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Abstract. Infinite-dimensional optimization requires – among other things

– many results from functional analysis. In this script basics from functional
analytic theory is reviewed. The purpose of this work is to give a summary of

important facts needed to work in our research group.

1. Functional Analysis – Results and Definitions

If M is a set and M1 ⊂ M , the symbol M \M1 represents the complement of
M1 in M , i.e. M \M1 = {x ∈ M : x 6∈ M1}. M will always denote the closure
of the set M , which is the smallest closed set containing in M . The interior of the
set M , M◦, is the largest open set containing in M . The boundary of M is the set
∂M = M \M◦. The set of ordered pairs {(x, y) : x ∈ M1, y ∈ M2} is called the
Cartesian product of the sets M1 and M2 and it is denoted M1 ×M2.

Let f : M → M1 be a function (or mapping). f(M) will usually called the
range of f and will denoted ran (f). The set {x ∈ M : f(x) = 0} is said to be the
kernel of f and is denoted ker (f). A function f will be called injective if for each
y ∈ ran (f) there is at most one x ∈M such that f(x) = y; f is called surjective if
ran (f) = M1. If f is both injective and surjective, we will say it is bijective.
Let f : M → M1 and g : M1 → M2 be two functions. The composite mapping
r = g ◦ f is defined by r : M →M2, x 7→ r(x) = g(f(x)).

Definition 1.1. A (real) linear space is a set, V , over IR, whose elements satisfy
the following properties

1) v + w = w + v for all v, w ∈ V ,
2) v + (w + u) = (v + w) + u for all v, w, u ∈ V ,
3) There is in V a unique element, denoted by 0 and called the zero element,

such that v + 0 = v for each v,
4) To each v in V corresponds a unique element, denoted by −v, such that

v + (−v) = 0,
5) α (v + w) = α v + αw for all v, w ∈ V and α ∈ IR,
6) (α+ β) v = αv + β v for all v ∈ V and α, β ∈ IR,
7) α (β v) = (αβ) v for all v ∈ V and α, β ∈ IR,
8) 1 · v = v for all v ∈ V ,
9) 0 · v = 0 for all v ∈ V .

Date: January 8, 2003.
1991 Mathematics Subject Classification. 35Kxx, 46Axx, 46Bxx, 46Cxx, 46Exx, 49Kxx.
Key words and phrases. Functional analysis, optimality conditions, function spaces, evolution

problems.

1



2 S. VOLKWEIN

A (real) normed linear space is a linear space, V , over IR and a function, ‖ · ‖V ,
from V to IR which satisfies:

1) ‖v‖V ≥ 0 for all v in V ,
2) ‖v‖V = 0 if and only if v = 0,
3) ‖αv‖V = |α| ‖v‖V for all v in V and α in IR,
4) ‖v + w‖V ≤ ‖v‖V + ‖w‖V for all v and w in V .

A system of sets Mα, α ∈ I, is called a covering of the set M if M is contained as
a subset of the union

⋃
α∈IMα. A subset M of a linear space V is called compact

if every system of open sets of V which covers M contains a finite system also
covering M . A subset M in a linear space V is precompact, if M is compact in
V . Further we call M ⊂ V bounded, if there exists a constant K > 0 such that
‖v‖V ≤ K for all v ∈M .

Definition 1.2. A linear operator from a normed linear space (V1, ‖ · ‖V1
) to a

normed linear space (V2, ‖ · ‖V2
) is a mapping, A, from V1 to V2 which has the

following property:

A(αv + βw) = αA(v) + βA(w) for all v, w ∈ V1 and α, β ∈ IR.

A is called a bounded (linear) operator if A is linear and there is some K > 0 such
that ‖A(v)‖V2

≤ K ‖v‖V1
for all v ∈ V1.

The smallest such K is called the norm of A. By (1.1) we will introduce a nota-
tion for the norm of a bounded linear operator. A sequence of elements {vn}n∈IN

of a normed linear space V is said to converge (strongly) to an element v ∈ V ,
vn → v, n → ∞, if limn→∞ ‖v − vn‖V = 0. The sequence {vn}n∈IN is called a
Cauchy sequence if for all ε > 0 there exists one N ∈ IN such that

‖vm − vn‖V < ε for all m,n ≥ N.
A normed linear space in which all Cauchy sequences converge is called complete.
A set M in a normed linear space V is called dense if every v ∈ V is a limit of
elements in M . A function f from a normed linear space (V1, ‖ · ‖V1

) to a normed
space (V2, ‖ · ‖V2

) is called continuous at v if ‖f(vn) − f(v)‖V2
→ 0 as n → ∞

whenever ‖vn − v‖V1
→ 0 as n tends to zero. We say f is Lipschitz-continuous if

there exists a constant γf > 0 such that

‖f(v)− f(w)‖V2
≤ γf ‖v − w‖V1

for all v, w ∈ V1.

f is called locally Lipschitz continuous if for all open and bounded O ⊂ V1 with
O ⊂ V1 there exists γf = γf (O) > 0 such that

‖f(v)− f(w)‖V2
≤ γf ‖v − w‖V1

for all v, w ∈ O.
Let V1 and V2 be normed linear spaces. A bijection f from V1 to V2 which preserves
the norm, i.e.,

‖f(v)− f(w)‖V2
= ‖v − w‖V1

for all v, w ∈ V1

is called an isometry. It is automatically continuous. V1 and V2 are said to be
isometric if such an isometry exists.

Let V be a normed linear space. The set {w ∈ V : ‖v − w‖V < ρ} is called
the open ball, B(v; ρ), of radius ρ about the point v. A set U(v) ⊂ X is called a
neighborhood of v ∈ U(v) if B(v; ρ) ⊂ U(v) for some ρ > 0. Let M ⊂ V . A point
v is called a limit point of M , if for all ρ > 0 B(v; ρ) ∩ (M \ {v}) 6= ∅, i.e., x is a
limit point of M if M contains points other than v arbitrarily near v.
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Lemma 1.3. Let A be linear operator between two normed linear spaces. The
following properties are equivalent:

1) A is continuous at one point.
2) A is continuous at all points.
3) A is bounded.

Proof. For the proof we refer the reader to Theorem 6.1.1 on page 97 in [15]. �
V1 and V2 are normed linear spaces. We define

L(V1, V2) = {A : V1 → V2, A is linear and continuous}.
Due to Lemma 1.3 linear operators in L(V1, V2) are bounded linear operators, which
we also call continuous operators. Let us introduce the following norm on L(V1, V2):

(1.1) ‖A‖L(V1,V2) = sup
‖v‖V1

≤1

‖A(v)‖V2
= sup
‖v‖V1

=1

‖A(v)‖V2
for all A ∈ L(V1, V2).

Definition 1.4. A complete normed linear space is called a Banach space.

We mention the inverse mapping theorem.

Theorem 1.5. A continuous bijection of one Banach space onto another has a
continuous inverse.

Proof. We refer the reader to Theorem III.11 on page 83 in [13]. �
Lemma 1.6. Let B1, B2 be two Banach spaces and A belong to L(B1, B2). The
passage to the inverse A → A−1 is continuous (non-linear) mapping of L(B1, B2)
into L(B2, B1) for the norm.

Proof. For a proof we refer to Theorem 3 on page 321 in [5]. �
Remark 1.7. If the perturbation B of A is sufficiently small, i.e., ‖B‖L(B1,B2) <

‖A‖−1
L(B1,B2) holds, thenA−B is invertible. Let {An}n∈IN be a sequence in L(B1, B2)

and A ∈ L(B1, B2) such that A−1 exists and

lim
n→∞

‖An −A‖L(B1,B2) = 0.

Thus, there exists N ∈ IN with ‖An − A‖L(B1,B2) < ‖A‖−1
L(B1,B2) for all n ≥ N .

This leads to A−1
n exists for all n ≥ N .

Lemma 1.8. Let V , V1 and V2 be normed linear spaces. Then L(V1, V2) with the
norm ‖ · ‖L(V1,V2) is a normed linear space, and a Banach space, if V2 is complete.

If A ∈ L(V1, V2) and B ∈ L(V2, V ) we have B ◦ A ∈ L(V1, V ) and

‖B ◦ A‖L(V1,V ) ≤ ‖B‖L(V2,V ) ‖A‖L(V1,V2).

Proof. Let us refer to Satz 3.3 on page 102 in [2]. �
We set L(V ) = L(V, V ). The identity on V is the continuous operator IV : V →

V given by IV (v) = v for all v in V .

Definition 1.9. A (real) vector space X is called (real) inner product space if there
is a real-valued function 〈· , ·〉X on X×X that satisfies the following four conditions
for all x, y, z ∈ X and α ∈ IR:

1) 〈x, x〉X ≥ 0 and 〈x, x〉X = 0 if and only if x = 0,
2) 〈x, y + z〉X = 〈x, y〉X + 〈x, z〉X ,
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3) 〈x, αy〉X = α 〈x, y〉X ,
4) 〈x, y〉X = 〈y, x〉X .

The function 〈· , ·〉X : X ×X → IR is called (real) inner product.

Example 1.10. Let IRn denote the set of all n-tupels of real numbers. We define
the inner product

〈x,y〉IRn = xTy =
n∑

j=1

xjyj .

for all x = (x1, . . . , xn)T and y = (y1, . . . , yn)T in IRn.

Let X and Y be inner product spaces. The mapping a : X ×X → Y with the
properties

1) a(αx+ βy, z) = αa(x, z) + β a(y, z) for all x, y, z ∈ X and α, β ∈ IR,
2) a(x, y) = a(y, x) for all x, y ∈ X,
3) |a(x, y)| ≤ K‖x‖X ‖y‖X for some K > 0 and for all x, y ∈ X

is said to be a (real) continuous bilinear form. Two vectors, x and y, in an inner
product space X are said to be orthogonal if 〈x, y〉X = 0. A collection {xi}i∈IN of
vectors in X is called an orthonormal set if 〈xi, xi〉X = 1 for all i, and 〈xi, xj〉X = 0
if i 6= j.

Definition 1.11. A family {xλ}λ∈Λ (Λ an index set) is said to be total (or com-
plete) in the Hilbert space X if

〈x, xλ〉X = 0 for all λ ∈ Λ =⇒ x = 0.

A total orthonormal family is called an orthonormal base.

Lemma 1.12. Every inner product space X is a normed linear space with the norm
‖x‖X =

√
〈x, x〉X .

Proof. Let us refer to Theorem II.2 on page 38 in [13]. �

Definition 1.13. A complete (real) inner product space is called a (real) Hilbert
space.

Suppose X and Y are Hilbert spaces. Then the set of pairs (x, y) with x ∈ X,
y ∈ Y is a Hilbert space called the direct sum of the spaces X and Y and denoted
by X ⊕ Y . The natural inner product on X ⊕ Y is given by

(1.2) 〈(x1, y1), (x2, y2)〉X⊕Y = 〈x1, x2〉X + 〈y1, y2〉Y
for all (x1, y1), (x2, y2) ∈ X ⊕ Y .

Let M be a closed subspace of a given Hilbert space X. Under the natural inner
product that it inherits as a subspace of X, M is a Hilbert space. We denote by
M⊥ the set of vectors in X which are orthogonal to M ; M⊥ is called the orthogonal
complement of M . It follows from the linearity of the inner product that M⊥ is
a linear subspace of X. Further, we can prove, that M⊥ is closed. Thus M⊥ is
also a Hilbert space. M and M⊥ have only the zero element in common. The next
Theorem 1.14 is usually called the projection theorem.

Theorem 1.14. Let X be a Hilbert space, M a closed subspace. Then every x ∈ X
can be uniquely written x = z + w where z ∈M and w ∈M⊥.

Proof. We refer the reader to Theorem II.3 on page 42 in [13]. �
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Remark 1.15. Theorem 1.14 sets up a natural isomorphism between M ⊕M⊥
and X given by

(1.3) (z, w) 7→ z + w.

We will suppress the isomorphism and simply write X = M ⊕M⊥. Let us choose
x1, x2 ∈ X, z1, z2 ∈M and w1, w2 ∈M⊥ such that x1 = z1 +w1 and x2 = z2 +w2.
By (1.3) we identify x1 and (z1, w1) respectively x2 and (z2, w2). On the Hilbert
spaces M and M⊥ we use the inner product 〈· , ·〉X that M and M⊥ inherit as a
subspace of X. Then it follows

〈x1, x2〉X = 〈z1 + w1, z2 + w2〉X
= 〈z1, z2〉X + 〈w1, z2〉X + 〈z1, w2〉X︸ ︷︷ ︸

=0

+〈w1, w2〉X

(1.2)
= 〈(z1, w1), (z2, w2)〉M⊕M⊥ .

Thus, the inner product on M ⊕M⊥ given by (1.2) coincides with 〈· , ·〉X .

An important class of bounded operators on Hilbert spaces is that of the pro-
jections.

Definition 1.16. Let X be a Hilbert space. A bounded operator P into itself is said
to be a projection if P2 ≡ P holds. P is called orthogonal if 〈x− P(x),P(x)〉X = 0
for all x ∈ X.

The following result is known as the principle of uniform boundedness or the
Banach-Steinhaus theorem.

Theorem 1.17. Let {A} be a set in L(B1, B2) for two Banach spaces B1 and B2.
If ‖A(x)‖B2

is bounded for each fixed x ∈ B1, as A ranges over {A}, then there
exists K > 0 such that ‖A‖L(B1,B2) ≤ K for all of {A}.
Proof. Let us refer to Theorem 6.3.1 on page 112 in [15]. �

Now we introduce the dual space of a given Banach space.

Definition 1.18. Let B be a Banach space. The space L(B, IR) is called the dual
space of B and it is denoted by B′. The elements of B′ are continuous linear func-
tionals. We write 〈f, x〉B′,B for the duality pairing of f ∈ B′ with an element
x ∈ B.

Since IR is complete, B′ is a Banach space (Lemma 1.8). We define ‖ · ‖B′ =
‖ · ‖L(B,IR). In the applications we will often consider the dual X ′ of a Hilbert

space X. Let us recall the Riesz representation theorem. For a proof we refer to
Theorem II.4 on page 43 in [13].

Theorem 1.19. Let X be a Hilbert space with dual X ′. For each f ∈ X ′, there
is a unique yf ∈ X such that 〈f, x〉X′,X = 〈yf , x〉X for all x ∈ X. In addition
‖yf‖X = ‖f‖X′ .

A bounded linear operator from a normed linear space V1 to a normed linear
space V2 is called an isomorphism if it is bijective and continuous and if it possesses
a continuous inverse. If it preserves the norm, it is called isometric isomorphism.
Due to Theorem 1.5 a bounded linear operator possesses a continuous inverse if
it is bijective and both V1 and V2 are Banach spaces. Obviously, an isometric
isomorphism has norm one.
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Remark 1.20. By Theorem 1.19 we define the Riesz isomorphism JX which maps
the Hilbert space X onto its dual X ′ by yf 7→ f and

〈f, x〉X′,X = 〈JX(yf ), x〉X′,X = 〈yf , x〉X
for all x ∈ X. Often there is made no difference between an element yf ∈ X and
the corresponding element (the riesz representant) f ∈ X ′. We point out that we
have ‖JX‖L(X,X′) = 1. Thus, JX is an isometric isomorphism. The dual space X ′

is also a Hilbert space: Due to Theorem 1.19 the natural inner product on X ′ is
given by

(1.4) 〈f, g〉X′ = 〈J−1
X (f),J−1

X (g)〉X
for all f, g ∈ X ′.

If the normed linear space V has a countable dense subset it is called to be
separable.

Proposition 1.21. Let X and Y be Hilbert spaces. We define

A : X ′ ⊕ Y ′ → (X ⊕ Y )′

〈A(f, g), (x, y)〉(X⊕Y )′,X⊕Y = 〈f, x〉X′,X + 〈g, y〉Y ′,Y
for all (f, g) ∈ X ′ ⊕ Y ′ and (x, y) ∈ X ⊕ Y . Then A is an isometric isomorphism.

Proof. We have mentioned that X ⊕ Y is a Hilbert space with the inner product
(1.2). Due to Remark 1.20 the dual space (X ⊕ Y )′ is also a Hilbert space. Since
elements of X ′ and Y ′ are continuous, A is also continuous. JY and JX⊕Y are the
Riesz isomorphisms which map Y onto Y ′ respectively X ⊕ Y onto (X ⊕ Y )′. For

(f, g), (f̃ , g̃) ∈ X ′ ⊕ Y ′ and α, β ∈ IR we obtain

〈A(α(f, g) + β(f̃ , g̃), (x, y)〉(X⊕Y )′,X⊕Y

= 〈αf + βf̃ , x〉X′,X + 〈αg + βg̃, y〉Y ′,Y
= 〈αA(f, g) + βA(f̃ , g̃), (x, y)〉(X⊕Y )′,X⊕Y

for all (x, y) ∈ X ⊕ Y . Therefore, A is linear and belongs to L(X ′ ⊕ Y ′, (X ⊕ Y )′).
Let us assume A(f, g) = 0 for f in X ′ and g in Y ′. Then it follows

〈A(f, g), (x, y)〉(X⊕Y )′,X⊕Y = 0

for all (x, y) ∈ X ⊕ Y . So, 〈f, x〉X′,X = −〈g, y〉Y ′,Y for all (x, y) ∈ X ⊕ Y . This is
only true if (f, g) = (0, 0). Thus, A in injective. Let us choose r ∈ (X ⊕ Y )′. A is
surjective if and only if there exists (f, g) ∈ X ′ ⊕ Y ′ such that A(f, g) = r. x̃ ∈ X
and ỹ ∈ Y are defined by

(1.5) (x̃, ỹ) = J −1
X⊕Y (r) .

If we set f = JX(x̃) and g = JY (ỹ). We achieve

〈A(f, g), (x, y)〉(X⊕Y )′,X⊕Y = 〈JX(x̃), x〉X′,X + 〈JY (ỹ), y〉Y ′,Y
= 〈x̃, x〉X + 〈ỹ, y〉Y

(1.2)
= 〈(x̃, ỹ), (x, y)〉X⊕Y

(1.5)
= 〈r, (x, y)〉(X⊕Y )′,X⊕Y

for all (x, y) ∈ X ⊕ Y . This imply the surjectivity of A. Hence, A is a bijection.
By applying Theorem 1.5 A is an isomorphism. Finally, we prove the isometry of
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A: Let (f, g) ∈ X ′ ⊕ Y ′. For (x, y) = J −1
X⊕Y (A(f, g)) the proof of the surjectivity

has shown f = JX(x) and g = JY (y). Further we have ‖JX(x)‖X′ = ‖x‖X and
‖JY (y)‖Y ′ = ‖y‖Y (Theorem 1.19). This yields

‖A(f, g)‖2(X⊕Y )′
Lem. 1.12

= 〈A(f, g),A(f, g)〉(X⊕Y )′

(1.4)
= 〈J−1

X⊕YA(f, g),J−1
X⊕YA(f, g)〉

X⊕Y
= 〈(x, y), (x, y)〉X⊕Y

(1.2)
= 〈x, x〉X + 〈y, y〉Y

(1.4)
= 〈JX(x),JX(x)〉X′ + 〈JY (y),JY (y)〉Y ′
= 〈f, f〉X′ + 〈g, g〉Y ′

(1.2)
= 〈(f, g), (f, g)〉X′⊕Y ′

Lem. 1.12
= ‖(f, g)‖2X′⊕Y ′ .

Therefore, A is isometric, and the proof is complete. �

Remark 1.22. Due to Proposition 1.21 we identify X ′⊕Y ′ with (X⊕Y )′, so that
we use X ′ ⊕ Y ′ as the dual space of X ⊕ Y . The natural inner product on X ′ ⊕ Y ′
is

〈(f, g), (f̃ , g̃)〉X′⊕Y ′ = 〈f, f̃〉X′ + 〈g, g̃〉Y ′
(1.4)
= 〈J−1

X (f),J−1
X (f̃)〉X + 〈J−1

Y (g),J−1
Y (g̃)〉Y

for all (f, g), (f̃ , g̃) ∈ X ′ ⊕ Y ′.
Definition 1.23. A sequence {xn}n∈IN converges weakly to an element x of the
Hilbert space X, xn ⇀ x, n→∞, if we have

lim
n→∞

〈f, xn〉X′,X = 〈f, x〉X′,X
for all f ∈ X ′.

By the Theorem 1.19, a sequence {xn}n∈IN converges weakly to an element x
of the Hilbert space X if limn→∞〈y, xn〉X = 〈y, x〉X for all y ∈ X. The following
results are useful in the Hilbert space approach to differential equations.

Lemma 1.24. A bounded sequence in a Hilbert space contains a weakly convergent
subsequence.

Proof. Let us refer to Theorem 5.12 on page 80 in [9]. �

Lemma 1.25. Let X be a Hilbert space. Then the weak convergence of {xn}n∈IN

in X implies the boundedness of ‖xn‖X .

Proof. We refer the reader to Korollar 13.3 on page 61 in [10]. �

Lemma 1.26. Let X be a finite dimensional Hilbert space. Then every weak con-
vergent sequence converge strongly in X.

Proof. We choose a sequence {xn}n∈IN such that xn ⇀ x, n→∞, for some x ∈ X.
Further let {ϕ1, . . . , ϕN} be a orthonormal base for the N -dimensional Hilbert
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space X and x =
∑N
i=1 x

iϕi, xn =
∑N
i=1 x

i
nϕi. Hence the weak convergence and

the linearity of the inner product imply

0 = lim
n→∞

∣∣〈xn − x, ϕj〉X
∣∣ ≤ lim

n→∞

N∑

i=1

∣∣xin − xi〈ϕi, ϕj〉X
∣∣ = lim

n→∞

∣∣xjn − xj
∣∣

for j = 1, . . . , N . Thus,

0 ≤ lim
n→∞

‖xn − x‖X = lim
n→∞

∥∥∥
N∑

i=1

(xin − xi)ϕi
∥∥∥
X
≤

N∑

i=1

lim
n→∞

|xin − xi| = 0.

�

Definition 1.27. Let V1 and V2 be two normed linear spaces. A linear operator
K ∈ L(V1, V2) is called compact if K takes bounded sets in V1 into precompact sets
in V2.

An important property of compact operators is given by:

Lemma 1.28. A compact operator maps weakly convergent sequences into norm
convergent sequences.

Proof. Let us refer to Theorem VI.11 on page 199 in [13]. �

The following lemma is important since one can use it to prove that an operator
is compact. For a proof we refer to Theorem VI.12 on page 200 in [13].

Lemma 1.29. Let B1, B2 and B be Banach spaces and A ∈ L(B1, B2). If B ∈
L(B2, B) and if A or B is compact, then B ◦ A is compact.

Let us recall the Fredholm alternative. For a proof we refer to the corollary on
page 203 in [13].

Theorem 1.30. If K is a compact operator from a Hilbert space X into itself, then
either (IX −K)−1 exists or K(v) = v has a solution.

A further important theorem about compact operators is given by Riesz-Schauder
theorem. Therefore we need some more definitions.

Definition 1.31. Let B be a Banach space and A ∈ L(B). A complex number λ
is said to be in the resolvent set ρ(A) of A if λIB −A is a bijection with a bounded
inverse. If λ /∈ σ(A), then λ is said to be in the spectrum σ(A) of A.

We note that by Theorem 1.5, λIB −A automatically has a bounded inverse if
it is bijective. We consider a subset of the spectrum.

Definition 1.32. Let B be a Banach space and A ∈ L(B). An element v 6= 0
which satisfies A(v) = λv for some λ ∈ IC is called an eigenvector (or eigenfunction)
of A; λ is called the corresponding eigenvalue.

Theorem 1.33. Let K be a compact operator on a Hilbert space X, then σ(K) is
a discrete set having no limit points except perhaps λ = 0. Further any nonzero
λ ∈ σ(K) is an eigenvalue of finite multiplicity (i.e., the corresponding space of
eigenvectors is finite dimensional).

Proof. We refer to Theorem VI.15 on page 203 in [13]. �
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If xn ⇀ x, n → ∞, we do not have limn→∞ ‖xn‖X = ‖x‖X in general. But we
get the following result.

Lemma 1.34. Let X be a Hilbert space. If xn ⇀ x, n → ∞, then ‖x‖X ≤
lim
n→∞

inf ‖xn‖X .

Proof. Let us refer to Lemma 13.2.1 on page 351 in [15]. �
Definition 1.35. Let X be a Hilbert space. f : X → IR is called weakly lower
semicontinuous if

f(x) ≤ lim
n→∞

inf f(xn)

as xn ⇀ x, n→∞.

Remark 1.36. From Lemma 1.34 we infer that the norm is weakly lower semicon-
tinuous.

Definition 1.37. Let X and Y be two Hilbert spaces with duals X ′ and Y ′ respec-
tively. Then we associate with every bounded operator A : X → Y ′ defined on all
of X, an adjoint, denoted by A? and defined by

〈A?(y), x〉X′,X = 〈A(x), y〉Y ′,Y for all x ∈ X and y ∈ Y.
Lemma 1.38. Let X and Y be two Hilbert spaces with duals X ′ and Y ′, respec-
tively, and A ∈ L(X,Y ′) be a bounded operator; its adjoint A? has the following
properties:

1) A? ∈ L(Y,X ′);
2) ‖A?‖L(Y,X′) = ‖A‖L(X,Y ′): the mapping A 7→ A? is thus an isometry of

L(X,Y ′) into L(Y,X ′);
3) We have

ran (J −1
X A?) = (ker (J −1

Y A)⊥,

ran (J −1
Y A) = ker (J −1

X A?)⊥,
ker (J −1

X A?) = ker (J −1
Y AJ−1

X A?),
ran (J −1

Y A) = ran J −1
Y AJ−1

X A?).
4) If any of the two subspaces ran (J −1

Y A), ran (J −1
Y AJ−1

X A?) is closed, than
so the other.

Proof. We refer the reader to Theorem 4 on page 322 in [5], Theorem 8.4 on page 232
and Theorem 11.2 on page 244 in [14]. �
Lemma 1.39. Let X and Y be two Hilbert spaces with duals X ′ and Y ′ respectively.
Then we have for every A ∈ L(X,Y ′):

A is surjective =⇒ A? is injective.

Proof. Since A is surjective, we get ran (A) = Y ′ and ran (J −1
Y A) = Y . Due to

Lemma 1.38 we obtain ker (J −1
X A?)⊥ = Y . This leads to ker (J −1

X A?) = {0}, and
therefore we have ker (A?) = {0}. Hence, A? is injective. �

Remark 1.40. If A? is injective then ran (J −1
Y A) = Y by Lemma 1.38. From this

we derive ran (A) = Y ′. Therefore, ran (A) is only dense in Y ′. If ran (A) is closed,
A is surjective. In Theorem 1.42 we will give equivalent assertions for surjectivity
of A.
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Example 1.41. We shall give an example for an injective operator that is not
surjective. Let us choose Ω ⊂ IRn and A? = (−∆)−1 : L2(Ω)→ L2(Ω) i, u = A?(f)
is a weak solution of {

−∆u = f in Ω, ii

u = 0 on ∂Ω,

i.e., u ∈ H1
0 (Ω) solves

(1.6)

n∑

i=1

∫

Ω

uxi ϕxi dx =

∫

Ω

fϕ dx for all ϕ ∈ H1
0 (Ω) .

It can be proved that (1.6) has a unique solution u ∈ H1
0 (Ω). It is clear, that A? is

linear. Further, if u = A?(f) and v = A?(g) then w = u− v ∈ H1
0 (Ω) is a solution

of
n∑

i=1

∫

Ω

wxi ϕxi dx =

∫

Ω

(f − g)ϕdx for all ϕ ∈ H1
0 (Ω).

f 6≡ g leads to w 6≡ 0. Thus, A? is injective. Further the linear operator −∆ :
L2(Ω)→ L2(Ω) is selfadjoint. This yields

〈A?(f), g〉L2(Ω)

(4.1)
= −

∫

Ω

A?(f) g dx = −
∫

Ω

A?(f) ∆ (A?(g))︸ ︷︷ ︸
=g

dx

Int. by parts
= −

∫

Ω

∆ (A?(f))︸ ︷︷ ︸
=f

A?(g) dx =

∫

Ω

A?(g) f dx

= 〈A?(g), f〉L2(Ω)

for all f, g ∈ L2(Ω). Therefore, A? ≡ A. Since ran (A) ⊂ H1
0 (Ω)

⊂
6= L2(Ω) we

conclude that A = (−∆)−1 is not surjective.

Let V1 and V2 be two Hilbert spaces and f : M ⊂ V1 → V2. f is said to be closed
if its graph, {(x, f(x) : x ∈M}, is a closed set in V1 × V2. By D(f) we denote the
domain of f .

Theorem 1.42. Let A be a closed densely defined linear operator from a Hilbert
space X into the dual Y ′ of a Hilbert space Y . Then the following assertions are
equivalent:

1) A is surjective, i.e., ran (A) = Y ′.
2) There exists a constant K ≥ 0 such that

‖v‖Y ≤ K ‖A?(v)‖X′ for all v ∈ D(A?) ⊂ Y.
3) ker (A?) = {0} and ran (A?) is closed.

Proof. Let us refer to Theorem II.19 on page 29 in [3]. �

Lemma 1.43. Let X and Y be two Hilbert spaces with duals X ′ and Y ′, respec-
tively, and A ∈ L(X,Y ′) be surjective. Then the linear operator B = A◦J −1

X ◦A? :
Y → Y ′ is bounded and invertible, and B−1 ∈ L(Y ′, Y ) holds.

iWe introduce the Hilbert spaces L2(Ω) and H1
0 (Ω) in Section 4.

iiThe Laplacian is given by ∆ = ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

.
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Proof. Since A is surjective we have ker (A?) = {0} by Lemma 1.39. Due to
Lemma 1.38 we get ker (AJ −1

X A?) = {0}. Thus, B is injective. The surjectivity of

A leads to the surjectivity of J −1
Y A and the closedness of ran (J −1

Y A). Applying

Lemma 1.38 again we obtain ran (J −1
Y B) is closed, too. This leads to

Y = ran (J −1
Y A) = ran (J−1

Y A)
Lem. 1.38

= ran (J−1
Y B) = ran (J −1

Y B).

Thus, B is surjective and therefore bijective. Since A ∈ L(X,Y ′) holds A? is
bounded (Lemma 1.38). By Lemma 1.8 the operator B is continuous. Due to
Theorem 1.5 we get B−1 exists and is continuous. �

2. Local theory of optimization

In this section we recall optimality conditions for infinite dimensional optimiza-
tion problems.

Definition 2.1. Let B1 and B2 be Banach spaces and f : B1 → B2. If there exists
A ∈ L(B1, B2), such that at some point x ∈ B1

lim
‖y‖B1

→0

‖f(x+ y)− f(x)−A(y)‖B2

‖y‖B1

= 0,

then A(y) is called the Fréchet-differential of f(x) at x, written δf(x; y). The op-
erator A is called the Fréchet-derivative of f(x) at x, and we write A = f ′(x) and
δf(x; y) = f ′(x)y.

If f : B1 → B2 has a Fréchet-derivative at x, it is unique (see Proposition 1 on
page 172 in [11]) and f is continuous at x (see Proposition 3 on page 173 in [11]).
Further we have

(2.1) 〈f ′(x), y〉B′2,B2
= lim
t→0

1

t
(f(x+ ty)− f(x))

for each y ∈ B2 (see Proposition 2 on page 173 in [11]). If the correspondence
x 7→ f ′(x) is continuous at the point x0, we say that the Fréchet derivative of f is
continuous at x0. If the derivative of f is continuous on some open set O, we say
that f is continuously Fréchet-differentiable on O.

Let X be a Hilbert space and J : X → IR be a cost functional. We consider the
constrained minimizing problem

(2.2) minimize J(x) subject to e(x) = 0,

where e is a constraint function from X into the dual space Y ′ of a Hilbert space
Y . The Lagrange functional associated with (2.2) is denoted

L(x, λ) = J(x) + 〈e(x), λ〉Y ′,Y
and the Lagrange multiplier is some specific λ ∈ Y . Partial derivatives with respect
to the variable x ∈ X will be denoted by primes.

Definition 2.2. We consider the constrained minimizing problem (2.2). If x0 ∈ X
is such that e′(x0) maps X onto Y ′, the point x0 is said to be a regular point of e.

Theorem 2.3. Let x0 be a regular point of the continuously Fréchet-differentiable
function e mapping the Hilbert space X into the dual space Y ′ of a Hilbert space
Y . Then there is a neighborhood U(x0) ⊂ X of the point x0, such that e′(x) is
surjective for all x ∈ U(x0).
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Proof. We define the linear mapping

(2.3) B(x) = e′(x) ◦ J −1
X ◦ e′(x)?

for all x ∈ X. From Lemma 1.43 and Definition 2.2 it follows that B(x0) is invert-
ible. Since the mapping x 7→ e(x) is continuously Fréchet-differentiable the function
x 7→ B(x) is continuous (Lemma 1.8). Due to Lemma 1.6 and Remark 1.7 there
exists a neighborhood U(x0) of x0 such that B(x) is invertible. By Lemma 1.38
this yields e′(x) is surjective for all x ∈ U(x0). �

Remark 2.4. Due to Lemma 1.39 the operator e′(x)? is injective in the same
neighborhood U(x0) of x0.

Our aim is to give necessary conditions for an extremum of J subject to e(x) = 0
where J is a real-valued functional on a Hilbert space X and e is a mapping from
X into the dual space Y ′ of a Hilbert space Y .

Theorem 2.5. If the continuously Fréchet-differentiable functional J has a local
extremum under the constraint e(x) = 0 at a regular point x∗, then there exists an
element λ∗ ∈ Y such that the Lagrangian functional is stationary at x∗, i.e.,

(2.4) L′(x∗, λ∗) = J ′(x∗) + e′(x∗)?λ∗ = 0.

Proof. Let us refer to Theorem 1 on page 243 in [11]. �

Remark 2.6. The equations (2.4) and e(x∗) = 0 are called the first-order necessary
optimality condition for a local extremum of J at the point x∗ under the constraint
e(x) = 0.

Now we mention the second-order sufficient optimality condition for a local min-
imum. We refer for a proof to Theorem 5.6 in [12].

Theorem 2.7. The twice continuously Fréchet-differentiable functional J has a
local minimum at the point x∗ under the constraint e(x) = 0, if there exists λ∗ ∈ Y
and κ > 0 such that

〈L′′(x∗, λ∗)v, v〉X′,X ≥ κ ‖v‖
2
X for all v ∈ ker (e′(x∗)) .

3. Analysis of an abstract variational problem

In optimization theory saddle-point problems arise very often. For that purpose
we recall basic results for an abstract saddlepoint problem.

LetX and Y be two (real) Hilbert spaces with dual spacesX ′ and Y ′ respectively.
The following bilinear forms are given:

a : X ×X → IR , b : X × Y → IR

with norms

‖a‖ = sup
ϕ,φ∈X
ϕ,φ6=0

a(ϕ, φ)

‖ϕ‖X ‖φ‖X
, ‖b‖ = sup

ϕ∈X,ψ∈Y
ϕ6=0,ψ 6=0

b(ϕ, ψ)

‖ϕ‖X ‖ψ‖Y
.

Let l ∈ X ′ and g ∈ Y ′ be given. We seek (x, λ) ∈ X × Y such that

(3.1)

{
a(x, ϕ) + b(ϕ, λ) = 〈l, ϕ〉X′,X for all ϕ ∈ X,

b(x, ψ) = 〈g, ψ〉Y ′,Y for all ψ ∈ Y.
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With the two bilinear forms a and b we define linear operators A ∈ L(X,X ′) and
B ∈ L(X,Y ′):

〈A(ϕ), φ〉X′,X = a(ϕ, φ) for all ϕ, φ ∈ X ,

〈B(ϕ), ψ〉Y ′,Y = b(ϕ, ψ) for all ϕ ∈ X, ψ ∈ Y .
The adjoint operator B? of B is defined by Definition 1.37. It can be shown that

‖A‖L(X,X′) = ‖a‖, ‖B‖L(X,Y ′) = ‖b‖.
Using these operators (3.1) yields to

(3.2)

{
A(x) + B?(λ) = l in X ′

B(x) = g in Y ′.

Let V = ker (B) and V (g) = {ϕ ∈ X : B(ϕ) = g}. It follows
{

V (g) = {ϕ ∈ X : b(ϕ, ψ) = 〈g, ψ〉Y ′,Y for all ψ ∈ Y },
V = V (0).

Since B is continuous, V is a closed subspace of X.
Now, we associate with (3.1) the following problem: Find u ∈ V (g) such that

(3.3) a(x, ϕ) = 〈l, ϕ〉X′,X for all ϕ ∈ V.
It is clear, if (x, λ) ∈ X×Y is a solution to (3.1), then u ∈ V (g) is a solution to (3.3).
We want to find conditions, which ensure that the converse is true. Therefore, we
define the polar set V 0 of V by

V 0 = {f ∈ X ′ : 〈f, ϕ〉X′,X = 0 for all ϕ ∈ V }.
Lemma 3.1. The following properties are equivalent:

1) there exists a constant β > 0 such that

(3.4) inf
ψ∈Y

sup
ϕ∈X

b(ϕ, ψ)

‖ϕ‖X ‖ψ‖Y
≥ β;

2) the operator B? is an isomorphism from Y onto V 0 and

‖B?(ψ)‖X′ ≥ β ‖ψ‖Y for all ψ ∈ Y ;

3) the operator B is an isomorphism from V ⊥ onto Y ′ and

‖B(ϕ)‖Y ′ ≥ β ‖ϕ‖X for all ϕ ∈ V ⊥.
Proof. Let us refer the reader to Lemma 4.1 on page 58 in [8]. �

The condition (3.4) is called inf-sup condition or Babuška-Brezzi condition. To
formulate the next theorem, we introduce the linear continuous (restriction) oper-
ator F ∈ L(X ′, V ′):

〈F(f), ϕ〉V ′,V = 〈f, ϕ〉X′,X for all f ∈ X ′, ϕ ∈ V.
Obviously, we derive

‖F(h)‖V ′ ≤ ‖f‖X′ .
Theorem 3.2. (3.1)) and (3.2)) are well-posed (i.e., there is a unique solution) if
and only if the following conditions hold:

1) the operator F ◦ A is an isomorphism from V onto V ′,
2) the bilinear form b(·, ·) satisfies the inf-sup condition (3.4).
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Proof. We refer to Theorem 4.1 on page 59 in [8]. �
The next corollary is an important application of Theorem 3.2.

Corollary 3.3. Let a be V -elliptic, i.e., there exists a constant κ0 > 0 such that

a(ϕ,ϕ) ≥ κ0 ‖ϕ‖2X for all ϕ ∈ V.
Then, (3.1) respectively (3.2) is well-posed if and only if the bilinear form b(·, ·)
satisfies the inf-sup condition (3.4). Let (x, λ) ∈ X × Y be the unique solution to
(3.1). Then we have the estimates

‖x‖X ≤ 1

κ0
‖l‖X′ +

( 1

β
+
‖a‖
κ0β

)
‖g‖Y ′ ,

‖λ‖Y ≤
( 1

β
+
‖a‖
κ0β

)
‖l‖X′ +

(‖a‖
β2

+
‖a‖2
κ0β2

)
‖g‖Y ′ .

Proof. Let us refer to Corollary 4.1 on page 61 in [8] and Theorem 1.1 on page 42
in [4]. �

Now we turn to the discretization of (3.1). Let XN and YM be two finite dimen-
sional spaces such that

XN ⊂ X, dimXN = N, YM ⊂ Y, dimYM = M.

Let X ′N and Y ′M denote their dual spaces with the dual norms:

(3.5) ‖lN‖X′
N

= sup
ϕN∈XN

〈lN , ϕN〉X′,X
‖ϕN‖X

, ‖gM‖Y ′
M

= sup
ψM∈YM

〈gM , ψM〉Y ′,Y
‖ψM‖Y

.

Clearly,

‖l‖X′
N
≤ ‖l‖X′ , ‖g‖Y ′

M
≤ ‖g‖Y ′ for all (l, g) ∈ X ′ × Y ′.

Like in the continuous case, we associate with a(·, ·) and b(·, ·) the operators AN ∈
L(X,X ′N), BM ∈ L(X,Y ′M) and B?N ∈ L(Y,X ′N) defined by

〈AN(φ), ϕN〉X′,X = a(φ, ϕN) for all ϕN ∈ XN , for all φ ∈ X,
〈BM(ϕ), ψM〉Y ′,Y = b(ϕ, ψM) for all ψM ∈ YM , for all ϕ ∈ X,
〈B?N(ψ), ϕN〉X′,X = b(ϕN , ψ) for all ϕN ∈ XN , for all ψ ∈ Y.

B?N is not the dual operator of BM but if BM is restricted to XN and B?N to YM ,
then BM and B?N are indeed dual operators. Moreover, we have:

‖BM(ϕ)‖Y ′
M
≤ ‖B(ϕ)‖Y ′ for all ϕ ∈ X

with similar inequalities for ‖AN‖X′
N

and ‖B?N(ψ)‖X′
N

. For each g ∈ Y ′, we define

the finite–dimensional analogue of V (g):

VNM(g) = {ϕN ∈ XN : b(ϕN , ψM) = 〈g, ψM〉Y ′,Y for all ψM ∈ YM}
and we set

VNM = VNM(0) = ker (BM) ∩XN = {ϕN ∈ XN : b(ϕN , ψM) = 0 for all ψM ∈ YM}.
Right away we remark that generally VNM 6⊂ V and VNM(g) 6⊂ V (g) because YM is
a proper subspace of Y . Now we approximate (3.1) by

(3.6)

{
a(xN , ϕN) + b(ϕN , λM) = 〈l, ϕN〉X′,X for all ϕN ∈ XN ,

b(xN , ψM) = 〈g, ψM〉Y ′,Y for all ψM ∈ YM
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and we associate with (3.6) the following problem:

(3.7) a(xN , ϕN) = 〈l, ϕN〉X′,X for all ϕN ∈ VNM .
Here again, the first component xN of any solution (xN , λM) of (3.6) is also a
solution of (3.7). The converse is true due to the next theorem.

Theorem 3.4. Let (x, λ) be a solution to (3.1).

1) Assume that the following conditions hold:
(a) VNM(g) 6= ∅;
(b) there exists a constant κNM > 0 such that:

(3.8) a(ϕN , ϕN) ≥ κNM ‖ϕN‖2X for all ϕN ∈ VNM .
Then (3.7) has a unique solution xN ∈ VNM(g) and the “error bound” holds

(3.9)

‖x− xN‖X
≤
(

1 +
‖a‖
κNM

)
inf

ϕN∈VNM (g)
‖x− ϕN‖X +

‖b‖
κNM

inf
ψM∈YM

‖λ− ψM‖Y .

2) Assume that hypothesis holds and, in addition, that:
(c) there exists a constant βNM > 0 such that

(3.10) sup
ϕN∈X

b(ϕN , ψM)

‖ϕN‖X
≥ βNM ‖ψM‖Y for all ψM ∈ YM .

Then VNM(g) 6= ∅ and there exists a unique λM in YM such that (xN , λM)
is the only solution of (3.6). Moreover, We get the estimate

(3.11)
‖x− xN‖X + ‖λ− λM‖Y
≤ KNM inf

ϕN∈XN
‖x− ϕN‖X + CNM inf

ψM∈YM
‖λ− ψM‖Y ,

where the constants are given by

KNM =
(

1 +
1

βNM
+
‖a‖
κNM

)(
1 +

‖b‖
βNM

)
, C2

NM = βNM + ‖b‖+
‖b‖
κNM

.

Proof. For the proof we refer the reader to Theorem 1.1 on page 114 in [8] and
Proposition 2.4 on page 54 in [4]. �

Remark 3.5. 1) It can be shown that

inf
ϕN∈VNM (g)

‖x− ϕN‖X ≤
(

1 +
1

βNM

)
inf

φN∈XN
‖x− φN‖X

holds. The condition

(3.12) sup
ϕN∈X

b(ϕN , ψM)

‖ϕN‖X
≥ β∗ ‖ψM‖Y for all ψM ∈ YM .

is called the inf-sup condition.
2) If there exists two positive constants κ∗ > 0 and β∗ > 0 such that κNM ≥ κ∗

and βNM ≥ β∗, then both KNM and CNM are independent of N and M :

K =
(

1 +
1

β∗
+
‖a‖
κ∗

)(
1 +
‖b‖
β∗

)
, C = β∗ + ‖b‖+

‖b‖
κ∗

.
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3) The bound (3.9) can be slightly improved without making use of condition
(3.10). Indeed, it can be proved (see Remark 1.1 on page 116 in [8])

‖x− xN‖X
≤
(

1 +
‖a‖
κ∗

)
inf

ϕN∈VNM (g)
‖x− ϕN‖X +

1

κ∗
inf

ψM∈YM
sup

ϕN∈VNM

b(ϕN , λ− ψM)

‖ϕN‖X
.

Note that the expression

inf
ψM∈YM

sup
ϕN∈VNM

b(ϕN , λ− ψM)

‖ϕN‖X
takes into account the fact that VNM 6⊂ V . It vanishes when VNM ⊂ V .

(1) Observe that the bilinear form a is VNM -elliptic as soon as a(ϕN , ϕN) > 0
for all ϕN 6= 0. Analogously, the bilinear form b satisfies the discrete inf-sup
condition (3.8) provided ker (BM)∩YM = {0}. But in the general case both
assumptions have to be checked.

The following lemma established a useful criterion for (3.12)

Lemma 3.6. The inf-sup condition (3.12) holds with a constant β∗ > 0 independent
of N,M if and only if there is a restriction operator rN ∈ L(X,XN) satisfying:

b(ϕ− rN(ϕ), ψM) = 0 for all (ψM , ϕ) ∈ YM ×X
and

‖rN(ϕ)‖X ≤ K ‖ϕ‖X for all ϕ ∈ X
with a constant K > 0 independent of N .

Proof. Let us refer to Lemma 1.1 on page 117 in [8]. �

4. Function spaces

Since we are interested in optimal control of partial differential equations, we
require basic definitions of function spaces and associated results.

The term domain and the symbol Ω shall be reserved for an open set in the
n–dimensional, real Eucledian space IRn. A typical point of IRn is denoted by
x = (x1, . . . , xn); its norm |x|2 = (

∑n
j=1 x

2
j )

1
2 .

Definition 4.1. Let Ω be an open set of IRn with boundary Γ. If boundary Γ is
a (N − 1)-dimensional manifold of class Cr (r ≥ 1 which must be specified) and
Ω is locally located on one side of Γ, we will say, Ω is of class Cr. The boundary
Γ is locally Lipschitz if for any x ∈ Γ, there is a neighborhood such that Γ admits
a representation as a hypersurface xn = θ(x1, . . . , xn−1), where θ is Lipschitz con-
tinuous and x1, . . . , xn−1 are rectangular coordinates in IRn in a basis that may be
different from the canonical basis.

Remark 4.2. If Ω is of class C1, then Ω is locally Lipschitz.

Definition 4.3. Ω ⊂ IRn is said to be disconnected if there exists two nonempty
subsets Ω1,Ω2 ⊂ Ω such that

Ω1 ∩ Ω2 = ∅ , Ω = Ω1 ∪ Ω2.

If Ω is not disconnected, Ω is called connected.
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If a = (a1, . . . , an) is an n-tupel of nonnegative integers aj , we call a a multi-
index and denote by xa the monomial xa1

1 · · ·xann , which has degree |a| = ∑n
j=1 aj .

Similarly

Da = ∂a1

∂x
a1
1

· · · ∂an
∂xann

denotes a differential operator of order |a|. D(0,...,0)ϕ = ϕ for a function ϕ on Ω.
We shall write G ⊂⊂ Ω provided G ⊂ Ω and G is a compact subset of IRn. If ϕ is
a function defined on G, we define the support of ϕ as

suppϕ = {x ∈ G : ϕ(x) 6= 0}.
We say that ϕ has compact support in Ω if suppϕ ⊂⊂ Ω. We shall denote by ∂G
the boundary of G in IRn. For any nonnegative integer m let Cm(Ω) be the vector
space consisting of all functions ϕ which, together with all their partial derivatives
Daϕ of order |a| ≤ m, are continuous on Ω. We abbreviate C0(Ω) = C(Ω). Let
C∞(Ω) =

⋂∞
m=1 C

m(Ω). The subspaces C0(Ω) and C∞0 (Ω) consist of all those
functions in C(Ω) and C∞(Ω), respectively, which have compact support in Ω.

Since Ω is open, functions in Cm(Ω) need not be bounded on Ω. If ϕ ∈ C(Ω)
is bounded and uniformly continuous on Ω, then it possesses a unique, bounded,
continuous extension to the closure Ω of Ω. Accordingly, we define the vector space
Cm(Ω) to consist of all those functions ϕ ∈ Cm(Ω) for which Daϕ is bounded and
uniformly continuous on Ω for 0 ≤ |a| ≤ m. Cm(Ω) is a Banach space with norm
given by

‖ϕ‖Cm(Ω) = max
0≤|a|≤m

sup
x∈Ω
|Daϕ(x)|.

If 0 < s ≤ 1, we define Cm,s(Ω) to be the subspace of Cm(Ω) consisting of those
functions ϕ, for which, 0 ≤ |a| ≤ m, Daϕ satisfies in Ω a Hölder condition of
exponent s, that is, there exists a constant K > 0 such that

|Daϕ(x)−Daϕ(y)| ≤ K |x− y|s , x, y ∈ Ω.

Cm,s(Ω) is a Banach space with norm given by

‖ϕ‖Cm,s(Ω) = ‖ϕ‖Cm(Ω) + max
0≤|a|≤m

sup
x,y∈Ω

|Daϕ(x)−Daϕ(y)|
|x− y|s .

Where no confusion of domains may occur we will write ‖ · ‖Cm in place of ‖ · ‖Cm(Ω)

and ‖ · ‖Cm,s instead of ‖ · ‖Cm,s(Ω). It should be noted that for 0 < r < s ≤ 1,

Cm+1(Ω) ( Cm,s(Ω) ( Cm,r(Ω) ( Cm(Ω).

We denote by Lp(Ω) the class of all measurable functions ϕ, defined on Ω, for
which ∫

Ω

|ϕ|p dx <∞.

The function ‖ · ‖Lp(Ω) defined by

‖ϕ‖Lp(Ω) =
(∫

Ω

|ϕ|p dx
) 1
p

is a norm on Lp(Ω) provided 1 ≤ p < ∞. L2(Ω) is a separable Hilbert space with
the inner product

(4.1) 〈ϕ, ψ〉L2(Ω) =

∫

Ω

ϕψ dx .
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‖ϕ‖L∞(Ω) = ess sup
x∈Ω
|ϕ(x)|

is a norm on L∞(Ω). In situations where no confusion of domains may occur we
shall write ‖ · ‖Lp in place of ‖ · ‖Lp(Ω) and 〈· , ·〉L2 instead of 〈· , ·〉L2(Ω). The next

theorem is known as Fischer-Riesz theorem. For a proof we refer the reader to
Theorem 2.10 on page 26 and Corollary 2.11 on page 27 in [1].

Theorem 4.4. Lp(Ω) is a Banach space if 1 ≤ p ≤ ∞. Every convergent sequence
in Lp(Ω) has a subsequence converging pointwise a.e. on Ω.

We shall have occasion to use a generalization of Hölders inequality.

Proposition 4.5. Let Ω be a bounded domain in IRn. Assume p1, . . . , pm ∈ [1,∞]
and

∑m
j=1 p

−1
i = 1 (with ∞−1 = 0). If ϕi ∈ Lpi(Ω) for i = 1, . . . ,m then the

function
∏m
j=1 ϕj belongs to L1(Ω) and we have the estimate

(4.2)

∫

Ω

|
m∏

j=1

ϕj | dx ≤
m∏

j=1

‖ϕj‖Lpi .

Proof. The proof follows by an induction argument.

1) The case m = 2 follows directly from Hölders inequality (Theorem 2.3 on
page 23 and Remark 2.5 on page 24 in [1]).

2) Induction hypothesis: We assume that the statement is proved for m ≥ 2.

3) Now let p1, . . . , pm+1 ∈ [1,∞], m ≥ 2 and
∑m+1
j=1 p−1

j = 1. For ϕi ∈ Lpi(Ω)
we know

∫

Ω

|
m+1∏

j=1

ϕj | dx
Hölder’s ineq.

≤ ‖
m∏

j=1

ϕj‖Lq ‖ϕm+1‖Lpm+1

with q−1 + p−1
m+1 = 1. Since ϕi ∈ Lpi(Ω) we have ϕqj ∈ L

pi
q (Ω) and∑m

j=1(piq )−1 = 1. By applying the induction hypothesis we obtain:

‖
m∏

j=1

ϕj‖Lq =
(∫

Ω

|
m∏

j=1

ϕqj | dx
) 1
q ≤

m∏

j=1

‖ϕqj‖
1
q

L
pi
q

=

m∏

j=1

‖ϕj‖Lpi .

Therefore, we get
∏m+1
j=1 ϕj ∈ L1(Ω), and the formula (4.2) is proved.

�

Next we introduce Sobolev spaces of integer. These spaces are defined over an
arbitrary domain Ω ⊂ IRn and are vector subspaces of various spaces Lp(Ω). We
define a function ‖ · ‖Wm,p(Ω), where m is a nonnegative integer and 1 ≤ p ≤ ∞, as

follows:

‖ϕ‖Wm,p(Ω) =
( ∑

0≤|a|≤m
‖Daϕ‖pLp(Ω)

) 1
p

if 1 ≤ p <∞ ,(4.3)

‖ϕ‖Wm,∞(Ω) = max
0≤|a|≤m

‖Daϕ‖L∞(Ω)(4.4)

for any function ϕ for which the right side makes sense. In situations where no
confusion of domains may occur we shall write ‖ · ‖Wm,p in place of ‖ · ‖Wm,p(Ω).

(4.3) and (4.4) are norms on any linear space on which the right side takes finite
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values provided functions are identified in the space if they are equal a.e. in Ω. We
define to any given values of m and p the Sobolev spaces:

Wm,p(Ω) = the completation of {ϕ ∈ Cm(Ω) : ‖ϕ‖Wm,p <∞} with

respect to the norm ‖ · ‖Wm,p(Ω) ,

Wm,p
0 (Ω) = the closure of C∞0 (Ω) in the space Wm,p(Ω).(4.5)

Equipped with the appropriate norms (4.3) and (4.4), these are called Sobolev

spaces over Ω. Clearly, W 0,p(Ω) = Lp(Ω), and if 1 ≤ p <∞, W 0,p
0 (Ω) = Lp(Ω) by

Theorem 2.19 on page 31 in [1].

Lemma 4.6. Wm,p(Ω) is a Banach space.

Proof. Let us refer the reader to Theorem 3.2 on page 45 in [1]. �

A function ϕ defined a.e. on Ω is said to be locally integrable on Ω provided ϕ ∈
L1(M) for every measurable M ⊂⊂ Ω. In this case we write ϕ ∈ L1

loc(Ω). We now
define the concept of weak derivative of a locally integrable function ϕ ∈ L1

loc(Ω).
If there exists a φ ∈ L1

loc(Ω), such that
∫

Ω

ϕDaψ dx = (−1)|a|
∫

Ω

φψ dx for all ψ ∈ C∞0 (Ω) ,

it is unique up to sets of measure zero and it is called the weak or distributional
partial derivative of ϕ and is denoted by Daϕ. If ϕ is sufficiently smooth to have
continuous partial derivative Daϕ in the usual (classical) sense, then Daϕ is also a
distributional derivative of ϕ. For example a function ϕ, continuous on IR, which
has a bounded derivative ϕ′ except at finitely many points, has a derivative in the
distributional sense.

We can introduce Wm,p(Ω) for any m ≥ 0 and 1 ≤ p <∞ in a different way:

Wm,p(Ω) = {ϕ ∈ Lp(Ω) : Daϕ ∈ Lp(Ω) for 0 ≤ |a| ≤ m,
Daϕ is the weak partial derivative},

(Theorem 3.16 on page 52 in [1]).

Lemma 4.7. Wm,p(Ω) is separable if 1 ≤ p < ∞. In particular, Wm,2(Ω) is a
separable Hilbert space with inner product

〈ϕ, ψ〉Wm,2 =
∑

0≤|a|≤m
〈Daϕ,Daψ〉L2 =

∑

0≤|a|≤m

∫

Ω

DaϕDaψ dx.

Proof. We refer to Theorem 3.5 on page 47 in [1]. �

We write Hm(Ω) in place of Wm,2(Ω) and Hm
0 (Ω) instead of Wm,2

0 (Ω).

Lemma 4.8. Let Ω ⊂ IRn be open and bounded with Lipschitz-continuous boundary
Γ. For m ≥ 1 and real p with 1 ≤ p <∞ there exists a continuous linear extension
operator F : Wm,p(Ω)→Wm,p(IRn) such that

F(ϕ)|Ω = ϕ for all ϕ ∈Wm,p(Ω).

Proof. Let us refer the reader to Theorem 1.2 on page 5 in [8]. �
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If the boundary Γ is Lipschitz continuous, one can show that there exists an
operator τΓ : H1(Ω)→ L2(Γ), linear and continuous, such that

τΓϕ = trace of ϕ on Γ for every ϕ ∈ C1(Ω).

It then seems natural to call τΓϕ the trace of ϕ on Γ, and denote it by ϕ|Γ even if
ϕ is a general function in H1(Ω). A deeper analysis shows that by taking all the
traces of all functions of H1(Ω) one does not obtain the whole space L2(Γ) but only
a subset of it. Further, such a subspace contains H1(Γ). Hence we have,

H1(Γ) ( τΓ(H1(Ω)) ( L2(Γ) ≡ H0(Γ).

Therefore we introduce the space

H1/2(Γ) = τΓ(H1(Ω))

with

‖g‖H1/2 = inf
ϕ∈H1(Ω)
τΓϕ=g

‖ϕ‖H1 .

In a similar way one can see that the traces of functions in H2(Ω) belong to a space
H3/2(Γ). We define

H3/2(Γ) = τΓ(H2(Ω))

and

‖g‖H3/2 = inf
ϕ∈H2(Ω)
τΓϕ=g

‖ϕ‖H2 .

We shall need a special form of the Sobolev embedding theorem. The normed
space V1 is said to be continuous embedded in the normed space V2, and write
V1 ↪→ V2 to designate this embedding, provided

1) V1 is a vector subspace of V2, and
2) the identity operator IV1,V2

defined on V1 into V2 by IV1,V2
(v) = v for all

v ∈ V1 is continuous.

We say, V1 is compact embedded in V2, V1 ↪→↪→ V2, if the embedding operator
IV1,V2

is compact.

Definition 4.9. The bounded domain Ω ⊂ IRn has a locally Lipschitz boundary,
if each point x on the boundary ∂Ω should have a neighborhood U(x) such that
∂Ω ∩ U(x) is the graph of a Lipschitz-continuous function.

Lemma 4.10. Let j ≥ 0 and Ω be a bounded domain in IRn, such that ∂Ω is locally
Lipschitz continuous. Suppose 2m > n > 2(m− 1). Then

Hj+m(Ω) ↪→ Cj,s(Ω)

for s ∈ (0,m− n/2].

Proof. We choose p = 2 and apply Theorem 5.4, Part II, on page 98 in [1]. �

Remark 4.11. If the assumptions of Lemma 4.10 are satisfied, there exists a
constant K > 0 such that

‖ϕ‖Cj,s ≤ K ‖ϕ‖Hj+m for all ϕ ∈ Hj+m(Ω).

Now we mention a special case of the Rellich-Kondrachov theorem. For a proof
we refer the reader to Theorem 6.2 on page 144 in [1].
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Lemma 4.12. Let Ω ⊂ IRn be a bounded domain with locally Lipschitz boundary,
j, m be integers, j ≥ 0, m ≥ 1, and let 1 ≤ p <∞. Then:

W j+m,p(Ω) ↪→↪→W j,q(Ω) if n > mp and 1 ≤ q < np
n−mp ,

W j+m,p(Ω) ↪→↪→W j,q(Ω) if n = mp and 1 ≤ q <∞ ,

W j+m,p(Ω) ↪→↪→W j,q(Ω) if n < mp and 1 ≤ q ≤ ∞.
Remark 4.13. If we choose n ≤ 3, j = 0, m = 1, p = 2, q = 4 we get H1(Ω) is
compact embedded in L4(Ω) from Lemma 4.12. By Lemma 1.28 the embedding op-
erator maps weakly convergent sequences in H1

0 (Ω) into norm convergent sequences
in L4(Ω). In particular, if n = 1 holds, we have H1(Ω) ↪→↪→ Lq(Ω) for 1 ≤ q ≤ ∞.

The following lemma characterize weak convergence in H1(0, 1).

Lemma 4.14. For every f ∈ H1(0, 1)′ there exists ϕ1, ϕ2 ∈ L2(0, 1) such that

〈f, y〉(H1)′,H1 =

∫ 1

0

y′ϕ1 + yϕ2 dx

for all y ∈ H1(0, 1).

Proof. Let us refer the reader to Theorem 3.8 on page 48 in [1]. �

The next lemma gives a useful application of Green’s formula. For a proof we
refer to Lemma 1.4 on page 10 in [8].

Lemma 4.15. Let Ω be a bounded open subset of IRn with Lipschitz–continuous
boundary Γ and n = (n1, . . . , nn) the outward unit normal.

1) For u, v ∈ H1(Ω) and 1 ≤ i ≤ n we have
∫

Ω

uvxi dx = −
∫

Ω

uxiv dx+

∫

Γ

τΓ(uv)ni ds.

2) If in addition u ∈ H2(Ω) we derive

(4.6)

n∑

i=1

∫

Ω

uxi vxi dx = −
n∑

i=1

∫

Ω

uxixiv dx+

n∑

i=1

∫

Γ

τΓ (vuxi)ni ds.

Remark 4.16. By using

∆u =
n∑

i=1

uxixi , ∇u = (ux1
, . . . , uxn) , n = (n1, . . . , nn)

we conclude from (4.6)
∫

Ω

∇u · ∇v dx = −
∫

Ω

∆u v dx+

∫

Γ

τΓ (v∇u) · n ds.

In the remaining of this section we recall the Fourier transform. By ι =
√
−1 we

denote the imaginary unit in IC.

Definition 4.17. For u ∈ L1(IR) we define the Fourier transform of u, denoted by
û:

û(y) =

∫

IR

exp(−ιxy)u(x) dx for all y ∈ IR.
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Remark 4.18. The mapping u 7→ û defined by Definition 4.17 is obviously linear.
From the inequality

|û(y)| ≤ ‖u‖L1(IR) for all y ∈ IR

we deduce:

(4.7)

{
if u ∈ L1(IR), û is a bounded continuous function on IR with

‖û‖L∞(IR) ≤ ‖u‖L1(IR).

In addition we have the Riemann-Lebesgue theorem (see also Theorem IX.7 on
page 327 in [13]):

(4.8) û(y)→ 0 in IC when |y| → ∞ .

Let v ∈ C∞0 (IR). Then we derive, as a result of an integration by parts:

v̂(y) =
1

ιy

∫

IR

exp(−ιxy) v′(x) dx,

from which we have

(4.9) |v̂(y)| ≤ 1

|y| ‖v
′‖L1(IR) → 0, when |y| → ∞.

Now, as C∞0 (IR) is dense in L1(IR), if u ∈ L1(IR), for all ε > 0, we find v ∈ C∞0 (IR),
such that ‖v − u‖L1(IR) ≤ ε/2. Thus from

û(y) = ̂(u− v)(y) + v̂(y),

we derive using (4.9)

|v̂(y)| ≤ ‖u− v‖L1(IR) +
1

|y| ‖v
′‖L1(IR) <

ε

2
+
ε

2
= ε

for |y| sufficiently large (see (4.9)), from which (4.8) follows.

We put

S(IR) = S = {u ∈ C∞(IR) : for all α, l ∈ IN, xαu(l)(x)→ 0 as |x| → ∞}.
S is the space of functions of class C∞ of rapid decay at infinity, which is not
a normed space, but of which the topology can be defined by the (denumerable)
sequence of semi-norms

u 7→ sup
x∈IR
|xku(l)(x)| = dkl(u)

which yields a complete metrisable space:

d(u, v) =
∑

k,l∈IN

akl
dkl(u− v)

1 + dkl(u− v)
for all u, v ∈ S,

where the coefficients akl are chosen to be such that
∑
k,l∈IN akl = 1, is a distance

on S. We should notice that if u ∈ S, then xu(l)(x) ∈ Lp(IR) for all p ≥ 1 and for
all k, l ∈ IN. Further, S is dense in Lp(IR) for all p with 1 ≤ p <∞ (on the contrary
S is not dense in L∞(IR)). For u ∈ S we can thus define its Fourier transform by
Definition 4.17, as well as the Fourier transform of xku(l)(x) for all k, l ∈ IN. Hence,
we also have û ∈ S. Further we have the inversion formula

u(x) =
1

2π

∫

IR

exp(ιxy)û(y) dy for all x ∈ IR.
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Let u, v ∈ S. Then the following properties are valid:

1) û(k) = (ιy)kû.
2) Parseval’s formula:

∫

IR

u(x)v(x) dx =

∫

IR

û(y)v̂(y) dy.

3) Plancharel’s formula:
∫

IR

|u(x)|2 dx =
1√
2π

∫

IR

|û(y)|2 dy.

5. Evolution problems: variational methods

In the optimal control of parabolic systems we shall need to make frequent use
of the notion of integral of a Banach space-valued function ϕ defined on an interval
of IR. We begin therefore with a brief discussion of the Bochner integral, referring
the reader to [16], for instance, for further details and proofs of our assertions.

Let B be a Banach space with norm denoted by ‖ · ‖B and {M1, . . . ,Mm} be a
finite collection of mutually disjoint, measurable subsets of IR, each having finite
measure, and let {b1, . . . , bm} be a corresponding collection of points of B. The
function ϕ on IR defined by

ϕ(t) =

m∑

j=1

χMj
(t) bj ,

iii

is called a simple function. For simple functions we define
∫

IR

ϕ(t) dt =
m∑

j=1

µ(Mj) bj

where µ(M) denotes the (Lebesgue) measure of M . Let M be a measurable set in
IR and ϕ an arbitrary function defined a.e. on M into B. The function ϕ is called
(strongly) measurable on M if there exists a sequence {ϕn}n∈IN of simple functions
with supports in M such that

(5.1) lim
n→∞

‖ϕn(t)− ϕ(t)‖B = 0 a.e. in M.

It can be shown that any function ϕ whose range is separable is measurable provided
the scalar–valued function 〈f, ϕ(·)〉B′,B is measurable on M for each f ∈ B′. We
suppose that a sequence of simple functions ϕn satisfying (5.1) can be chosen in
such a way that

lim
n→∞

∫

M

‖ϕn(t)− ϕ(t)‖B dt = 0.

Then ϕ is called (Bochner) integrable on M and we define

(5.2)

∫

M

ϕ(t) dt = lim
n→∞

∫

IR

ϕn(t) dt.

The integrals on the right side of (5.2) do converge in (the norm topology of) B
to a limit which is independent of the choice of approximating sequence {ϕn}n∈IN.

iiiχM denotes the characteristic function of M : χM (t) = 1 if t ∈M and χM (t) = 0 if t 6∈M .
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A measurable function ϕ is integrable on M if and only if ‖ϕ(·)‖B is (Lebesgue)
integrable on M : ∥∥∥

∫

M

ϕ(t) dt
∥∥∥
B
≤
∫

M

‖ϕ‖B dt.

Definition 5.1. Let −∞ ≤ a < b ≤ ∞. We denote by Lp(a, b;B) iv the linear
space of (equivalence classes of) functions ϕ measurable on (a, b) into B such that

1) ϕ is measurable for dt,
2)

(5.3)





‖ϕ‖Lp(a,b;B) =
(∫ b

a

‖ϕ(t)‖B dt
) 1
p

<∞ if 1 ≤ p <∞ ,

‖ϕ‖L∞(a,b;B) = ess sup
t∈(a,b)

‖ϕ(t)‖B <∞ if p =∞.

If ϕ ∈ Lp(c, d;B) for every c, d with a < c < d < b, then we write ϕ ∈ Lploc(a, b;B),
and, if p = 1, call ϕ locally integrable.

Proposition 5.2. For 1 ≤ p ≤ ∞, Lp(a, b;B) is a Banach space.

Proof. We refer to Proposition 1 on page 469 in [7]. �

Proposition 5.3. If B is a Banach space, a and b are finite, f ∈ B ′ and ϕ ∈
Lp(a, b;B) for p ≥ 1 we have

〈
f,

∫ b

a

ϕ(t) dt
〉
B′,B

=

∫ b

a

〈f, ϕ(t)〉B′,B dt.

Proof. Let us refer the reader to Corollary 2 on page 470 in [7]. �

Definition 5.4. By D(a, b) we denote the linear space C∞0 (a, b). We say, the
sequence {ϕn}n∈IN tends to zero in D(a, b) if there is a closed subspace M ⊂ (a, b)

such that ϕ
(i)
n (t) = 0 for all i ∈ IN, for all n ∈ IN and for all t ∈ (a, b) \M and it

follows ‖ϕ(i)
n ‖L∞ → 0 as n → ∞ for all i ∈ IN. We call every continuous linear

mapping of D(a, b) into a Banach space B a vectorial distribution over (a, b) with
values into B, and we write D′(a, b;B) = L(D(a, b), B).

Remark 5.5. Let (B1, B2) be a pair of Banach spaces with B1 ↪→ B2. Then we
derive

Lp(a, b;B1) ↪→ Lp(a, b;B2) for 1 ≤ p ≤ ∞.
Proposition 5.6. Let B be a Banach space and u ∈ L1

loc(a, b;B). Then the map-
ping

ϕ 7→
∫ b

a

ϕ(t)u(t) dt

is a distribution over (a, b) with values in B.

Proof. We refer the reader to Proposition 4 on page 470 in [7]. �

Remark 5.7. We identify the function u with the distribution with which it is
associated.

ivWhen there is no risk of confusion, we shall write the simplified notation Lp(B).
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Proposition 5.8. Let B be a Banach space. The functions u, v ∈ L1
loc(a, b;B)

define the same distributions if and only if u and v are equal (in a scalar sense)
a.e.

Proof. Let us refer to Proposition 5 on page 471 in [7]. �
Remark 5.9. The Proposition 5.8 means that for all f ∈ B ′ the functions: t →
〈f, u(t)〉B′,B and t → 〈f, v(t)〉B′,B are equal almost everywhere. If B is separable,
this implies u = v a.e.

Definition 5.10. Let B be a Banach space, f ∈ D′(a, b;B) and m a nonnegative

integer. Then the mapping ϕ 7→ (−1)mf(d
mϕ
dtm ), ϕ ∈ D(a, b), is a distribution —

the distributional derivative — that we denote by dmf
dtm . We have:

dmf

dtm
(ϕ) = (−1)mf

(
dmϕ

dtm

)
for all ϕ ∈ D(a, b).

Remark 5.11. Let B1 and B2 be two separable Banach spaces. If u ∈ L1
loc(a, b;B)

and if B is a space of functions of the variable x, for instance B = Lp(Ω), then
u is identified with a function u(t, x). u(t) denotes the mapping x 7→ u(t, x) for
almost all t. The distributional derivative du

dt is identified with the derivative ∂u
∂t in

D′(a, b;B). We use the following notation for the derivative of u with respect to t:

du

dt
or u′ or ut.

Definition 5.12. Let B be a Banach space and u ∈ L2(a, b;B). Then for all
ϕ ∈ D(a, b):

du

dt
(ϕ) = −

∫ b

a

u(t)ϕ′(t) dt.

We say that u′ = du
dt ∈ L2(a, b;B) if there exists v ∈ L2(a, b;B) such that:




for all ϕ ∈ D(a, b) , v(ϕ) = −u(ϕ′),

i.e.:

∫ b

a

v(t)ϕ(t) dt =

∫ b

a

u(t)ϕ′(t) dt.

The space we shall introduce next is of fundamental importance. We consider
two real, separable Hilbert spaces V , H. It is supposed that V is dense in H so
that, by identifying H and its dual H ′, we have

(5.4) V ↪→ H ≡ H ′ ↪→ V ′,

each space being dense in the following.

Definition 5.13. Let a, b ∈ IR∪{−∞,+∞}, a < b. Moreover, V and H are Hilbert
spaces satisfying (5.4). The space W (a, b;V ) is given by

W (a, b;V ) =
{
ϕ : ϕ ∈ L2(a, b;V ),

dϕ

dt
∈ L2(a, b;V ′)

}
.v

Proposition 5.14. The space W (a, b;V ) endowed with the norm

‖ϕ‖W (V ) =
(
‖ϕ‖2L2(V ) + ‖dϕdt ‖

2

L2(V ′)

) 1
2

=
(∫ b

a

‖ϕ(t)‖2V + ‖dϕ(t)
dt ‖

2

V ′ dt
) 1

2

is a Hilbert space.

vWhen there is no risk of confusion, we shall write the simplified notation W (V ).
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Proof. We refer the reader to Proposition 6 on page 473 in [7]. �

We are now interested in regularity properties of elements belonging to W (V ).
For a proof of the following lemma we refer to Theorem 1 on page 472 in [7].

Lemma 5.15. For a, b ∈ IR, every ϕ ∈ W (V ) is almost everywhere equal to a
continuous function of (a, b) in H. Further, we have:

W (V ) ↪→ C([a, b];H),

the space C([a, b];H) being equipped with the norm of uniform convergence.

Remark 5.16. By Lemma 5.15 it makes sense to speak of the traces ϕ(a), ϕ(b) ∈ H
for ϕ ∈W (V ) with [a, b] ⊂ IR. Moreover, we can show, that the mapping ϕ 7→ ϕ(a)
from W (V ) is surjective (see Remark 5 on page 477 in [7]).

Lemma 5.17. Let [a, b] ⊂ IR and ϕ, φ ∈W (V ). Then
∫ b

a

〈dϕ(t)
dt , φ(t)〉

V ′,V dt+

∫ b

a

〈dφ(t)
dt , ϕ(t)〉

V ′,V dt = 〈ϕ(b), φ(b)〉H − 〈ϕ(a), φ(a)〉H

Proof. We refer to Theorem 2 on page 477 in [7]. �

A very useful property is

Proposition 5.18. For ϕ ∈W (V ) and ψ ∈ V we obtain:

〈dϕ(·)
dt

, ψ
〉
V ′,V

=
d

dt
〈ϕ(·), ψ〉H

in the distributional sense.

Proof. Let us refer to Proposition 7 on page 477 in [7]. �

Let X and Y be two separable Hilbert spaces with X ↪→ Y and X being dense
in Y . We now define the space W (a, b;X,Y ) by

W (a, b;X,Y ) =
{
ϕ : ϕ ∈ L2(a, b;X), dϕdt ∈ L2(a, b;Y )

}

equipped with the norm

‖ϕ‖W (X,Y ) =
(
‖ϕ‖2L2(X) +

∥∥∥dϕ
dt

∥∥∥
2

L2(Y )

) 1
2

=
(∫ b

a

‖ϕ(t)‖2X +
∥∥∥dϕ(t)

dt

∥∥∥
2

Y
dt
) 1

2

It can be shown that W (a, b;X,Y ) is a Hilbert space and that

(5.5)

{
i) X is dense in [X,Y ]θ , θ ∈ [0, 1] vi,

ii) W (a, b;X,Y ) ↪→ C([a, b]; [X,Y ]1/2)

(see (1.61) on page 480 in [7]).
We are given two real, separable Hilbert spaces V and H. V is supposed to be

dense in H and we identify H with its dual H ′. Moreover: V ↪→ H ↪→ V ′. We
denote by W (V ) the space W (0, T ;V ) with 0 < T <∞. By Lemma 5.15 we derive

viWith [X,Y ]1 = Y and [X,Y ]0 = X, the space [X,Y ]θ is called the holomorphic interpolant
of the spaces X and Y (see Chapter VIII, §3 in [6]).
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W (V ) ↪→ C([0, T ];H). For each t ∈ [0, T ] we are given a continuous bilinear form
over V × V and we make the hypothesis:

(5.6)





for every ϕ, ψ ∈ V, the function t 7→ a(t;ϕ, ψ) is measurable and
there exists a constant K = K(T ) > 0 (independent of t ∈ (0, T ),
ϕ, ψ ∈ V ) such that

|a(t;ϕ, ψ)| ≤ K ‖ϕ‖V ‖ψ‖V for all ϕ, ψ ∈ V.
Therefore, for each t ∈ [0, T ] the bilinear form a(t;ϕ, ψ) defines a continuous linear
operator A(t) from V into V ′ with

sup
t∈(0,T )

‖A(t)‖L(V,V ′) ≤ K.

We make the following assumption (of coercivity over V with respect to H):

(5.7)





there exists λ, α constants, α > 0 such that

a(t;ϕ,ϕ) + λ‖ϕ‖2H ≥ α ‖ϕ‖V for all t ∈ [0, T ] and ϕ ∈ V.

We give some examples of bilinear forms a(t;ϕ, ψ).

Example 5.19. 1) We take V = H1
0 (Ω), H = L2(Ω).

a(t;ϕ, ψ) = a(ϕ, ψ) = 〈ψ, ϕ〉H1
0
.

Then (5.6) and (5.7) holds with α = 1 and λ = 0.
2) We take V = H1(Ω), H = L2(Ω).

a(t;ϕ, ψ) = 〈ϕ, ψ〉H1 .

Then (5.6) and (5.7) holds with α = 1 and λ = 0.
3) Now let V be a closed subspace of H1(Ω) with

H1
0 (Ω) ↪→ V ↪→ H1(Ω) and H = L2(Ω) .

We set Q = Ω× (0, T ) and

a(t;ϕ, ψ) =
n∑

i,j=1

∫

Ω

aij(x, t)
∂ϕ

∂xi

∂ψ

∂xj
dx+

∫

Ω

a0(x, t)ϕψ dx

where aij , a0 ∈ L∞(Q), 1 ≤ i, j ≤ n and

n∑

i,j=1

aij(x, t)ξiξj ≥ α
n∑

i=1

ξ2
i

for a constant α > 0 and for ξi ∈ IR a.e. in Q. Then, for λ large enough we
derive for all ϕ ∈ H1(Ω):

a(t;ϕ,ϕ) + λ‖ϕ‖2L2 ≥ α ‖ϕ‖V .
Let

(5.8) u0 ∈ H , f ∈ L2(V ′)

be given. We are looking for

(5.9) u ∈W (V ),
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such that

(5.10)





d

dt
〈u(·), ϕ〉H + a(·;u(·), ϕ) = 〈f, ϕ〉V ′,V

in the sense of D′(a, b) for all ϕ ∈ V,
and

(5.11) u(0) = u0.

Remark 5.20. 1) From Lemma 5.15 the initial condition (5.11) is senseful.
2) Due to Proposition 5.18 we have

d

dt
〈u(·), ϕ〉H =

〈du(·)
dt

, ϕ
〉
V ′,V

for all ϕ ∈ V.

Remark 5.21. If we set u = wekt, k ∈ IR, w satisfies
〈dw(·)

dt
, ϕ
〉
V ′,V

+ a(·;w(·), ϕ) + k 〈w(·), ϕ〉H = 〈e−ktf(·), ϕ〉V ′,V
and

w(0) = u0

by changing u to uekt and choosing k, we can assume that (5.7) holds with λ = 0
(that has no consequences since T is finite). In the following we, we shall therefore
make the hypothesis:

(5.12) a(· ;ϕ,ϕ) ≥ α ‖ϕ‖2V for all t ∈ [0, T ] vii and ϕ ∈ V.

Theorem 5.22. We suppose V , H are given and satisfy V ↪→ H ↪→ V ′ and
a(· ;u, ϕ) satisfies (5.6), (5.12). u0 and f are given and satisfy (5.8). Then there
exists a unique solution of (5.9)-(5.11).

Proof. Let us refer the reader to Theorem 1 on page 512 and Theorem 2 on page 513
in [7]. �

If u is the solution of (5.10)-(5.11), we derive

1
2 ‖u(t)‖2H +

∫ t

0

a(s;u(s), u(s)) ds = 1
2 ‖u0‖2H +

∫ t

0

〈f(s), u(s)〉V ′,V ds ,

the so called energy equality, as the quantity

E(t) =
1

2
‖u0‖2H +

∫ t

0

〈f(s), u(s)〉V ′,V ds

represents the energy of the system.

Theorem 5.23. Let a(t;ϕ, ψ) satisfy (5.6) and (5.12), (u0, f), (u∗0, f
∗) ∈ H ×

L2(V ′) and let u and u∗ be the corresponding solutions of (5.9)-(5.11). Then

‖u− u∗‖L1(H) ≤
(
‖u0 − u∗0‖2H +

1

α
‖f − f∗‖2L2(V ′)

) 1
2

‖u− u∗‖L2(V ) ≤ 1√
α

(
‖u0 − u∗0‖2H +

1

α
‖f − f∗‖2L2(V ′)

) 1
2

Proof. We refer to Theorem 3 on page 520 in [7]. �

viiOr likewise t ∈ [0, T ] a.e.
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Remark 5.24. We assume f ∈ L1(H). Then it can be proved that (5.9)-(5.11)
has a unique solution in the space

W ∗(V ) = {ϕ : ϕ ∈ L2(V ), ϕ′ ∈ L2(V ′) + L1(H)}.
The same estimates as in Theorem 5.23 hold (see Remark 6 on page 521 and
Theorem 4 on page 522 in [7]). Thus problem (5.9)-(5.11) can be considered with

f = f1 + f2 , f1 ∈ L1(H) , f2 ∈ L2(V ′)

and there exists a unique solution to this problem, the assumptions being those of
the beginning of this section.

6. Principal Notations

In the following list of symbols we give the symbol and a descriptive name or
phrase for an explanation. The number at the indicate the pagenumber on which
the symbols are introduced.

M \M1 complement of M1 in M 1
M closure of a set M 1
M◦ interior of M 1
∂M boundary of a set M 1
M1 ×M2 Cartesian product of the sets M1 and M2 1
ran (f) range of the function f 1
ker (f) kernel of the function f 1
g ◦ f compositive mapping given by x 7→ g(f(x)) 1
‖ · ‖V norm on a (real) normed linear space V 2
vn

n→∞−→ v (strong) convergence of the sequence {vn}n∈IN to v 2
B(v; ρ) open ball of radius ρ about the point v 2
U(v) neighborhood of v 2
L(V1, V2) set of bounded linear operators A : V1 → V2 3
‖A‖L(V1,V2) norm of A ∈ L(V1, V2) 3

A−1 inverse of a bounded linear operator A 3
L(V ) set of bounded linear operators A : V → V 3
IV identity on a normed linear space V 3
〈·, ·〉X (real) inner product on a Hilbert space X 3
a(·, ·) continuous bilinear form 4
X ⊕ Y direct sum of the Hilbert spaces X and Y 4
M⊥ orthogonal complement of a closed space M ⊂ X 4
PM linear projection onto the subset M 5
B′ dual space of a Banach space B 5
〈·, ·〉B′,B duality pairing of B′ with its Banach space B 5
JX Riesz isomorphism of which maps a Hilbert space X onto

its dual X ′
6

xn
n→∞
⇀ x weak convergence of a sequence {xn}n∈IN to x 7

K compact operator 8
ρ(A) resolvent set of a bounded linear operator A 8
σ(A) spectrum of a bounded linear operator A 8
A? adjoint of a bounded linear operator A 9
δf(x; y) Fréchet differential of f at x in the direction y 11
f ′(x) Fréchet derivative of f at the point x 11
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J cost functional 11
e constraint function 11
L Lagrange functional 11
x∗ (local) optimal solution of a constrained minimizing prob-

lem
12

λ∗ Lagrange multiplier of a constrained minimizing problem 12
| · |2 Eucledian norm in IRn 16
Ω open set of IRn 16
a multi index 17
supp (f) support of f 17
Cm(Ω) linear space consisting of m-times continuously differen-

tiable functions
17

Cm(Ω) Banach space which is subspace of Cm(Ω) 17
‖ · ‖Cm norm on Cm(Ω) 17
C0(Ω), C∞0 (Ω) subspaces of C(Ω) respectively Cm(Ω) 17
Cm,s(Ω) Hölder spaces 17
‖ · ‖Cm,s norm on Cm,s(Ω) 17
Lp(Ω) Lp-spaces 17
‖ · ‖Lp norm on Lp(Ω) 17
L1

loc(Ω) linear space consisting locally integrable functions 19
Wm,p(Ω) Sobolev spaces 19
‖ · ‖Wm,p norm on Wm,p(Ω) 18
Wm,p

0 (Ω) Sobolev spaces 19
‖ · ‖Wm,p

0
norm on Wm,p

0 (Ω) 18

Hm(Ω), Hm
0 (Ω) Hilbert spaces consisting of weak differentiable functions 19

‖ · ‖Hm , ‖ · ‖Hm0 norm on Hm(Ω) respectively Hm
0 (Ω) 19

V1 ↪→ V2 continuous embedding of a normed linear space V1 into a
normed linear space V2

20

V1 ↪→↪→ V2 compact embedding of a normed linear space V1 into a
normed linear space V2

20

χM characteristic function of a set M 23
Lp(0, T ;B) Banach space consisting of functions with vector values in

a Banach space B
24

‖ · ‖Lp(a,b;B) norm on the Banach space Lp(0, T ;B) 24
W (V ) Hilbert space consisting of vector-valued functions 25
‖ · ‖W (V ) norm on W (V ) 25
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