and is denoted by $D^{\mathbf{a}}\varphi$. If φ is sufficiently smooth to have continuous partial derivative $D^{\mathbf{a}}\varphi$ in the usual (classical) sense, then $D^{\mathbf{a}}\varphi$ is also a distributional derivative of φ . For example a function φ , continuous on \mathbb{R} , which has a bounded derivative φ' except at finitely many points, has a derivative in the distributional sense.

We can introduce $W^{m,p}(\Omega)$ for any $m \ge 0$ and $1 \le p < \infty$ in a different way:

$$\begin{split} W^{m,p}(\Omega) &= \{ \varphi \in L^p(\Omega) : D^{\mathbf{a}} \varphi \in L^p(\Omega) \text{ for } 0 \leq |\mathbf{a}| \leq m, \\ D^{\mathbf{a}} \varphi \text{ is the weak partial derivative} \}, \end{split}$$

(Theorem 3.16 on page 52 in [1]).

Lemma 4.7. $W^{m,p}(\Omega)$ is separable if $1 \leq p < \infty$. In particular, $W^{m,2}(\Omega)$ is a separable Hilbert space with inner product

$$\langle \varphi, \psi \rangle_{W^{m,2}} = \sum_{0 \le |\mathbf{a}| \le m} \langle D^{\mathbf{a}} \varphi, D^{\mathbf{a}} \psi \rangle_{L^2} = \sum_{0 \le |\mathbf{a}| \le m} \int_{\Omega} D^{\mathbf{a}} \varphi \, D^{\mathbf{a}} \psi \, dx.$$

Proof. We refer to Theorem 3.5 on page 47 in [1].

We write $H^m(\Omega)$ in place of $W^{m,2}(\Omega)$ and $H^m_0(\Omega)$ instead of $W^{m,2}_0(\Omega)$.

Lemma 4.8. Let $\Omega \subset \mathbb{R}^n$ be open and bounded with Lipschitz-continuous boundary Γ . For $m \geq 1$ and real p with $1 \leq p < \infty$ there exists a continuous linear extension operator $\mathcal{F}: W^{m,p}(\Omega) \to W^{m,p}(\mathbb{R}^n)$ such that

$$\mathcal{F}(\varphi)|_{\Omega} = \varphi \quad for \ all \ \varphi \in W^{m,p}(\Omega).$$

Proof. Let us refer the reader to Theorem 1.2 on page 5 in [8].

If the boundary Γ is Lipschitz continuous, one can show that there exists an operator $\tau_{\Gamma} : H^1(\Omega) \to L^2(\Gamma)$, linear and continuous, such that

$$\tau_{\Gamma}\varphi = \text{trace of }\varphi \text{ on }\Gamma \text{ for every }\varphi \in C^1(\overline{\Omega}).$$

It then seems natural to call $\tau_{\Gamma}\varphi$ the trace of φ on Γ , and denote it by $\varphi|_{\Gamma}$ even if φ is a general function in $H^1(\Omega)$. A deeper analysis shows that by taking all the traces of all functions of $H^1(\Omega)$ one does not obtain the whole space $L^2(\Gamma)$ but only a subset of it. Further, such a subspace contains $H^1(\Gamma)$. Hence we have,

$$H^1(\Gamma) \subsetneq \tau_{\Gamma}(H^1(\Omega)) \subsetneq L^2(\Gamma) \equiv H^0(\Gamma).$$

Therefore we introduce the space

$$H^{1/2}(\Gamma) = \tau_{\Gamma}(H^1(\Omega))$$

with

$$\|g\|_{H^{1/2}} = \inf_{\substack{\varphi \in H^1(\Omega) \\ \tau_{\Gamma}\varphi = g}} \|\varphi\|_{H^1}.$$

In a similar way one can see that the traces of functions in $H^2(\Omega)$ belong to a space $H^{3/2}(\Gamma)$. We define

$$H^{3/2}(\Gamma) = \tau_{\Gamma}(H^2(\Omega))$$

and

$$\|g\|_{H^{3/2}} = \inf_{\substack{\varphi \in H^2(\Omega) \\ \tau_{\Gamma}\varphi = g}} \|\varphi\|_{H^2}.$$

We shall need a special form of the Sobolev embedding theorem. The normed space V_1 is said to be continuous embedded in the normed space V_2 , and write $V_1 \hookrightarrow V_2$ to designate this embedding, provided

- 1) V_1 is a vector subspace of V_2 , and
- 2) the identity operator \mathcal{I}_{V_1,V_2} defined on V_1 into V_2 by $\mathcal{I}_{V_1,V_2}(v) = v$ for all $v \in V_1$ is continuous.

We say, V_1 is compact embedded in V_2 , $V_1 \hookrightarrow V_2$, if the embedding operator \mathcal{I}_{V_1,V_2} is compact.

Definition 4.9. The bounded domain $\Omega \subset \mathbb{R}^n$ has a locally Lipschitz boundary, if each point x on the boundary $\partial\Omega$ should have a neighborhood U(x) such that $\partial\Omega \cap U(x)$ is the graph of a Lipschitz-continuous function.

Lemma 4.10. Let $j \ge 0$ and Ω be a bounded domain in \mathbb{R}^n , such that $\partial\Omega$ is locally Lipschitz continuous. Suppose 2m > n > 2(m-1). Then

$$H^{j+m}(\Omega) \hookrightarrow C^{j,s}(\overline{\Omega})$$

for $s \in (0, m - n/2]$.

Proof. We choose p = 2 and apply Theorem 5.4, Part II, on page 98 in [1].

Remark 4.11. If the assumptions of Lemma 4.10 are satisfied, there exists a constant K > 0 such that

$$\|\varphi\|_{C^{j,s}} \le K \|\varphi\|_{H^{j+m}} \quad \text{for all } \varphi \in H^{j+m}(\Omega).$$

Now we mention a special case of the *Rellich-Kondrachov theorem*. For a proof we refer the reader to Theorem 6.2 on page 144 in [1].

Lemma 4.12. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with locally Lipschitz boundary, j, m be integers, $j \geq 0, m \geq 1$, and let $1 \leq p < \infty$. Then:

$$\begin{split} W^{j+m,p}(\Omega) &\hookrightarrow & W^{j,q}(\Omega) & \text{if } n > mp \quad and \quad 1 \le q < \frac{np}{n-mp} \,, \\ W^{j+m,p}(\Omega) &\hookrightarrow & W^{j,q}(\Omega) & \text{if } n = mp \quad and \quad 1 \le q < \infty \,, \\ W^{j+m,p}(\Omega) &\hookrightarrow & W^{j,q}(\Omega) & \text{if } n < mp \quad and \quad 1 \le q \le \infty . \end{split}$$

Remark 4.13. If we choose $n \leq 3$, j = 0, m = 1, p = 2, q = 4 we get $H^1(\Omega)$ is compact embedded in $L^4(\Omega)$ from Lemma 4.12. By Lemma 1.28 the embedding operator maps weakly convergent sequences in $H^1_0(\Omega)$ into norm convergent sequences in $L^4(\Omega)$. In particular, if n = 1 holds, we have $H^1(\Omega) \hookrightarrow L^q(\Omega)$ for $1 \leq q \leq \infty$.

The following lemma characterize weak convergence in $H^1(0, 1)$.

Lemma 4.14. For every $f \in H^1(0,1)'$ there exists $\varphi_1, \varphi_2 \in L^2(0,1)$ such that

$$\langle f, y \rangle_{(H^1)', H^1} = \int_0^1 y' \varphi_1 + y \varphi_2 \, dx$$

for all $y \in H^1(0, 1)$.

Proof. Let us refer the reader to Theorem 3.8 on page 48 in [1].

The next lemma gives a useful application of Green's formula. For a proof we refer to Lemma 1.4 on page 10 in [8].

Lemma 4.15. Let Ω be a bounded open subset of \mathbb{R}^n with Lipschitz-continuous boundary Γ and $\mathbf{n} = (n_1, \ldots, n_n)$ the outward unit normal.

1) For $u, v \in H^1(\Omega)$ and $1 \leq i \leq n$ we have

$$\int_{\Omega} uv_{x_i} \, dx = -\int_{\Omega} u_{x_i} v \, dx + \int_{\Gamma} \tau_{\Gamma}(uv) n_i \, ds.$$

2) If in addition $u \in H^2(\Omega)$ we derive

(4.6)
$$\sum_{i=1}^{n} \int_{\Omega} u_{x_{i}} v_{x_{i}} dx = -\sum_{i=1}^{n} \int_{\Omega} u_{x_{i}x_{i}} v dx + \sum_{i=1}^{n} \int_{\Gamma} \tau_{\Gamma} (v u_{x_{i}}) n_{i} ds.$$

Remark 4.16. By using

$$\Delta u = \sum_{i=1}^{n} u_{x_i x_i}, \quad \nabla u = (u_{x_1}, \dots, u_{x_n}), \quad \mathbf{n} = (n_1, \dots, n_n)$$

we conclude from (4.6)

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = -\int_{\Omega} \Delta u \, v \, dx + \int_{\Gamma} \tau_{\Gamma} \left(v \nabla u \right) \cdot \mathbf{n} \, ds.$$

In the remaining of this section we recall the Fourier transform. By $\iota = \sqrt{-1}$ we denote the *imaginary unit* in \mathbb{C} .

Definition 4.17. For $u \in L^1(\mathbb{R})$ we define the Fourier transform of u, denoted by \hat{u} :

$$\hat{u}(y) = \int_{\mathbb{R}} \exp(-\iota xy) u(x) \, dx \quad \text{for all } y \in \mathbb{R}.$$

Remark 4.18. The mapping $u \mapsto \hat{u}$ defined by Definition 4.17 is obviously linear. From the inequality

$$|\hat{u}(y)| \le ||u||_{L^1(\mathbb{R})}$$
 for all $y \in \mathbb{R}$

we deduce:

(4.7)
$$\begin{cases} \text{ if } u \in L^1(\mathbb{R}), \, \hat{u} \text{ is a bounded continuous function on } \mathbb{R} \text{ with} \\ \|\hat{u}\|_{L^\infty(\mathbb{R})} \leq \|u\|_{L^1(\mathbb{R})}. \end{cases}$$

In addition we have the Riemann-Lebesgue theorem (see also Theorem IX.7 on page 327 in [13]):

(4.8)
$$\hat{u}(y) \to 0 \quad \text{in } \mathbb{C} \quad \text{when } |y| \to \infty.$$

Let $v \in C_0^{\infty}(\mathbb{R})$. Then we derive, as a result of an integration by parts:

$$\hat{v}(y) = \frac{1}{\iota y} \int_{\mathbf{R}} \exp(-\iota xy) v'(x) \, dx,$$

from which we have

(4.9)
$$|\hat{v}(y)| \leq \frac{1}{|y|} ||v'||_{L^1(\mathbf{R})} \to 0, \text{ when } |y| \to \infty.$$

Now, as $C_0^{\infty}(\mathbb{R})$ is dense in $L^1(\mathbb{R})$, if $u \in L^1(\mathbb{R})$, for all $\varepsilon > 0$, we find $v \in C_0^{\infty}(\mathbb{R})$, such that $\|v - u\|_{L^1(\mathbb{R})} \le \varepsilon/2$. Thus from

$$\hat{u}(y) = (u - v)(y) + \hat{v}(y),$$

we derive using (4.9)

$$|\hat{v}(y)| \le ||u - v||_{L^1(\mathbb{R})} + \frac{1}{|y|} ||v'||_{L^1(\mathbb{R})} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

for |y| sufficiently large (see (4.9)), from which (4.8) follows.

We put

$$\mathcal{S}(\mathbb{R}) = \mathcal{S} = \{ u \in C^{\infty}(\mathbb{R}) : \text{ for all } \alpha, l \in \mathbb{N}, \, x^{\alpha} u^{(l)}(x) \to 0 \text{ as } |x| \to \infty \}.$$

S is the space of functions of class C^{∞} of rapid decay at infinity, which is not a normed space, but of which the topology can be defined by the (denumerable) sequence of semi-norms

$$u \mapsto \sup_{x \in \mathbb{R}} |x^k u^{(l)}(x)| = d_{kl}(u)$$

which yields a complete metrisable space:

$$d(u,v) = \sum_{k,l \in \mathbb{N}} a_{kl} \frac{d_{kl}(u-v)}{1 + d_{kl}(u-v)} \quad \text{for all } u, v \in \mathcal{S},$$

where the coefficients a_{kl} are chosen to be such that $\sum_{k,l\in\mathbb{N}} a_{kl} = 1$, is a distance on \mathcal{S} . We should notice that if $u \in \mathcal{S}$, then $xu^{(l)}(x) \in L^p(\mathbb{R})$ for all $p \ge 1$ and for all $k, l \in \mathbb{N}$. Further, \mathcal{S} is dense in $L^p(\mathbb{R})$ for all p with $1 \le p < \infty$ (on the contrary \mathcal{S} is not dense in $L^{\infty}(\mathbb{R})$). For $u \in \mathcal{S}$ we can thus define its Fourier transform by Definition 4.17, as well as the Fourier transform of $x^k u^{(l)}(x)$ for all $k, l \in \mathbb{N}$. Hence, we also have $\hat{u} \in \mathcal{S}$. Further we have the inversion formula

$$u(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \exp(\iota xy) \hat{u}(y) \, dy$$
 for all $x \in \mathbb{R}$.

Let $u, v \in \mathcal{S}$. Then the following properties are valid:

1)
$$\widehat{u^{(k)}} = (\iota y)^k \hat{u}$$

2) Parseval's formula:

$$\int_{\mathbb{R}} u(x)\overline{v(x)} \, dx = \int_{\mathbb{R}} \hat{u}(y)\overline{\hat{v}(y)} \, dy.$$

3) Plancharel's formula:

$$\int_{\mathbb{R}} |u(x)|^2 \, dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} |\hat{u}(y)|^2 \, dy.$$

5. Evolution problems: variational methods

In the optimal control of parabolic systems we shall need to make frequent use of the notion of integral of a Banach space-valued function φ defined on an interval of \mathbb{R} . We begin therefore with a brief discussion of the Bochner integral, referring the reader to [16], for instance, for further details and proofs of our assertions.

Let *B* be a Banach space with norm denoted by $\|\cdot\|_B$ and $\{M_1, \ldots, M_m\}$ be a finite collection of mutually disjoint, measurable subsets of \mathbb{R} , each having finite measure, and let $\{b_1, \ldots, b_m\}$ be a corresponding collection of points of *B*. The function φ on \mathbb{R} defined by

$$\varphi(t) = \sum_{j=1}^{m} \chi_{M_j}(t) \, b_j,^{\text{iii}}$$

is called a simple function. For simple functions we define

$$\int_{\mathbb{R}} \varphi(t) \, dt = \sum_{j=1}^m \mu(M_j) \, b_j$$

where $\mu(M)$ denotes the (Lebesgue) measure of M. Let M be a measurable set in \mathbb{R} and φ an arbitrary function defined a.e. on M into B. The function φ is called (strongly) measurable on M if there exists a sequence $\{\varphi_n\}_{n\in\mathbb{N}}$ of simple functions with supports in M such that

(5.1)
$$\lim_{n \to \infty} \|\varphi_n(t) - \varphi(t)\|_B = 0 \quad \text{a.e. in } M.$$

It can be shown that any function φ whose range is separable is measurable provided the scalar-valued function $\langle f, \varphi(\cdot) \rangle_{B',B}$ is measurable on M for each $f \in B'$. We suppose that a sequence of simple functions φ_n satisfying (5.1) can be chosen in such a way that

$$\lim_{n \to \infty} \int_M \|\varphi_n(t) - \varphi(t)\|_B \, dt = 0.$$

Then φ is called (Bochner) integrable on M and we define

(5.2)
$$\int_{M} \varphi(t) \, dt = \lim_{n \to \infty} \int_{\mathbb{R}} \varphi_n(t) \, dt.$$

The integrals on the right side of (5.2) do converge in (the norm topology of) B to a limit which is independent of the choice of approximating sequence $\{\varphi_n\}_{n \in \mathbb{N}}$.

ⁱⁱⁱ χ_M denotes the characteristic function of M: $\chi_M(t) = 1$ if $t \in M$ and $\chi_M(t) = 0$ if $t \notin M$.

A measurable function φ is integrable on M if and only if $\|\varphi(\cdot)\|_B$ is (Lebesgue) integrable on M:

$$\left\|\int_{M}\varphi(t)\,dt\right\|_{B}\leq\int_{M}\|\varphi\|_{B}\,dt.$$

Definition 5.1. Let $-\infty \leq a < b \leq \infty$. We denote by $L^p(a,b;B)$ iv the linear space of (equivalence classes of) functions φ measurable on (a,b) into B such that

 $\begin{array}{l} 1) \hspace{0.1 cm} \varphi \hspace{0.1 cm} is \hspace{0.1 cm} measurable \hspace{0.1 cm} for \hspace{0.1 cm} dt, \\ 2) \end{array}$

(5.3)
$$\begin{cases} \|\varphi\|_{L^p(a,b;B)} = \left(\int_a^b \|\varphi(t)\|_B \, dt\right)^{\frac{1}{p}} < \infty \quad \text{if } 1 \le p < \infty, \\ \|\varphi\|_{L^\infty(a,b;B)} = \operatorname{ess} \sup_{t \in (a,b)} \|\varphi(t)\|_B < \infty \quad \text{if } p = \infty. \end{cases}$$

If $\varphi \in L^p(c, d; B)$ for every c, d with a < c < d < b, then we write $\varphi \in L^p_{loc}(a, b; B)$, and, if p = 1, call φ locally integrable.

Proposition 5.2. For $1 \le p \le \infty$, $L^p(a, b; B)$ is a Banach space.

Proof. We refer to Proposition 1 on page 469 in [7].

Proposition 5.3. If B is a Banach space, a and b are finite, $f \in B'$ and $\varphi \in L^p(a,b;B)$ for $p \ge 1$ we have

$$\left\langle f, \int_{a}^{b} \varphi(t) \, dt \right\rangle_{B',B} = \int_{a}^{b} \left\langle f, \varphi(t) \right\rangle_{B',B} dt.$$

Proof. Let us refer the reader to Corollary 2 on page 470 in [7].

Definition 5.4. By $\mathcal{D}(a, b)$ we denote the linear space $C_0^{\infty}(a, b)$. We say, the sequence $\{\varphi_n\}_{n\in\mathbb{N}}$ tends to zero in $\mathcal{D}(a, b)$ if there is a closed subspace $M \subset (a, b)$ such that $\varphi_n^{(i)}(t) = 0$ for all $i \in \mathbb{N}$, for all $n \in \mathbb{N}$ and for all $t \in (a, b) \setminus M$ and it follows $\|\varphi_n^{(i)}\|_{L^{\infty}} \to 0$ as $n \to \infty$ for all $i \in \mathbb{N}$. We call every continuous linear mapping of $\mathcal{D}(a, b)$ into a Banach space B a vectorial distribution over (a, b) with values into B, and we write $\mathcal{D}'(a, b; B) = L(\mathcal{D}(a, b), B)$.

Remark 5.5. Let (B_1, B_2) be a pair of Banach spaces with $B_1 \hookrightarrow B_2$. Then we derive

$$L^p(a,b;B_1) \hookrightarrow L^p(a,b;B_2) \text{ for } 1 \le p \le \infty.$$

Proposition 5.6. Let B be a Banach space and $u \in L^1_{loc}(a,b;B)$. Then the mapping

$$\varphi \mapsto \int_{a}^{b} \varphi(t) u(t) \, dt$$

is a distribution over (a, b) with values in B.

Proof. We refer the reader to Proposition 4 on page 470 in [7].

Remark 5.7. We identify the function u with the distribution with which it is associated.

24

^{iv}When there is no risk of confusion, we shall write the simplified notation $L^{p}(B)$.

Proposition 5.8. Let B be a Banach space. The functions $u, v \in L^1_{loc}(a, b; B)$ define the same distributions if and only if u and v are equal (in a scalar sense) a.e.

Proof. Let us refer to Proposition 5 on page 471 in [7]. \Box

Remark 5.9. The Proposition 5.8 means that for all $f \in B'$ the functions: $t \to \langle f, u(t) \rangle_{B',B}$ and $t \to \langle f, v(t) \rangle_{B',B}$ are equal almost everywhere. If B is separable, this implies u = v a.e.

Definition 5.10. Let B be a Banach space, $f \in \mathcal{D}'(a,b;B)$ and m a nonnegative integer. Then the mapping $\varphi \mapsto (-1)^m f(\frac{d^m \varphi}{dt^m})$, $\varphi \in \mathcal{D}(a,b)$, is a distribution — the distributional derivative — that we denote by $\frac{d^m f}{dt^m}$. We have:

$$\frac{d^m f}{dt^m} (\varphi) = (-1)^m f\left(\frac{d^m \varphi}{dt^m}\right) \quad \text{for all } \varphi \in \mathcal{D}(a,b).$$

Remark 5.11. Let B_1 and B_2 be two separable Banach spaces. If $u \in L^1_{loc}(a, b; B)$ and if B is a space of functions of the variable x, for instance $B = L^p(\Omega)$, then u is identified with a function u(t, x). u(t) denotes the mapping $x \mapsto u(t, x)$ for almost all t. The distributional derivative $\frac{du}{dt}$ is identified with the derivative $\frac{\partial u}{\partial t}$ in $\mathcal{D}'(a, b; B)$. We use the following notation for the derivative of u with respect to t:

$$\frac{du}{dt}$$
 or u' or u_t

Definition 5.12. Let B be a Banach space and $u \in L^2(a,b;B)$. Then for all $\varphi \in \mathcal{D}(a,b)$:

$$\frac{du}{dt} (\varphi) = -\int_{a}^{b} u(t)\varphi'(t) dt$$

We say that $u' = \frac{du}{dt} \in L^2(a,b;B)$ if there exists $v \in L^2(a,b;B)$ such that:

$$\begin{cases} \text{ for all } \varphi \in \mathcal{D}(a,b) \,, \quad v(\varphi) = -u(\varphi'), \\ \text{ i.e.: } \int_{a}^{b} v(t)\varphi(t) \, dt = \int_{a}^{b} u(t)\varphi'(t) \, dt. \end{cases}$$

The space we shall introduce next is of fundamental importance. We consider two real, separable Hilbert spaces V, H. It is supposed that V is dense in H so that, by identifying H and its dual H', we have

$$(5.4) V \hookrightarrow H \equiv H' \hookrightarrow V',$$

each space being dense in the following.

Definition 5.13. Let $a, b \in \mathbb{R} \cup \{-\infty, +\infty\}$, a < b. Moreover, V and H are Hilbert spaces satisfying (5.4). The space W(a, b; V) is given by

$$W(a,b;V) = \left\{ \varphi : \varphi \in L^2(a,b;V), \, \frac{d\varphi}{dt} \in L^2(a,b;V') \right\}.^{\mathsf{v}}$$

Proposition 5.14. The space W(a, b; V) endowed with the norm

$$\|\varphi\|_{W(V)} = \left(\|\varphi\|_{L^{2}(V)}^{2} + \left\|\frac{d\varphi}{dt}\right\|_{L^{2}(V')}^{2}\right)^{\frac{1}{2}} = \left(\int_{a}^{b} \|\varphi(t)\|_{V}^{2} + \left\|\frac{d\varphi(t)}{dt}\right\|_{V'}^{2} dt\right)^{\frac{1}{2}}$$

is a Hilbert space.

^vWhen there is no risk of confusion, we shall write the simplified notation W(V).

Proof. We refer the reader to Proposition 6 on page 473 in [7].

We are now interested in regularity properties of elements belonging to W(V). For a proof of the following lemma we refer to Theorem 1 on page 472 in [7].

Lemma 5.15. For $a, b \in \mathbb{R}$, every $\varphi \in W(V)$ is almost everywhere equal to a continuous function of (a, b) in H. Further, we have:

$$W(V) \hookrightarrow C([a, b]; H),$$

the space C([a, b]; H) being equipped with the norm of uniform convergence.

Remark 5.16. By Lemma 5.15 it makes sense to speak of the traces $\varphi(a), \varphi(b) \in H$ for $\varphi \in W(V)$ with $[a, b] \subset \mathbb{R}$. Moreover, we can show, that the mapping $\varphi \mapsto \varphi(a)$ from W(V) is surjective (see Remark 5 on page 477 in [7]).

Lemma 5.17. Let $[a, b] \subset \mathbb{R}$ and $\varphi, \phi \in W(V)$. Then

$$\int_{a}^{b} \left\langle \frac{d\varphi(t)}{dt}, \phi(t) \right\rangle_{V',V} dt + \int_{a}^{b} \left\langle \frac{d\phi(t)}{dt}, \varphi(t) \right\rangle_{V',V} dt = \left\langle \varphi(b), \phi(b) \right\rangle_{H} - \left\langle \varphi(a), \phi(a) \right\rangle_{H}$$

Proof. We refer to Theorem 2 on page 477 in [7].

A very useful property is

Proposition 5.18. For $\varphi \in W(V)$ and $\psi \in V$ we obtain:

$$\left\langle \frac{d\varphi(\cdot)}{dt},\psi\right\rangle _{V^{\prime},V}=\frac{d}{dt}\left\langle \varphi(\cdot),\psi\right\rangle _{H}$$

in the distributional sense.

Proof. Let us refer to Proposition 7 on page 477 in [7].

Let X and Y be two separable Hilbert spaces with $X \hookrightarrow Y$ and X being dense in Y. We now define the space W(a, b; X, Y) by

$$W(a,b;X,Y) = \left\{ \varphi : \varphi \in L^2(a,b;X), \ \frac{d\varphi}{dt} \in L^2(a,b;Y) \right\}$$

equipped with the norm

$$\|\varphi\|_{W(X,Y)} = \left(\|\varphi\|_{L^{2}(X)}^{2} + \left\|\frac{d\varphi}{dt}\right\|_{L^{2}(Y)}^{2}\right)^{\frac{1}{2}} = \left(\int_{a}^{b} \|\varphi(t)\|_{X}^{2} + \left\|\frac{d\varphi(t)}{dt}\right\|_{Y}^{2} dt\right)^{\frac{1}{2}}$$

It can be shown that W(a, b; X, Y) is a Hilbert space and that

(5.5)
$$\begin{cases} i) X \text{ is dense in } [X,Y]_{\theta}, \theta \in [0,1]^{\text{vi}}, \\ ii) W(a,b;X,Y) \hookrightarrow C([a,b];[X,Y]_{1/2}) \end{cases}$$

(see (1.61) on page 480 in [7]).

We are given two real, separable Hilbert spaces V and H. V is supposed to be dense in H and we identify H with its dual H'. Moreover: $V \hookrightarrow H \hookrightarrow V'$. We denote by W(V) the space W(0,T;V) with $0 < T < \infty$. By Lemma 5.15 we derive

^{vi}With $[X, Y]_1 = Y$ and $[X, Y]_0 = X$, the space $[X, Y]_{\theta}$ is called the holomorphic interpolant of the spaces X and Y (see Chapter VIII, §3 in [6]).

 $W(V) \hookrightarrow C([0,T]; H)$. For each $t \in [0,T]$ we are given a continuous bilinear form over $V \times V$ and we make the hypothesis:

(5.6)
$$\begin{cases} \text{for every } \varphi, \psi \in V, \text{ the function } t \mapsto a(t; \varphi, \psi) \text{ is measurable and} \\ \text{there exists a constant } K = K(T) > 0 \text{ (independent of } t \in (0, T), \\ \varphi, \psi \in V) \text{ such that} \\ |a(t; \varphi, \psi)| \le K \|\varphi\|_V \|\psi\|_V \text{ for all } \varphi, \psi \in V. \end{cases}$$

Therefore, for each $t \in [0, T]$ the bilinear form $a(t; \varphi, \psi)$ defines a continuous linear operator $\mathcal{A}(t)$ from V into V' with

$$\sup_{t\in(0,T)} \|\mathcal{A}(t)\|_{L(V,V')} \le K.$$

We make the following assumption (of coercivity over V with respect to H):

(5.7)
$$\begin{cases} \text{ there exists } \lambda, \alpha \text{ constants, } \alpha > 0 \text{ such that} \\ a(t; \varphi, \varphi) + \lambda \|\varphi\|_{H}^{2} \ge \alpha \|\varphi\|_{V} \text{ for all } t \in [0, T] \text{ and } \varphi \in V. \end{cases}$$

We give some examples of bilinear forms $a(t; \varphi, \psi)$.

Example 5.19. 1) We take
$$V = H_0^1(\Omega)$$
, $H = L^2(\Omega)$.
 $a(t; \varphi, \psi) = a(\varphi, \psi) = \langle \psi, \varphi \rangle_{H_0^1}$.

Then (5.6) and (5.7) holds with $\alpha = 1$ and $\lambda = 0$.

2) We take $V = H^1(\Omega)$, $H = L^2(\Omega)$.

$$a(t;\varphi,\psi) = \langle \varphi,\psi \rangle_{H^1}.$$

Then (5.6) and (5.7) holds with $\alpha = 1$ and $\lambda = 0$. 3) Now let V be a closed subspace of $H^1(\Omega)$ with

$$H_0^1(\Omega) \hookrightarrow V \hookrightarrow H^1(\Omega)$$
 and $H = L^2(\Omega)$.

We set $Q = \Omega \times (0, T)$ and

$$a(t;\varphi,\psi) = \sum_{i,j=1}^{n} \int_{\Omega} a_{ij}(x,t) \frac{\partial \varphi}{\partial x_i} \frac{\partial \psi}{\partial x_j} \, dx + \int_{\Omega} a_0(x,t) \varphi \psi \, dx$$

where $a_{ij}, a_0 \in L^{\infty}(Q), 1 \leq i, j \leq n$ and

$$\sum_{i,j=1}^{n} a_{ij}(x,t)\xi_i\xi_j \ge \alpha \sum_{i=1}^{n} \xi_i^2$$

for a constant $\alpha > 0$ and for $\xi_i \in \mathbb{R}$ a.e. in Q. Then, for λ large enough we derive for all $\varphi \in H^1(\Omega)$:

$$a(t;\varphi,\varphi) + \lambda \|\varphi\|_{L^2}^2 \ge \alpha \|\varphi\|_V.$$

Let

 $(5.8) u_0 \in H, \quad f \in L^2(V')$

be given. We are looking for

$$(5.9) u \in W(V),$$

S. VOLKWEIN

such that

(5.10)
$$\begin{cases} \frac{d}{dt} \langle u(\cdot), \varphi \rangle_H + a(\cdot; u(\cdot), \varphi) = \langle f, \varphi \rangle_{V', V} \\ \text{in the sense of } \mathcal{D}'(a, b) \text{ for all } \varphi \in V, \end{cases}$$

and

(5.11)
$$u(0) = u_0.$$

Remark 5.20. 1) From Lemma 5.15 the initial condition (5.11) is senseful. 2) Due to Proposition 5.18 we have

$$\frac{d}{dt} \langle u(\cdot), \varphi \rangle_H = \left\langle \frac{du(\cdot)}{dt}, \varphi \right\rangle_{V', V} \quad \text{for all } \varphi \in V.$$

Remark 5.21. If we set $u = we^{kt}$, $k \in \mathbb{R}$, w satisfies

$$\left\langle \frac{dw(\cdot)}{dt},\varphi\right\rangle_{V',V} + a(\cdot;w(\cdot),\varphi) + k\left\langle w(\cdot),\varphi\right\rangle_{H} = \left\langle e^{-kt}f(\cdot),\varphi\right\rangle_{V',V}$$

and

$$w(0) = u_0$$

by changing u to ue^{kt} and choosing k, we can assume that (5.7) holds with $\lambda = 0$ (that has no consequences since T is finite). In the following we, we shall therefore make the hypothesis:

(5.12)
$$a(\cdot;\varphi,\varphi) \ge \alpha \|\varphi\|_V^2 \text{ for all } t \in [0,T]^{\text{vii}} \text{ and } \varphi \in V.$$

Theorem 5.22. We suppose V, H are given and satisfy $V \hookrightarrow H \hookrightarrow V'$ and $a(\cdot; u, \varphi)$ satisfies (5.6), (5.12). u_0 and f are given and satisfy (5.8). Then there exists a unique solution of (5.9)-(5.11).

Proof. Let us refer the reader to Theorem 1 on page 512 and Theorem 2 on page 513 in [7]. $\hfill \Box$

If u is the solution of (5.10)-(5.11), we derive

$$\frac{1}{2} \|u(t)\|_{H}^{2} + \int_{0}^{t} a(s; u(s), u(s)) \, ds = \frac{1}{2} \|u_{0}\|_{H}^{2} + \int_{0}^{t} \langle f(s), u(s) \rangle_{V', V} \, ds \, ,$$

the so called energy equality, as the quantity

$$E(t) = \frac{1}{2} \|u_0\|_H^2 + \int_0^t \langle f(s), u(s) \rangle_{V', V} \, ds$$

represents the energy of the system.

Theorem 5.23. Let $a(t; \varphi, \psi)$ satisfy (5.6) and (5.12), (u_0, f) , $(u_0^*, f^*) \in H \times L^2(V')$ and let u and u^* be the corresponding solutions of (5.9)-(5.11). Then

$$\begin{aligned} \|u - u^*\|_{L^1(H)} &\leq \left(\|u_0 - u_0^*\|_H^2 + \frac{1}{\alpha} \|f - f^*\|_{L^2(V')}^2 \right)^{\frac{1}{2}} \\ \|u - u^*\|_{L^2(V)} &\leq \frac{1}{\sqrt{\alpha}} \left(\|u_0 - u_0^*\|_H^2 + \frac{1}{\alpha} \|f - f^*\|_{L^2(V')}^2 \right)^{\frac{1}{2}} \end{aligned}$$

Proof. We refer to Theorem 3 on page 520 in [7].

^{vii}Or likewise $t \in [0, T]$ a.e.

Remark 5.24. We assume $f \in L^1(H)$. Then it can be proved that (5.9)-(5.11) has a unique solution in the space

$$W^{*}(V) = \{ \varphi : \varphi \in L^{2}(V), \ \varphi' \in L^{2}(V') + L^{1}(H) \}.$$

The same estimates as in Theorem 5.23 hold (see Remark 6 on page 521 and Theorem 4 on page 522 in [7]). Thus problem (5.9)-(5.11) can be considered with

$$f = f_1 + f_2$$
, $f_1 \in L^1(H)$, $f_2 \in L^2(V')$

and there exists a unique solution to this problem, the assumptions being those of the beginning of this section.

6. Principal Notations

In the following list of symbols we give the symbol and a descriptive name or phrase for an explanation. The number at the indicate the pagenumber on which the symbols are introduced.

$M \setminus M_1$	complement of M_1 in M	1
\overline{M}	closure of a set M	1
M°	interior of M	1
∂M	boundary of a set M	1
$M_1 \times M_2$	Cartesian product of the sets M_1 and M_2	1
$\operatorname{ran}\left(f\right)$	range of the function f	1
$\ker(f)$	kernel of the function f	1
$g \circ f$	compositive mapping given by $x \mapsto g(f(x))$	1
	norm on a (real) normed linear space V	2
$ \begin{array}{c} \ \cdot \ _V \\ v_n \xrightarrow{n \to \infty} v \end{array} $	(strong) convergence of the sequence $\{v_n\}_{n \in \mathbb{N}}$ to v	2
B(v; ho)	open ball of radius ρ about the point v	2
U(v)	neighborhood of v	2
$L(V_1, V_2)$	set of bounded linear operators $\mathcal{A}: V_1 \to V_2$	3
$\ \mathcal{A}\ _{L(V_1,V_2)}$	norm of $\mathcal{A} \in L(V_1, V_2)$	3
\mathcal{A}^{-1}	inverse of a bounded linear operator \mathcal{A}	3
L(V)	set of bounded linear operators $\mathcal{A}: V \to V$	3
\mathcal{I}_V	identity on a normed linear space V	3
$\langle \cdot, \cdot \rangle_X$	(real) inner product on a Hilbert space X	3
$a(\cdot, \cdot)$	continuous bilinear form	4
$X\oplus Y$	direct sum of the Hilbert spaces X and Y	4
M^{\perp}	orthogonal complement of a closed space $M \subset X$	4
\mathcal{P}_M	linear projection onto the subset M	5
B'	dual space of a Banach space B	5
$\langle \cdot, \cdot \rangle_{B',B}$	duality pairing of B' with its Banach space B	5
\mathcal{J}_X	Riesz isomorphism of which maps a Hilbert space X onto	6
	its dual X'	
$x^n \stackrel{n \to \infty}{\rightharpoonup} x$	weak convergence of a sequence $\{x_n\}_{n \in \mathbb{N}}$ to x	7
\mathcal{K}	compact operator	8
$ ho(\mathcal{A})$	resolvent set of a bounded linear operator \mathcal{A}	8
$\sigma(\mathcal{A})$	spectrum of a bounded linear operator \mathcal{A}	8
\mathcal{A}^{\star}	adjoint of a bounded linear operator \mathcal{A}	9
$\delta f(x;y)$	Fréchet differential of f at x in the direction y	11
f'(x)	Fréchet derivative of f at the point x	11

S. VOLKWEIN

_		
J	cost functional	11
e	constraint function	11
${\cal L}$	Lagrange functional	11
x^*	(local) optimal solution of a constrained minimizing prob-	12
λ^*	lem Lagrange multiplier of a constrained minimizing problem	12
	Eucledian norm in \mathbb{R}^n	$12 \\ 16$
$ \cdot _2$ Ω		16
	open set of \mathbb{R}^n	-
a	multi index	17
$\sup_{C_{m}(G)}(f)$	support of f	17
$C^m(\Omega)$	linear space consisting of <i>m</i> -times continuously differen-	17
$C^m(\overline{\Omega})$	tiable functions Banach apage which is subgrade of $C^m(\Omega)$	17
	Banach space which is subspace of $C^m(\Omega)$ norm on $C^m(\overline{\Omega})$	$17 \\ 17$
$\ \cdot\ _{C^m}$		
$C_0(\Omega), C_0^\infty(\Omega)$	subspaces of $C(\Omega)$ respectively $C^m(\Omega)$	17
$C^{m,s}(\overline{\Omega})$	Hölder spaces	17
$\ \cdot\ _{C^{m,s}}$	norm on $C^{m,s}(\overline{\Omega})$	17
$L^p(\Omega)$	L^p -spaces	17
$\ \cdot\ _{L^p}$	norm on $L^p(\Omega)$	17
$ \begin{array}{l} L_{\rm loc}^1(\Omega) \\ W^{m,p}(\Omega) \end{array} $	linear space consisting locally integrable functions	19
	Sobolev spaces	19
$ \frac{\ \cdot\ _{W^{m,p}}}{W_0^{m,p}(\Omega)} $	norm on $W^{m,p}(\Omega)$	18
$W^{m,p}_0(\Omega)$	Sobolev spaces	19
$\ \cdot\ _{W^{m,p}_0}$	norm on $W^{m,p}_0(\Omega)$	18
$H^m(\Omega), H^m_0(\Omega)$	Hilbert spaces consisting of weak differentiable functions	19
$\ \cdot\ _{H^m}, \ \cdot\ _{H^m_0}$	norm on $H^m(\Omega)$ respectively $H^m_0(\Omega)$	19
$V_1 \hookrightarrow V_2$	continuous embedding of a normed linear space V_1 into a	20
	normed linear space V_2	
$V_1 \hookrightarrow \hookrightarrow V_2$	compact embedding of a normed linear space V_1 into a	20
	normed linear space V_2	
χ_M	characteristic function of a set M	23
$L^p(0,T;B)$	Banach space consisting of functions with vector values in	24
	a Banach space B	
$\ \cdot\ _{L^p(a,b;B)}$	norm on the Banach space $L^p(0,T;B)$	24
W(V)	Hilbert space consisting of vector-valued functions	25
$\ \cdot\ _{W(V)}$	norm on $W(V)$	25

References

- [1] R. A. Adams. Sobolev Spaces. Academic Press, New York, 1975.
- [2] H. W. Alt. Lineare Funktionalanalysis. Eine anwendungsorientierte Einführung. Springer-Verlag, Berlin, 1992.
- [3] H. Brezis. Analyse fonctionnelle. Théorie et applications. Masson, 1987.
- [4] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, 1991.
- [5] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology. Volume 2: Functional and Variational Methods. Springer-Verlag, Berlin, 1988.
- [6] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology. Volume 3: Spectral Theory and Applications. Springer-Verlag, Berlin, 1990.
- [7] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology. Volume 5: Evolution Problems I. Springer-Verlag, Berlin, 1992.

- [8] V. Girault and P.-A. Raviart. Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer-Verlag, 1980.
- [9] D. Gilbarg and N. S. Trudinger. Elliptic Differential Equations of Second Order. Springer-Verlag, Berlin, 1977.
- [10] F. Hirzebruch and W. Scharlau. Einführung in die Funktionalanalysis. B.I.-Wissenschaftsverlag, 1971.
- [11] D. G. Luenberger. Optimization by Vector Space Methods. John Wiley & Sons, New York, 1969.
- [12] H. Maurer and J. Zowe. First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems. *Math. Programming*, 16:98–110, 1979.
- [13] M. Reed and B. Simon. Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York, 1980.
- [14] A. E. Taylor and D. C. Lay. Introduction to Functional Analysis. John Wiley & Sons, New York, 1958.
- [15] A. Wouk. A Course of Applied Functional Analysis. Wiley-Interscience, New York, 1979.
- [16] K. Yosida. Functional Analysis. Springer-Verlag, 1965.

S. Volkwein, Institut für Mathematik, Karl-Franzens-Universität Graz, Heinrichstrasse 36, A-8010 Graz, Austria

E-mail address: stefan.volkwein@uni-graz.at