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Chapter 1

POD for linear-quadratic
Optimal Control

M. Gubisch and S. Volkwein∗

1.1 Introduction
Optimal control problems for partial differential equation are often hard to tackle nu-
merically because their discretization leads to very large scale optimization problems.
Therefore, different techniques of model reduction were developed to approximate these
problems by smaller ones that are tractable with less effort.

Balanced truncation [2, 64, 79] is one well studied model reduction technique for state-
space systems. This method utilizes the solutions to two Lyapunov equations, the so-
called controllability and observability Gramians. The balanced truncation method is
based on transforming the state-space system into a balanced form so that its controlla-
bility and observability Gramians become diagonal and equal. Moreover, the states that
are difficult to reach or to observe, are truncated. The advantage of this method is that
it preserves the asymptotic stability in the reduced-order system. Furthermore, a-priori
error bounds are available. Recently, the theory of balanced truncation model reduction
was extended to descriptor systems; see, e.g., [48] and [21].

Recently the application of reduced-order models to linear time varying and nonlinear
systems, in particular to nonlinear control systems, has received an increasing amount of
attention. The reduced-order approach is based on projecting the dynamical system onto
subspaces consisting of basis elements that contain characteristics of the expected solu-
tion. This is in contrast to, e.g., finite element techniques (see, e.g., [7], where the basis
elements of the subspaces do not relate to the physical properties of the system that they
approximate. The reduced basis (RB) method, as developed in [19, 54] and [31], is one
such reduced-order method, where the basis elements correspond to the dynamics of ex-
pected control regimes. Let us refer to the [14, 23, 49, 53] for the successful use of reduced
basis method in PDE constrained optimization problems. Currently, Proper orthogonal
decomposition (POD) is probably the mostly used and most successful model reduction
technique for nonlinear optimal control problems, where the basis functions contain in-
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2 Chapter 1. POD for linear-quadratic Optimal Control

formation from the solutions of the dynamical system at pre-specified time-instances, so-
called snapshots; see, e.g., [9, 29, 67, 75]. Due to a possible linear dependence or almost
linear dependence the snapshots themselves are not appropriate as a basis. Hence a sin-
gular value decomposition is carried out and the leading generalized eigenfunctions are
chosen as a basis, referred to as the POD basis. POD is successfully used in a variety
of fields including fluid dynamics, coherent structures [1, 3] and inverse problems [6].
Moreover in [5] POD is successfully applied to compute reduced-order controllers. The
relationship between POD and balancing was considered in [44, 61, 77]. An error anal-
ysis for nonlinear dynamical systems in finite dimensions were carried out in [58] and a
missing point estimation in models described by POD was studied in [4].

Reduced order models are used in PDE-constrained optimization in various ways;
see, e.g., [27, 63] for a survey. In optimal control problems it is sometimes necessary to
compute a feedback control law instead of a fixed optimal control. In the implementation
of these feedback laws models of reduced-order can play an important and very useful
role, see [5, 43, 46, 59]. Another useful application is the use in optimization problems,
where a PDE solver is part of the function evaluation. Obviously, thinking of a gradient
evaluation or even a step-size rule in the optimization algorithm, an expensive function
evaluation leads to an enormous amount of computing time. Here, the reduced-order
model can replace the system given by a PDE in the objective function. It is quite common
that a PDE can be replaced by a five- or ten-dimensional system of ordinary differential
equations. This results computationally in a very fast method for optimization compared
to the effort for the computation of a single solution of a PDE. There is a large amount of
literature in engineering applications in this regard, we mention only the papers [47, 50].
Recent applications can also be found in finance using the RB model [56] and the POD
model [62, 65] in the context of calibration for models in option pricing.

In the present work we use POD for deriving low order models of dynamical systems.
These low order models then serve as surrogates for the dynamical system in the opti-
mization process. We consider a linear-quadratic optimal control problem in an abstract
setting and prove error estimates for the POD Galerkin approximations of the optimal
control. This is achieved by combining techniques from [11, 12, 25] and [38, 40]. For
nonlinear problems we refer the reader to [27, 55, 63]. However, unless the snapshots
are generating a sufficiently rich state space or are computed from the exact (unknown)
optimal controls, it is not a-priorly clear how far the optimal solution of the POD prob-
lem is from the exact one. On the other hand, the POD method is a universal tool that is
applicable also to problems with time-dependent coefficients or to nonlinear equations.
Moreover, by generating snapshots from the real (large) model, a space is constructed that
inhibits the main and relevant physical properties of the state system. This, and its ease
of use makes POD very competitive in practical use, despite of a certain heuristic fla-
vor. In this work, we review results for a POD a-posteriori analysis; see, e.g., [71] and
[20, 33, 34, 68, 69, 74, 76]. We use a fairly standard perturbation method to deduce how
far the suboptimal control, computed on the basis of the POD model, is from the (un-
known) exact one. This idea turned out to be very efficient in our examples. It is able
to compensate for the lack of a priori analysis for POD methods. Let us also refer to
the papers [13, 18, 49], where a-posteriori error bounds are computed for linear-quadratic
optimal control problems approximated by the reduced basis method.

The manuscript is organized in the following manner: In Section 1.2 we introduce the
method of POD in real, separable Hilbert spaces and discuss its relationship to the singular
value decomposition. We distinguish between two versions of the POD method: the dis-
crete and the continuous one. Reduced-order modelling with POD is carried out in Sec-
tion 1.3. The error between the exact solution and its POD approximation is investigated
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1.2. The POD method 3

by an a-priori error analysis. In Section 1.4 we study quadratic optimal control problems
governed by linear evolution problems and bilateral inequality constraints. These prob-
lems are infinite dimensional, convex optimization problems. Their optimal solutions are
characterised by first-order optimality conditions. POD Galerkin discretizations of the
optimality conditions are introduced and analysed. By an a-priori error analysis the error
of the exact optimal control and its POD suboptimal approximation is estimated. For the
error control in the numerical realisations we make use of an a-posteriori error analysis,
which turns out to be very efficient in our numerical examples, which are presented in
Section 1.5.

1.2 The POD method
Throughout we suppose that X is a real Hilbert space endowed with the inner product
〈· , ·〉X and the associated induced norm ‖ · ‖X = 〈· , ·〉

1/2
X . Furthermore, we assume that X

is separable, i.e., X has a countable dense subset. This implies that X possesses a countable
orthonormal basis; see, e.g., [60, p. 47]. For the POD method in complex Hilbert spaces
we refer to [73], for instance.

1.2.1 The discrete variant of the POD method

For fixed n,℘ ∈ N let the so-called snapshots yk
1 , . . . , yk

n ∈ X be given for 1 ≤ k ≤ ℘. To
avoid a trivial case we suppose that at least one of the yk

j ’s is nonzero. Then, we introduce
the finite dimensional, linear subspace

V n = span
n

yk
j |1≤ j ≤ n and 1≤ k ≤℘

o

⊂X (1.1)

with dimension d n ∈ {1, . . . , n℘}<∞. We call the set V n snapshot subspace.

Remark 1.1. Later we will focus on the following application: Let 0 ≤ t1 < t2 < . . . <
tn ≤ T be a given time grid in the interval [0,T ]. To simplify of the presentation, the
time grid is assumed to be equidistant with step-size∆t = T /(n−1), i.e., t j = ( j −1)∆t .
For nonequidistant grids we refer the reader to [40, 39]. Suppose that we have trajectories
yk ∈C ([0,T ];X ), 1≤ k ≤℘. Here, the Banach space C ([0,T ];X ) contains all functions
ϕ : [0,T ]→ X , which are continuous on [0,T ]; see, e.g., [70, p. 142]. Let the snapshots
be given as yk

j = yk (t j ) ∈ X or yk
j ≈ yk (t j ) ∈ X . In Sections 1.3 and 1.4 we will choose

trajectories as solutions to evolution problems. ◊

In Section 1.2.3 we consider the case, where the number n is varied. Therefore, we
emphasize this dependence by using the super index n. We distinguish two cases:

1) The separable Hilbert space X has finite dimension m. Then, X is isomorphic
to Rm ; see, e.g., [60, p. 47]. We set I = {1, . . . , m}. Clearly, we have d n ≤
min(n℘, m).

2) Since X is separable, each orthonormal basis of X has countably many elements. In
this case X is isomorphic to the set `2 of sequences {xi}i∈N of real numbers which
satisfy

∑∞
i=1 |xi |2 <∞; see [60, p. 47], for instance. Then, we define I =N.

The method of POD consists in choosing an orthonormal set {ψi}`i=1 in X such that
for every ` ∈ {1, . . . , d n} the mean square error between the n℘ elements yk

j and their
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4 Chapter 1. POD for linear-quadratic Optimal Control

corresponding `-th partial Fourier sum is minimized on average:















min
℘
∑

k=1

n
∑

j=1

αn
j








yk
j −

∑̀

i=1

〈yk
j ,ψi 〉X ψi










2

X

s.t. {ψi}
`
i=1 ⊂X and 〈ψi ,ψ j 〉X = δi j , 1≤ i , j ≤ `,

(P`n)

where the αn
j ’s denote positive weighting parameters. Here, the symbol δi j denotes the

Kronecker symbol satisfying δi i = 1 and δi j = 0 for i 6= j . An optimal solution {ψ̄n
i }
`
i=1

to (P`n) is called a POD basis of rank `, which can be extended to a complete orthonormal
basis {ψi}i∈I in the Hilbert space X . Notice that








yk
j −

∑̀

i=1

〈yk
j ,ψi 〉X ψi










2

X

=
D

yk
j −

∑̀

i=1

〈yk
j ,ψi 〉X ψi , yk

j −
∑̀

l=1

〈yk
j ,ψl 〉X ψl

E

X

= ‖yk
j ‖

2

X
− 2

∑̀

i=1

〈yk
j ,ψi 〉

2

X
+
∑̀

i=1

∑̀

l=1

〈yk
j ,ψi 〉X 〈y

k
j ,ψl 〉X 〈ψi ,ψl 〉X

= ‖yk
j ‖

2

X
−
∑̀

i=1

〈yk
j ,ψi 〉

2

X

(1.2)

holds for any set {ψi}`i=1 ⊂ X satisfying 〈ψi ,ψ j 〉X = δi j . Thus, (P`n) is equivalent with
the maximization problem















max
℘
∑

k=1

n
∑

j=1

αn
j

∑̀

i=1

〈yk
j ,ψi 〉

2

X

s.t. {ψi}
`
i=1 ⊂X and 〈ψi ,ψ j 〉X = δi j , 1≤ i , j ≤ `.

(P̂`n)

Suppose that {ψi}i∈I is a complete orthonormal basis in X . Since X is separable, any
yk

j ∈X , 1≤ j ≤ n and 1≤ k ≤℘, can be written as

yk
j =

∑

i∈I
〈yk

j ,ψi 〉X ψi (1.3)

and the (probably infinite) sum converges for all snapshots (even for all elements in X ).
Thus, the POD basis {ψ̄n

i }
`
i=1 of rank `maximizes the absolute values of the first `Fourier

coefficients 〈yk
j ,ψi 〉X for all n℘ snapshots yk

j in an average sense. Let us recall the follow-
ing definition for linear operators in Banach spaces.

Definition 1.2. LetB1,B2 be two real Banach spaces. The operator T :B1→B2 is called
a linear, bounded operator if these conditions are satisfied:

1) T (αu +βv) = αT u +βT v for all α, β ∈R and u, v ∈B1.

2) There exists a constant c > 0 such that ‖T u‖B2
≤ c ‖u‖B1

for all u ∈B1.
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1.2. The POD method 5

The set of all linear, bounded operators fromB1 toB2 is denoted byL (B1,B2) which is a
Banach space equipped with the operator norm [60, pp. 69-70]

‖T ‖L (B1,B2)
= sup
‖u‖B1

=1
‖T u‖B2

for T ∈L (B1,B2).

IfB1 =B2 holds, we briefly writeL (B1) instead ofL (B1,B2). The dual mapping T ′ :
B ′2→B

′
1 of an operator T ∈L (B1,B2) is defined as

〈T ′ f , u〉B ′1,B1
= 〈 f ,T u〉B ′2,B2

for all (u, f ) ∈B1×B
′
2,

where, for instance, 〈· , ·〉B ′1,B1
denotes the dual pairing of the space B1 with its dual space

B ′1 =L (B1,R).

Let H1 and H2 denote two real Hilbert spaces. For a given T ∈ L (H1,H2) the
adjoint operator T ? :H2→H1 is uniquely defined by

〈T ?v, u〉H1
= 〈v,T u〉H2

= 〈T u, v〉H2
for all (u, v) ∈H1×H2.

Let Ji :Hi →H ′
i , i = 1,2, denote the Riesz isomorphisms satisfying

〈u, v〉Hi
= 〈Ji u, v〉H ′

i ,Hi
for all v ∈Hi .

Then, we have the representation T ? =J −1
1 T

′J2; see [70, p. 186]. Moreover, (T ?)? =
T for every T ∈L (H1,H2). If T = T ? holds, T is said to be selfadjoint. The operator
T ∈ L (H1,H2) is called nonnegative if 〈T u, u〉H2

≥ 0 for all u ∈ H1. Finally, T ∈
L (H1,H2) is called compact if for every bounded sequence {un}n∈N ⊂H1 the sequence
{T un}n∈N ⊂H2 contains a convergent subsequence.

Now we turn to (P`n) and (P̂`n). We make use of the following lemma.

Lemma 1.3. Let X be a (separable) real Hilbert space and yk
1 , . . . , yk

n ∈X are given snapshots
for 1≤ k ≤℘. Define the linear operatorRn : X →X as follows:

Rnψ=
℘
∑

k=1

n
∑

j=1

αn
j 〈ψ, yk

j 〉X yk
j for ψ ∈X (1.4)

with positive weights αn
1 , . . . ,αn

n . Then,Rn is a compact, nonnegative and selfadjoint opera-
tor.

Proof. It is clear thatRn is a linear operator. From

‖Rnψ‖X ≤
℘
∑

k=1

n
∑

j=1

αn
j

�

�〈ψ, yk
j 〉X

�

�‖yk
j ‖X

for ψ ∈X

and the Cauchy-Schwarz inequality [60, p. 38]
�

�〈ϕ,φ〉X
�

�≤ ‖ϕ‖X ‖φ‖X for ϕ, φ ∈X

we conclude that Rn is bounded. Since Rnψ ∈ V n holds for all ψ ∈ X , the range of
Rn is finite dimensional. Thus, Rn is a finite rank operator which is compact; see [60,
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6 Chapter 1. POD for linear-quadratic Optimal Control

p. 199]. Next we show thatRn is nonnegative. For that purpose we choose an arbitrary
element ψ ∈X and consider

〈Rnψ,ψ〉X =
℘
∑

k=1

n
∑

j=1

αn
j 〈ψ, yk

j 〉X 〈y
k
j ,ψ〉

X
=

℘
∑

k=1

n
∑

j=1

αn
j 〈ψ, yk

j 〉
2

X
≥ 0.

Thus,Rn is nonnegative. For any ψ, ψ̃ ∈X we derive

〈Rnψ, ψ̃〉X =
℘
∑

k=1

n
∑

j=1

αn
j 〈ψ, yk

j 〉X 〈y
k
j , ψ̃〉

X
=

℘
∑

k=1

n
∑

j=1

αn
j 〈ψ̃, yk

j 〉X 〈y
k
j ,ψ〉

X

= 〈Rnψ̃,ψ〉X = 〈ψ,Rnψ̃〉X .

Thus,Rn is selfadjoint.

Next we recall some important results from the spectral theory of operators (on infi-
nite dimensional spaces). We begin with the following definition; see [60, Section VI.3].

Definition 1.4. LetH be a real Hilbert space and T ∈L (H ).

1) A complex number λ belongs to the resolvent set ρ(T ) if λI −T is a bijection with
a bounded inverse. Here, I ∈ L (H ) stands for the identity operator. If λ 6∈ ρ(T ),
then λ is an element of the spectrum σ(T ) of T .

2) Let u 6= 0 be a vector with T u = λu for some λ ∈ C. Then, u is said to be an
eigenvector of T . We call λ the corresponding eigenvalue. If λ is an eigenvalue, then
λI −T is not injective. This implies λ ∈ σ(T ). The set of all eigenvalues is called the
point spectrum of T .

We will make use of the next two essential theorems for compact operators; see [60,
p. 203].

Theorem 1.5 (Riesz-Schauder). LetH be a real Hilbert space and T :H →H a linear,
compact operator. Then the spectrum σ(T ) is a discrete set having no limit points except
perhaps 0. Furthermore, the space of eigenvectors corresponding to each nonzero λ ∈ σ(T ) is
finite dimensional.

Theorem 1.6 (Hilbert-Schmidt). LetH be a real separable Hilbert space andT :H →H
a linear, compact, selfadjoint operator. Then, there is a sequence of eigenvalues {λi}i∈I and of
an associated complete orthonormal basis {ψi}i∈I ⊂X satisfying

T ψi = λiψi and λi → 0 as i →∞.

Since X is a separable real Hilbert space andRn : X →X is a linear, compact, nonneg-
ative, selfadjoint operator (see Lemma 1.3), we can utilize Theorems 1.5 and 1.6: There
exist a complete countable orthonormal basis {ψ̄n

i }i∈I and a corresponding sequence of
real eigenvalues {λ̄n

i }i∈I satisfying

Rnψ̄n
i = λ̄

n
i ψ̄

n
i , λ̄n

1 ≥ . . .≥ λ̄d n > λ̄d n+1 = . . .= 0. (1.5)
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1.2. The POD method 7

The spectrum ofRn is a pure point spectrum except for possibly 0. Each nonzero eigen-
value of Rn has finite multiplicity and 0 is the only possible accumulation point of the
spectrum ofRn .

Remark 1.7. From (1.4), (1.5) and ‖ψ‖X = 1 we infer that
℘
∑

k=1

n
∑

j=1

αn
j 〈y

k
j , ψ̄n

i 〉
2

X
=
­ ℘
∑

k=1

n
∑

j=1

αn
j 〈y

k
j , ψ̄n

i 〉X yk
j , ψ̄n

i

·

X

= 〈Rnψ̄n
i , ψ̄n

i 〉X = λ̄
n
i for any i ∈I .

(1.6)

In particular, it follows that
℘
∑

k=1

n
∑

j=1

αn
j 〈y

k
j , ψ̄n

i 〉
2

X
= 0 for all i > d n . (1.7)

Since {ψ̄n
i }i∈I is a complete orthonormal basis and ‖yk

j ‖X <∞ holds for 1 ≤ k ≤ ℘,
1≤ j ≤ n, we derive from (1.6) and (1.7) that

℘
∑

k=1

n
∑

j=1

αn
j ‖y

k
j ‖

2

X
=

℘
∑

k=1

n
∑

j=1

αn
j

∑

ν∈I
〈yk

j , ψ̄n
ν 〉

2

X

=
∑

ν∈I

℘
∑

k=1

n
∑

j=1

αn
j 〈y

k
j , ψ̄n

ν 〉
2

X
=
∑

i∈I
λ̄n

i =
d n
∑

i=1

λ̄n
i .

(1.8)

By (1.8) the (probably infinite) sum
∑

i∈I λ̄
n
i is bounded. It follows from (1.2) that the

objective of (P`n) can be written as

℘
∑

k=1

n
∑

j=1

αn
j








yk
j −

∑̀

i=1

〈yk
j , ψ̄n

i 〉X ψ̄
n
i










2

X

=
d n
∑

i=1

λ̄n
i −

℘
∑

k=1

n
∑

j=1

αn
j

∑̀

i=1

〈yk
j , ψ̄n

i 〉
2

X

(1.9)

which we will use in the proof of Theorem 1.8. ◊

Now we can formulate the main result for (P`n) and (P̂`n).

Theorem 1.8. Let X be a separable real Hilbert space, yk
1 , . . . , yk

n ∈ X for 1 ≤ k ≤ ℘ and
Rn : X →X be defined by (1.4). Suppose that {λ̄n

i }i∈I and {ψ̄n
i }i∈I denote the nonnegative

eigenvalues and associated orthonormal eigenfunctions ofRn satisfying (1.5). Then, for every
` ∈ {1, . . . , d n} the first ` eigenfunctions {ψ̄n

i }
`
i=1 solve (P`n) and (P̂`n). Moreover, the value of

the cost evaluated at the optimal solution {ψ̄n
i }
`
i=1 satisfies

℘
∑

k=1

n
∑

j=1

αn
j








yk
j −

∑̀

i=1

〈yk
j , ψ̄n

i 〉X ψ̄
n
i










2

X
=

d n
∑

i=`+1

λ̄n
i (1.10)

and
℘
∑

k=1

n
∑

j=1

αn
j

∑̀

i=1

〈yk
j , ψ̄n

i 〉
2

X
=
∑̀

i=1

λ̄n
i . (1.11)
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8 Chapter 1. POD for linear-quadratic Optimal Control

Proof. We prove the claim for (P̂`n) by finite induction over ` ∈ {1, . . . , d n}.

1) The base case: Let ` = 1 and ψ ∈ X with ‖ψ‖X = 1. Since {ψ̄n
ν }ν∈I is a complete

orthonormal basis in X , we have the representation

ψ=
∑

ν∈I
〈ψ, ψ̄n

ν 〉X ψ̄
n
ν . (1.12)

Inserting this expression for ψ in the objective of (P̂`n) we find that
℘
∑

k=1

n
∑

j=1

αn
j 〈y

k
j ,ψ〉2

X
=

℘
∑

k=1

n
∑

j=1

αn
j

D

yk
j ,
∑

ν∈I
〈ψ, ψ̄n

ν 〉X ψ̄
n
ν

E2

X

=
℘
∑

k=1

n
∑

j=1

αn
j

∑

ν∈I

∑

µ∈I

�




yk
j , 〈ψ, ψ̄n

ν 〉X ψ̄
n
ν

�

X




yk
j , 〈ψ, ψ̄n

µ〉X ψ̄
n
µ

�

X

�

=
℘
∑

k=1

n
∑

j=1

αn
j

∑

ν∈I

∑

µ∈I

�

〈yk
j , ψ̄n

ν 〉X 〈y
k
j , ψ̄n

µ〉X 〈ψ, ψ̄n
ν 〉X 〈ψ, ψ̄n

µ〉X
�

=
∑

ν∈I

∑

µ∈I

�
D

℘
∑

k=1

n
∑

j=1

αn
j 〈y

k
j , ψ̄n

ν 〉X yk
j , ψ̄n

µ

E

X
〈ψ, ψ̄n

ν 〉X 〈ψ, ψ̄n
µ〉X

�

.

Utilizing (1.4), (1.5) and ‖ψ̄n
ν ‖X = 1 we find that

℘
∑

k=1

n
∑

j=1

αn
j 〈y

k
j ,ψ〉2

X
=
∑

ν∈I

∑

µ∈I

�

〈λ̄n
ν ψ̄

n
ν , ψ̄n

µ〉X 〈ψ, ψ̄n
ν 〉X 〈ψ, ψ̄n

µ〉X

�

=
∑

ν∈I
λ̄n
ν 〈ψ, ψ̄n

ν 〉
2
X .

From λ̄n
1 ≥ λ̄

n
ν for all ν ∈I and (1.6) we infer that
∑

ν∈I
λ̄n
ν 〈ψ, ψ̄n

ν 〉
2
X ≤ λ̄

n
1

∑

ν∈I
〈ψ, ψ̄n

ν 〉
2
X = λ̄

n
1 ‖ψ‖

2
X = λ̄

n
1

=
℘
∑

k=1

n
∑

j=1

αn
j 〈y

k
j , ψ̄n

1 〉
2

X
,

i.e., ψ̄n
1 solves (P̂`n) for `= 1 and (1.11) holds. This gives the base case. Notice that

(1.9) and (1.11) imply (1.10).

2) The induction hypothesis: Now we suppose that














for any ` ∈ {1, . . . , d n − 1} the set {ψ̄n
i }
`
i=1 ⊂X solve (P̂`n)

and
℘
∑

k=1

n
∑

j=1

αn
j

∑̀

i=1

〈yk
j , ψ̄n

i 〉
2

X
=
∑̀

i=1

λ̄n
i .

(1.13)

3) The induction step: We consider














max
℘
∑

k=1

n
∑

j=1

αn
j

`+1
∑

i=1

〈yk
j ,ψi 〉

2

X

s.t. {ψi}
`+1
i=1 ⊂X and 〈ψi ,ψ j 〉X = δi j , 1≤ i , j ≤ `+ 1.

(P̂`+1
n )
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1.2. The POD method 9

By (1.13) the elements {ψ̄n
i }
`
i=1 maximize the term

℘
∑

k=1

n
∑

j=1

αn
j

∑̀

i=1

〈yk
j ,ψi 〉

2

X
.

Thus, (P̂`+1
n ) is equivalent with











max
℘
∑

k=1

n
∑

j=1

αn
j 〈y

k
j ,ψ〉2

X

s.t. ψ ∈X and ‖ψ‖X = 1, 〈ψ, ψ̄n
i 〉X = 0, 1≤ i ≤ `.

(1.14)

Let ψ ∈ X be given satisfying ‖ψ‖X = 1 and 〈ψ, ψ̄n
i 〉X = 0 for i = 1 . . . ,`. Then,

using the representation (1.12) and 〈ψ, ψ̄n
i 〉X = 0 for i = 1 . . . ,`, we derive as above

℘
∑

k=1

n
∑

j=1

αn
j 〈y

k
j ,ψ〉2

X
=
∑

ν∈I
λ̄n
ν 〈ψ, ψ̄n

ν 〉
2
X =

∑

ν>`

λ̄n
ν 〈ψ, ψ̄n

ν 〉
2
X .

From λ̄n
`+1 ≥ λ̄

n
ν for all ν ≥ `+ 1 and (1.6) we conclude that

℘
∑

k=1

n
∑

j=1

αn
j 〈y

k
j ,ψ〉2

X
≤ λ̄n

`+1

∑

ν>`

〈ψ, ψ̄n
ν 〉

2
X ≤ λ̄

n
`+1

∑

ν∈I
〈ψ, ψ̄n

ν 〉
2
X

= λ̄n
`+1 ‖ψ‖

2
X = λ̄

n
`+1 =

℘
∑

k=1

n
∑

j=1

αn
j 〈y

k
j , ψ̄n

`+1〉
2

X
.

Thus, ψ̄n
`+1 solves (1.14), which implies that {ψ̄n

i }
`+1
i=1 is a solution to (P̂`+1

n ) and

℘
∑

k=1

n
∑

j=1

αn
j

`+1
∑

i=1

〈yk
j , ψ̄n

i 〉
2

X
=

`+1
∑

i=1

λ̄n
i .

Again, (1.9) and (1.11) imply (1.10).

It follows that the claim is proved.

Remark 1.9. Theorem 1.8 can also be proved by using the theory of nonlinear program-
ming; see [29, 73], for instance. In this case (P̂`n) is considered as an equality constrained
optimization problem. Applying a Lagrangian framework it turns out that (1.5) are first-
order necessary optimality conditions for (P̂`n). ◊

For the application of POD to concrete problems the choice of ` is certainly of cen-
tral importance for applying POD. It appears that no general a-priori rules are available.
Rather the choice of ` is based on heuristic considerations combined with observing the
ratio of the modeled to the “total energy” contained in the snapshots yk

1 , . . . , yk
n , 1≤ k ≤℘,

which is expressed by

E (`) =
∑`

i=1 λ̄
n
i

∑d n

i=1 λ̄
n
i

∈ [0,1].
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10 Chapter 1. POD for linear-quadratic Optimal Control

Utilizing (1.8) we have

E (`) =
∑`

i=1 λ̄
n
i

∑℘
k=1

∑n
j=1α

n
j ‖y

k
j ‖

2

X

,

i.e., the computation of the eigenvalues {λ̄i}di=`+1 is not necessary. This is utilized in nu-
merical implementations when iterative eigenvalue solver are applied like, e.g., the Lanc-
zos method; see [2, Chapter 10], for instance.

In the following we will discuss three examples which illustrate that POD is strongly
related to the singular value decomposition of matrices.

Remark 1.10 (POD in Euclidean space Rm; see [37]). Suppose that X = Rm with m ∈ N
and℘= 1 hold. Then we have n snapshot vectors y1, . . . , yn and introduce the rectangular
matrix Y = [y1 | . . . | yn] ∈ Rm×n with rank d n ≤ min(m, n). Choosing αn

j = 1 for 1 ≤
j ≤ n problem (P`n) has the form















min
n
∑

j=1








y j −
∑̀

i=1

�

y>j ψi

�

ψi










2

Rm

s.t. {ψi}
`
i=1 ⊂R

m and ψ>i ψ j = δi j , 1≤ i , j ≤ `,

(1.15)

where ‖ · ‖Rm stands for the Euclidean norm in Rm and “>” denotes the transpose of a
given vector (or matrix). From

�

Rnψ
�

i =
� n
∑

j=1

�

y>j ψ
�

y j

�

i
=

n
∑

j=1

m
∑

l=1

Yl jψl Yi j =
�

Y Y>ψ
�

i , ψ ∈Rm ,

for each component 1≤ i ≤ m we infer that (1.5) leads to the symmetric m×m eigenvalue
problem

Y Y>ψ̄n
i = λ̄

n
i ψ̄

n
i , λ̄n

1 ≥ . . .≥ λ̄n
d n > λ̄

n
d n+1 = . . .= λ̄n

m = 0. (1.16)

Recall that (1.16) can be solved by utilizing the singular value decomposition (SVD) [51]:
There exist real numbers σ̄n

1 ≥ σ̄
n
2 ≥ . . . ≥ σ̄n

d n > 0 and orthogonal matrices Ψ ∈ Rm×m

with column vectors {ψ̄n
i }

m
i=1 and Φ ∈Rn×n with column vectors {φ̄n

i }
n
i=1 such that

Ψ>YΦ=
�

D 0
0 0

�

=:Σ ∈Rm×n , (1.17)

where D = diag (σ̄n
1 , . . . , σ̄n

d n ) ∈Rd×d and the zeros in (1.17) denote matrices of appropri-

ate dimensions. Moreover the vectors {ψ̄n
i }

d
i=1 and {φ̄n

i }
d
i=1 satisfy

Y φ̄n
i = σ̄

n
i ψ̄

n
i and Y>ψ̄n

i = σ̄
n
i φ̄

n
i for i = 1, . . . , d n . (1.18)

They are eigenvectors of Y Y> and Y>Y , respectively, with eigenvalues λ̄n
i = (σ̄

n
i )

2 > 0,
i = 1, . . . , d n . The vectors {ψ̄n

i }
m
i=d n+1 and {φ̄n

i }
n
i=d n+1 (if d n < m respectively d n < n) are

eigenvectors of Y Y> and Y>Y with eigenvalue 0. Consequently, in the case n < m one
can determine the POD basis of rank ` as follows: Compute the eigenvectors φ̄n

1 , . . . , φ̄n
`
∈

Rn by solving the symmetric n× n eigenvalue problem

Y>Y φ̄n
i = λ̄

n
i φ̄

n
i for i = 1, . . . ,`
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1.2. The POD method 11

and set, by (1.18),

ψ̄n
i =

1

(λ̄n
i )

1/2
Y φ̄n

i for i = 1, . . . ,`.

For historical reasons this method of determing the POD-basis is sometimes called the
method of snapshots; see [67]. On the other hand, if m < n holds, we can obtain the POD
basis by solving the m×m eigenvalue problem (1.16). If the matrix Y is badly scaled, we
should avoid to build the matrix product Y Y> (or Y>Y ). In this case the SVD turns out
to be more stable for the numerical computation of the POD basis of rank `. ◊

Remark 1.11 (POD in Rm with weighted inner product). As in Remark 1.10 we choose
X =Rm with m ∈Rm and℘= 1. Let W ∈Rm×m be a given symmetric, positive definite
matrix. We supply Rm with the weighted inner product

〈ψ, ψ̃〉W =ψ
>W ψ̃= 〈ψ,W ψ̃〉Rm = 〈Wψ, ψ̃〉Rm for ψ, ψ̃ ∈Rm .

Then, problem (P`n) has the form














min
n
∑

j=1

αn
j








y j −
∑̀

i=1

〈y j ,ψi 〉W ψi










2

W

s.t. {ψi}
`
i=1 ⊂R

m and 〈ψi ,ψ j 〉W = δi j , 1≤ i , j ≤ `.

As in Remark 1.10 we introduce the matrix Y = [y1 | . . . | yn] ∈ Rm×n with rank d n ≤
min(m, n). Moreover, we define the diagonal matrix D = diag (αn

1 , . . . ,αn
n) ∈ Rn×n . We

find that

�

Rnψ
�

i =
� n
∑

j=1

αn
j 〈y j ,ψ〉W y j

�

i
=

n
∑

j=1

m
∑

l=1

m
∑

ν=1

αn
j Yl j Wl νψνYi j

=
�

Y DY>Wψ
�

i for ψ ∈Rm ,

for each component 1≤ i ≤ m. Consequently, (1.5) leads to the eigenvalue problem

Y DY>W ψ̄n
i = λ̄

n
i ψ̄

n
i , λ̄n

1 ≥ . . .≥ λ̄n
d n > λ̄

n
d n+1 = . . .= λ̄n

m = 0. (1.19)

Since W is symmetric and positive definite, W possesses an eigenvalue decomposition of
the form W =QBQ>, where B = diag (β1, . . . ,βm) contains the eigenvalues β1 ≥ . . . ≥
βm > 0 of W and Q ∈Rm×m is an orthogonal matrix. We define

W r =Qdiag (βr
1 , . . . ,βr

m)Q
> for r ∈R.

Note that (W r )−1 =W −r and W r+s =W r W s for r, s ∈R. Moreover, we have

〈ψ, ψ̃〉W = 〈W
1/2ψ,W 1/2ψ̃〉Rm for ψ, ψ̃ ∈Rm

and ‖ψ‖W = ‖W 1/2ψ‖Rm for ψ ∈ Rm . Analogously, the matrix D1/2 is defined. In-
serting ψn

i = W 1/2ψ̄n
i in (1.19), multiplying (1.19) by W 1/2 from the left and setting

Ŷ =W 1/2Y D1/2 yield the symmetric m×m eigenvalue problem

Ŷ Ŷ>ψn
i = λ̄

n
i ψ

n
i , 1≤ i ≤ `.
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12 Chapter 1. POD for linear-quadratic Optimal Control

Note that
Ŷ>Ŷ =D1/2Y>W Y D1/2 ∈Rn×n . (1.20)

Thus, the POD basis {ψ̄n
i }
`
i=1 of rank ` can also be computed by the methods of snapshots

as follows: First solve the symmetric n× n eigenvalue problem

Ŷ>Ŷφn
i = λ̄

n
i φ

n
i , 1≤ i ≤ ` and 〈φn

i ,φn
j 〉Rn
= δi j , 1≤ i , j ≤ `.

Then we set (by using the SVD of Ŷ )

ψ̄n
i =W −1/2ψn

i =
1
σ̄n

i

W −1/2Ŷφn
i =

1
σ̄n

i

Y D1/2φn
i , 1≤ i ≤ `. (1.21)

Note that

〈ψ̄n
i , ψ̄n

j 〉W = (ψ̄
n
i )
>W ψ̄n

j =
1

σ̄n
i σ̄

n
j

(φn
i )
>D1/2Y>W Y D1/2
︸ ︷︷ ︸

=Ŷ>Ŷ

φn
j = δi j

for 1≤ i , j ≤ `. Thus, the POD basis {ψ̄n
i }
`
i=1 of rank ` is orthonormal inRm with respect

to the inner product 〈· , ·〉W . We observe from (1.20) and (1.21) that the computation of
W 1/2 and W −1/2 is not required. For applications, where W is not just a diagonal matrix,
the method of snapshots turns out to be more attractive with respect to the computational
costs even if m > n holds. ◊

Remark 1.12 (POD in Rm with multiple snapshots). Let us discuss the more general case
℘ = 2 in the setting of Remark 1.11. The extension for ℘ > 2 is straightforward. We
introduce the matrix Y = [y1

1 | . . . | y
1
n | y2

1 | . . . |y
2
n] ∈Rm×(n℘) with rank d n ≤min(m, n℘).

Then we find

Rnψ=
n
∑

j=1

�

αn
j 〈y

1
j ,ψ〉

W
y1

j +α
n
j 〈y

2
j ,ψ〉

W
y2

j

�

= Y
�

D 0
0 D

�

︸ ︷︷ ︸

=:D̃∈R(n℘)×(n℘)

Y>Wψ= Y D̃Y>Wψ for ψ ∈Rm .

Hence, (1.5) corresponds to the eigenvalue problem

Y D̃Y>W ψ̄n
i = λ̄

n
i ψ̄

n
i , λ̄n

1 ≥ . . .≥ λ̄n
d n > λ̄

n
d n+1 = . . .= λ̄n

m = 0. (1.22)

Setting ψn
i =W 1/2ψ̄n

i in (1.22) and multiplying by W 1/2 from the left yield

W 1/2Y D̃Y>W 1/2ψn
i = λ̄

n
i ψ

n
i . (1.23)

Let Ŷ = W 1/2Y D̃1/2 ∈ Rm×(n℘). Using W > = W as well as D̃> = D̃ we infer from
(1.23) that the POD basis {ψ̄n

i }
`
i=1 of rank ` is given by the symmetric m×m eigenvalue

problem

Ŷ Ŷ>ψn
i = λ̄

n
i ψ

n
i , 1≤ i ≤ `, and 〈ψn

i ,ψn
j 〉Rm

= δi j , 1≤ i , j ≤ `

and ψ̄n
i =W −1/2ψn

i . Note that

Ŷ>Ŷ = D̃1/2Y>W Y D̃1/2 ∈R(n℘)×(n℘).
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1.2. The POD method 13

Thus, the POD basis of rank ` can also be computed by the methods of snapshots as
follows: First solve the symmetric (n℘)× (n℘) eigenvalue problem

Ŷ>Ŷφn
i = λ̄

n
i φi , 1≤ i ≤ ` and 〈φn

i ,φn
j 〉Rn℘

= δi j , 1≤ i , j ≤ `.

Then we set (by SVD)

ψ̄n
i =W −1/2ψn

i =
1
σ̄n

i

W −1/2Ŷφn
i =

1
σ̄n

i

Y D̃1/2φn
i

for 1≤ i ≤ `. ◊

1.2.2 The continuous variant of the POD method

As in Remark 1.1 tet 0≤ t1 < t2 < . . .< tn ≤ T be a given time grid in the interval [0,T ]
with equidistant with step-size∆t = T /(n−1), i.e., t j = ( j−1)∆t . Suppose that we have
trajectories yk ∈ C ([0,T ];X ), 1≤ k ≤ ℘. Let the snapshots be given as yk

j = yk (t j ) ∈ X

or yk
j ≈ yk (t j ) ∈ X . Then, the snapshot subspace V n introduced in (1.1) depends on the

chosen time instances {t j }nj=1. Consequently, the POD basis {ψ̄n
i }
`
i=1 of rank ` as well

as the corresponding eigenvalues {λ̄n
i }
`
i=1 depend also on the time instances (which has

already been indicated by the superindex n). Moreover, we have not discussed so far what
is the motivation to introduce the positive weights {αn

j }
n
j=1 in (P`n). For this reason we

proceed by investigating the following two questions:

• How to choose good time instances for the snapshots?

• What are appropriate positive weights {αn
j }

n
j=1?

To address these two questions we will introduce a continuous version of POD. In Sec-
tion 1.2.1 we have introduced the operatorRn in (1.4). By {ψ̄n

i }i∈I and {λ̄n
i }i∈I we have

denoted the eigenfunctions and eigenvalues forRn satisfying (1.5). Moreover, we have set
d n = dimV n for the dimension of the snapshot set. Let us now introduce the snapshot
set by

V = span
n

yk (t ) | t ∈ [0,T ] and 1≤ k ≤℘
o

⊂X

with dimension d ≤ ∞. For any ` ≤ d we are interested in determining a POD basis
of rank ` which minimizes the mean square error between the trajectories yk and the
corresponding `-th partial Fourier sums on average in the time interval [0,T ]:











min
℘
∑

k=1

∫ T

0








yk (t )−
∑̀

i=1

〈yk (t ),ψi 〉X ψi










2

X
dt

s.t. {ψi}
`
i=1 ⊂X and 〈ψi ,ψ j 〉X = δi j , 1≤ i , j ≤ `.

(P`)

An optimal solution {ψ̄i}`i=1 to (P`) is called a POD basis of rank `. Analogous to (P̂`n) we
can – instead of (P`) – consider the problem











max
℘
∑

k=1

∫ T

0

∑̀

i=1

〈yk (t ),ψi 〉
2
X dt

s.t. {ψi}
`
i=1 ⊂X and 〈ψi ,ψ j 〉X = δi j , 1≤ i , j ≤ `.

(P̂`)
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14 Chapter 1. POD for linear-quadratic Optimal Control

A solution to (P`) and to (P̂`) can be characterized by an eigenvalue problem for the linear
integral operatorR : X →X given as

Rψ=
℘
∑

k=1

∫ T

0
〈yk (t ),ψ〉X yk (t )dt for ψ ∈X . (1.24)

For the given real Hilbert space X we denote by L2(0,T ;X ) the Hilbert space of square
integrable functions t 7→ ϕ(t ) ∈X so that [70, p. 143]

• the mapping t 7→ ϕ(t ) is measurable for t ∈ [0,T ] and

• ‖ϕ‖L2(0,T ;X ) =
�

∫ T

0
‖ϕ(t )‖2

X dt
�1/2

<∞.

Recall that ϕ : [0,T ]→ X is called measurable if there exists a sequence {ϕn}n∈N of step
functions ϕn : [0,T ]→ X satisfying ϕ(t ) = limn→∞ϕn(t ) for almost all t ∈ [0,T ]. The
standard inner product on L2(0,T ;X ) is given by

〈ϕ,ψ〉L2(0,T ;X ) =
∫ T

0
〈ϕ(t ),φ(t )〉X dt for ϕ,φ ∈ L2(0,T ;X ).

Lemma 1.13. Let X be a (separable) real Hilbert space and yk ∈ L2(0,T ;X ), 1≤ k ≤ ℘, be
given snapshot trajectories. Then, the operatorR introduced in (1.24) is compact, nonnegative
and selfadjoint.

Proof. First we write R as a product of an operator and its Hilbert space adjoint. For
that purpose let us define the linear operator Y : L2(0,T ;R℘)→X by

Y φ=
℘
∑

k=1

∫ T

0
φk (t )yk (t )dt for φ= (φ1, . . . ,φ℘) ∈ L2(0,T ;R℘). (1.25)

Utilizing the Cauchy-Schwarz inequality [60, p. 38] and yk ∈ L2(0,T ;X ) for 1 ≤ k ≤ ℘
we infer that

‖Y φ‖X ≤
℘
∑

k=1

∫ T

0

�

�φk (t )
�

�‖yk (t )‖X dt ≤
℘
∑

k=1

‖φk‖L2(0,T )‖y
k‖L2(0,T ;X )

≤
� ℘
∑

k=1

‖φk‖2
L2(0,T )

�1/2� ℘
∑

k=1

‖yk (t )‖2
X

�1/2

=CY ‖φ‖L2(0,T ;R℘) for any φ ∈ L2(0,T ;R℘),

where we set CY = (
∑℘

k=1
‖yk (t )‖2

X )
1/2 <∞. Hence, the operator Y is bounded. Its

Hilbert space adjoint Y ? : X → L2(0,T ;R℘) satisfies

〈Y ?ψ,φ〉L2(0,T ;R℘) = 〈ψ,Y φ〉X for ψ ∈X and φ ∈ L2(0,T ;R℘).

Since we derive

〈Y ?ψ,φ〉L2(0,T ;R℘) = 〈ψ,Y φ〉X =
­

ψ,
℘
∑

k=1

∫ T

0
φk (t )yk (t )dt

·

X

=
℘
∑

k=1

∫ T

0
〈ψ, yk (t )〉Xφ

k (t )dt =
¬

�

〈ψ, yk (·)〉X
�

1≤k≤℘,φ
¶

L2(0,T ;R℘)
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1.2. The POD method 15

for ψ ∈X and φ ∈ L2(0,T ;R℘), the adjoint operator is given by

(Y ?ψ)(t ) =







〈ψ, y1(t )〉X
...

〈ψ, y℘(t )〉X






for ψ ∈X and t ∈ [0,T ] a.e.,

where ‘a.e.’ stands for ‘almost everywhere’. From (1.4) and

�

YY ?
�

ψ=Y







〈ψ, y1(·)〉X
...

〈ψ, y℘(·)〉X






=

℘
∑

k=1

∫ T

0
〈ψ, yk (t )〉X yk (t )dt for ψ ∈X

we infer thatR =YY ? holds. Since the operatorY is bounded, its adjoint and therefore
R = YY ? are bounded operators. To prove that R is compact, we show that Y ? is
compact. Let {χn}n∈N ⊂X be sequence converging weakly to an element χ ∈X , i.e.,

lim
n→∞

〈χn ,ψ〉X = 〈χ ,ψ〉X for all ψ ∈X .

This implies that

lim
n→∞
(Y ?χn)(t ) =







〈χn , y1(t )〉X
...

〈χn , y℘(t )〉X






=







〈χn , y1(t )〉X
...

〈χn , y℘(t )〉X






=
�

Y ?χ
�

(t )

for t ∈ [0,T ] a.e. Thus, the sequence {Y ?χn}n∈N converges weakly toY ?χ in L2(0,T ;R℘).
Consequently,R =YY ? is compact. From

〈Rψ,ψ〉X =
­ ℘
∑

k=1

∫ T

0
〈ψ, yk (t )〉X yk (t )dt ,ψ

·

X

=
℘
∑

k=1

∫ T

0

�

�〈ψ, yk (t )〉X
�

�

2 dt ≥ 0 for all ψ ∈X

we infer thatR is nonnegative. Finally, we haveR? = (YY ?)? =R , i.e. the operatorR
is selfadjoint.

Remark 1.14. It follows from the proof of Lemma 1.13 thatK =Y ?Y : L2(0,T ;R℘)→
L2(0,T ;R℘) is compact as well. We find that

�

K φ
�

(t ) =















℘
∑

k=1

∫ T
0 〈y

k (s), y1(t )〉Xφk (s)ds

...
℘
∑

k=1

∫ T
0 〈y

k (s), y℘(t )〉Xφk (s)ds















, φ ∈ L2(0,T ;R℘).

The compactness ofK can also be shown as follow: Notice that the kernel function

ri k (s , t ) = 〈yk (s), y i (t )〉X , (s , t ) ∈ [0,T ]× [0,T ] and 1≤ i , k ≤℘,
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16 Chapter 1. POD for linear-quadratic Optimal Control

belongs to L2(0,T )× L2(0,T ). Here, we shortly write L2(0,T ) for L2(0,T ;R). Then,
it follows from [78, pp. 197 and 277] that the linear integral operator Ki k : L2(0,T )→
L2(0,T ) defined by

Ki k (t ) =
∫ T

0
ri k (s , t )φ(s)ds , φ ∈ L2(0,T ),

is a compact operator. This implies, that the operator
∑℘

k=1
Ki k is compact for 1≤ i ≤℘

as well. ◊

In the next theorem we formulate how the solution to (P`) and (P̂`) can be found.

Theorem 1.15. Let X be a separable real Hilbert space and yk ∈ L2(0,T ;X ) are given trajec-
tories for 1≤ k ≤℘. Suppose that the linear operatorR is defined by (1.24). Then, there exist
nonnegative eigenvalues {λ̄i}i∈I and associated orthonomal eigenfunctions {ψ̄i}i∈I satisfy-
ing

Rψ̄i = λ̄i ψ̄i , λ̄1 ≥ . . .≥ λ̄d > λ̄d+1 = . . .= 0. (1.26)

For every ` ∈ {1, . . . , d} the first ` eigenfunctions {ψ̄i}`i=1 solve (P`) and (P̂`). Moreover, the
value of the objectives evaluated at the optimal solution {ψ̄i}`i=1 satisfies

℘
∑

k=1

∫ T

0








yk (t )−
∑̀

i=1

〈yk (t ), ψ̄i 〉X ψ̄i










2

X
dt =

d
∑

i=`+1

λ̄i (1.27)

and
℘
∑

k=1

∫ T

0

∑̀

i=1

〈yk (t ), ψ̄i 〉
2
X dt =

∑̀

i=1

λ̄i , (1.28)

respectively.

Proof. The existence of sequences {λ̄i}i∈I of eigenvalues and {ψ̄i}i∈I of associated eigen-
functions satisfying (1.26) follows from Lemma 1.13, Theorem 1.5 and Theorem 1.6.
Analogous to the proof of Theorem 1.8 in Section 1.2.1 one can show that {ψ̄i}`i=1 solves
(P`) as well as (P̂`) and that (1.27) respectively (1.28) are valid.

Remark 1.16. Similar to (1.6) we have

℘
∑

k=1

∫ T

0
‖yk (t )‖2

X dt =
d
∑

i=1

λ̄i . (1.29)

In fact,

Rψ̄i =
℘
∑

k=1

∫ T

0
〈yk (t ), ψ̄i 〉X yk (t )dt for every i ∈I .

Taking the inner product with ψ̄i , using (1.26) and summing over i we get

d
∑

i=1

℘
∑

k=1

∫ T

0
〈yk (t ), ψ̄i 〉

2
X dt =

d
∑

i=1

〈Rψ̄i , ψ̄i 〉X =
d
∑

i=1

λ̄i .
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1.2. The POD method 17

Expanding each yk (t ) ∈X in terms of {ψ̄i}i∈I for each 1≤ k ≤℘ we have

yk (t ) =
d
∑

i=1

〈yk (t ), ψ̄i 〉X ψ̄i

and hence
℘
∑

k=1

∫ T

0
‖yk (t )‖2

X dt =
℘
∑

k=1

d
∑

i=1

∫ T

0
〈yk (t ), ψ̄i 〉

2
X dt =

d
∑

i=1

λ̄i ,

which is (1.29). ◊

Remark 1.17 (Singular value decomposition). Suppose that yk ∈ L2(0,T ;X ) holds. By The-
orem 1.15 there exist nonnegative eigenvalues {λ̄i}i∈I and associated orthonomal eigen-
functions {ψ̄i}i∈I satisfying (1.26). FromK = Y ?Y it follows that there is a sequence
{φ̄i}i∈I such that

K φ̄i = λ̄i φ̄i , 1 . . . ,`.

We set R+0 = {s ∈ R | s ≥ 0} and σ̄i = λ̄1/2
i . The sequence {σ̄i , φ̄i , ψ̄i}i∈I in R+0 ×

L2(0,T ;R℘)× X can be interpreted as a singular value decomposition of the mapping
Y : L2(0,T ;R℘)→X introduced in (1.25). In fact, we have

Y φ̄i = σ̄i ψ̄i , Y ?ψ̄i = σ̄i φ̄i , i ∈I .

Since σ̄i > 0 holds for 1= 1 . . . , d , we have ψ̄i =Y φ̄i/σi for i = 1, . . . , d . ◊

1.2.3 Perturbation analysis for the POD basis

The eigenvalues {λ̄n
i }i∈I satisfying (1.5) depend on the time grid {t j }nj=1. In this section

we investigate the sum
∑d n

i=`+1 λ̄
n
i , the value of the cost in (P`n) evaluated at the solution

{ψ̄n
i }
`
i=1 for n→∞. Clearly, n→∞ is equivalent with∆t = T /(n− 1)→ 0.

In general the spectrum σ(T ) of an operator T ∈ L (X ) does not depend contin-
uously on T . This is an essential difference to the finite dimensional case. For the
compact and selfadjoint operator R we have σ(R) = {λ̄i}i∈I . Suppose that for ` ∈ N
we have λ̄` > λ̄`+1 so that we can seperate the spectrum as follows: σ(R) = S` ∪ S ′`
with S` = {λ̄1, . . . , λ̄`} and S ′

`
= σ(R) \ S`. Then, S` ∩ S ′` = ;. Moreover, setting

V ` = span{ψ̄1, . . . , ψ̄`} we have X = V ` ⊕ (V `)⊥, where the linear space (V `)⊥ stands
for the X -orthogonal complement of V `. Let us assume that

lim
n→∞

‖Rn −R‖L (X ) = 0 (1.30)

holds. Then it follows from the perturbation theory of the spectrum of linear operators
[35, pp. 212-214] that the space V `

n = span{ψ̄n
1 , . . . , ψ̄n

`
} is isomorphic to V ` if n is suffi-

ciently large. Furthermore, the change of a finite set of eigenvalues ofR is small provided
‖Rn−R‖L (X ) is sufficiently small. Summarizing, the behavior of the spectrum is much
the same as in the finite dimensional case if we can ensure (1.30). Therefore, we start this
section by investigating the convergence ofRn −R in the operator norm.

Recall that the Sobolev space H 1(0,T ;X ) is given by

H 1(0,T ;X ) =
�

ϕ ∈ L2(0,T ;X )
�

�ϕt ∈ L2(0,T ;X )
	

,
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18 Chapter 1. POD for linear-quadratic Optimal Control

where ϕt denotes the weak derivative of ϕ. The space H 1(0,T ;X ) is a Hilbert space with
the inner product

〈ϕ,φ〉H 1(0,T ;X ) =
∫ T

0
〈ϕ(t ),φ(t )〉X + 〈ϕt (t ),φt (t )〉X dt for ϕ,φ ∈H 1(0,T ;X )

and the induced norm ‖ϕ‖H 1(0,T ;X ) = 〈ϕ,ϕ〉1/2H 1(0,T ;X ).
Let us choose the trapezoidal weights

αn
1 =

T
2(n− 1)

, αn
j =

T
n− 1

for 2≤ j ≤ n− 1, αn
n =

T
2(n− 1)

. (1.31)

For this choice we observe that for everyψ ∈X the elementRnψ is a trapezoidal approx-
imation forRψ. We will make use of the following lemma.

Lemma 1.18. Suppose that X is a (separable) real Hilbert space and that the snapshot trajec-
tories yk belong to H 1(0,T ;X ) for 1≤ k ≤℘. Then, (1.30) holds true.

Proof. For an arbitrary ψ ∈X with ‖ψ‖X = 1 we define F : [0,T ]→X by

F (t ) =
℘
∑

k=1

〈yk (t ),ψ〉X yk (t ) for t ∈ [0,T ].

It follows that

Rψ=
∫ T

0
F (t )dt =

n−1
∑

j=1

∫ t j+1

t j

F (t )dt ,

Rnψ=
n
∑

j=1

α j F (t j ) =
∆t
2

n−1
∑

j=1

�

F (t j )+ F (t j+1)
�

.

(1.32)

Then, we infer from ‖ψ‖X = 1 that

‖F (t )‖2
X ≤

� ℘
∑

k=1

‖yk (t )‖2
X

�2

. (1.33)

Now we show that F belongs to H 1(0,T ;X ) and its norm is bounded independently of
ψ. Recall that yk ∈H 1(0,T ;X ) imply that yk ∈C ([0,T ];X ) holds for 1≤ k ≤℘. Using
(1.33) we have

‖F ‖2
L2(0,T ;X ) ≤

∫ T

0

� ℘
∑

k=1

‖yk‖2
C ([0,T ];X )

�2

dt ≤C1

with C1 = T (
∑℘

k=1
‖yk‖2

C ([0,T ];X ))
2. Moreover, F ∈H 1(0,T ;X ) with

Ft (t ) =
℘
∑

k=1

〈yk
t (t ),ψ〉X yk (t )+ 〈yk (t ),ψ〉X yk

t (t ) f.a.a. t ∈ [0,T ],

where ‘f.a.a.’ stands for ’for almost all’. Thus, we derive

‖Ft‖
2
L2(0,T ;X ) ≤ 4

∫ T

0

� ℘
∑

k=1

‖yk (t )‖X ‖y
k
t (t )‖X

�2

dt ≤C2
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1.2. The POD method 19

with C2 = 4
∑℘

k=1
‖yk‖2

C ([0,T ];X )
∑℘

l=1
‖y l

t ‖2
L2(0,T ;X ) <∞. Consequently,

‖F ‖H 1(0,T ;X ) =
�
∫ T

0
‖F (t )‖2

X + ‖Ft (t )‖
2
X dt

�1/2

≤C3 (1.34)

with the constant C3 = (C1 +C2)
1/2, which is independent of ψ. To evaluate Rnψ we

notice that
∫ t j+1

t j

F (t )dt =
1
2

∫ t j+1

t j

�

F (t j )+
∫ t

t j

Ft (s)ds
�

dt

+
1
2

∫ t j+1

t j

�

F (t j+1)+
∫ t

t j+1

Ft (s)ds
�

dt

=
∆t
2

�

F (t j )+ F (t j+1)
�

+
1
2

∫ t j+1

t j

�

∫ t

t j+1

Ft (s)ds +
∫ t

t j+1

Ft (s)ds
�

dt .

(1.35)

Utilizing (1.32) and (1.35) we obtain





Rnψ−Rψ






X =












n−1
∑

j=1

�∆t
2

�

F (t j )+ F (t j+1)
�

−
∫ t j+1

t j

F (t )dt
�













X

≤ 1
2

n−1
∑

j=1













∫ t j+1

t j

∫ t

t j

Ft (s)dsdt












X
+

1
2

n−1
∑

j=1













∫ t j+1

t j

∫ t

t j+1

Ft (s)dsdt












X
.

From the Cauchy-Schwarz inequality [60, p. 38] we deduce that

n−1
∑

j=1













∫ t j+1

t j

∫ t

t j

Ft (s)dsdt












X
≤

n−1
∑

j=1

∫ t j+1

t j













∫ t

t j

Ft (s)ds












X
dt

≤
p
∆t

n−1
∑

j=1

�
∫ t j+1

t j










∫ t

t j

Ft (s)ds









2

X
dt
�1/2

≤
p
∆t

n−1
∑

j=1

�
∫ t j+1

t j

�

∫ t

t j

‖Ft (s)‖X ds
�2

dt
�1/2

≤∆t
n−1
∑

j=1

�
∫ t j+1

t j

∫ t

t j

‖Ft (s)‖
2
X dsdt

�1/2

≤ T
p
∆t ‖F ‖H 1(0,T ;X ).

(1.36)

Analogously, we derive

n−1
∑

j=1













∫ t j+1

t j

∫ t

t j+1

Ft (s)dsdt












X
≤ T
p
∆t ‖F ‖H 1(0,T ;X ). (1.37)

From (1.34), (1.36) and (1.37) it follows that





Rnψ−Rψ






X ≤
C4p

n
,
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where C4 =C3T 3/2 is independent of n and ψ. Consequently,

‖Rn −R‖L (X ) = sup
‖ψ‖X=1

‖Rnψ−Rψ‖X
n→∞−→ 0

which gives the claim.

Now we follow [40, Section 3.2]. We suppose that yk ∈ H 1(0,T ;X ) for 1 ≤ k ≤ ℘.
Thus yk ∈C ([0,T ];X ) holds, which implies that

℘
∑

k=1

n
∑

j=1

αn
j ‖y

k (t j )‖
2

X
→

℘
∑

k=1

∫ T

0
‖yk (t )‖2

X dt as n→∞. (1.38)

Combining (1.38) with (1.8) and (1.29) we find

d n
∑

i=1

λ̄n
i →

d
∑

i=1

λ̄i as n→∞. (1.39)

Now choose and fix
` such that λ̄` 6= λ̄`+1. (1.40)

Then, by spectral analysis of compact operators and Lemma 1.18 it follows that

λ̄n
i → λ̄i for 1≤ i ≤ ` as n→∞. (1.41)

Combining (1.39) and (1.41) we derive

d n
∑

i=`+1

λ̄n
i →

d
∑

i=`+1

λ̄i as n→∞.

Especially, if λ1 > λ2 > · · ·> λ` is satisfied, we conclude from (1.40) and Lemma 1.18 that
limn→∞ ‖ψ̄n

i − ψ̄i‖X = 0 for i = 1, . . . ,`. Summarizing the following theorem has been
shown.

Theorem 1.19. Let X be a separable real Hilbert space, the weighting parameters {αn
j }

n
j=1 be

given by (1.31) and yk ∈ H 1(0,T ;X ) for 1 ≤ k ≤ ℘. Let {(ψ̄n
i , λ̄n

i )}i∈I and {(ψ̄i , λ̄i )}i∈I
be eigenvector-eigenvalue pairs satisfying (1.5) and (1.26), respectively. Suppose that ` ∈N is
fixed such that (1.40) holds. Then we have

lim
n→∞

�

�λ̄n
i − λ̄i

�

�= 0 for 1≤ i ≤ `,

and

lim
n→∞

d n
∑

i=`+1

λ̄n
i =

d
∑

i=`+1

λ̄i .

In particular, if λ1 > λ2 > · · ·> λ` holds, then we even have

lim
n→∞

‖ψ̄n
i − ψ̄i‖X = 0 for 1≤ i ≤ `.

Remark 1.20. Theorem 1.19 gives an answer to the two questions posed at the beginning
of Section 1.2.2: The time instances {t j }nj=1 and the associated positive weights {αn

j }
n
j=1
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should be chosen such thatRn is a quadrature approximation ofR and ‖Rn−R‖L (X ) is
small (for reasonable n). A different strategy is applied in [42], where the time instances
{t j }nj=1 are chosen by an optimization approach. Clearly, other choices for the weights
{αn

j }
n
j=1 are also possible provided (1.30) is guaranteed. For instance, we can choose the

Simpson weights. ◊

1.3 Reduced-order modelling for evolution problems
In this section we utilize the POD method to derive low-dimensional models for evolution
problems. For that purpose the POD basis of rank ` serves as test and ansatz functions in
a POD Galerkin approximation. The a-priori error of the POD Galerkin scheme is inves-
tigated. It turns out that the resulting error bounds depend on the number of POD basis
functions. Let us refer, e.g., to [20, 22, 30, 38, 40, 39, 62] and [32], where POD Galerkin
schemes for parabolic equations and elliptic equations are studied. Moreover, we would
like to mention the recent papers [8] and [66], where improved rates of convergence re-
sults are derived.

1.3.1 The abstract evolution problem

In this subsection we introduce our abstract evolution problem which will be under con-
sideration in Sections 1.3 and 1.4. Let V and H be real, separable Hilbert spaces and
suppose that V is dense in H with compact embedding. By 〈· , ·〉H and 〈· , ·〉V we denote
the inner products in H and V , respectively. In particular, there exists a constant cV > 0
such that

‖ϕ||H ≤ cV ‖ϕ‖V for all ϕ ∈V . (1.42)

Let T > 0 the final time. For t ∈ [0,T ] we define a time-dependent symmetric bilinear
form a(t ; · , ·) : V ×V →R satisfying

�

�a(t ;ϕ,ψ)
�

�≤ γ ‖ϕ‖V ‖ψ‖V ∀ϕ ∈V a.e. in [0,T ], (1.43a)

a(t ;ϕ,ϕ)≥ γ1 ‖ϕ‖
2
V − γ2 ‖ϕ‖

2
H ∀ϕ ∈V a.e. in [0,T ] (1.43b)

for constants γ , γ1 > 0 and γ2 ≥ 0 which do not depend on t . In (1.43), the abbreviation
“a.e.” stands for “almost everywhere”. By identifying H with its dual H ′ it follows that
V ,→ H = H ′ ,→V ′ each embedding being continuous and dense. Here, V ′ denotes the
dual space of V . Recall that the function space (see [10, pp. 472-479] and [70, pp. 146-148],
for instance)

W (0,T ) =
�

ϕ ∈ L2(0,T ;V )
�

�ϕt ∈ L2(0,T ;V ′)
	

is a Hilbert space endowed with the inner product

〈ϕ,φ〉W (0,T ) =
∫ T

0
〈ϕ(t ),φ(t )〉V + 〈ϕt (t ),φt (t )〉V ′ dt for ϕ,φ ∈W (0,T )

and the induced norm ‖ϕ‖W (0,T ) = 〈ϕ,ϕ〉1/2W (0,T ). Furthermore, W (0,T ) is continuously
embedded into the space C ([0,T ]; H ). Hence, ϕ(0) and ϕ(T ) are meaningful in H for an
element ϕ ∈W (0,T ). The integration by parts formula reads

∫ T

0
〈ϕt (t ),φ(t )〉V ′,V dt +

∫ T

0
〈φt (t ),ϕ(t )〉V ′,V dt =

d
dt

∫ T

0
〈ϕ(t ),ψ(t )〉H dt

= ϕ(T )φ(T )−ϕ(0)φ(0)
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for ϕ, φ ∈W (0,T ), where 〈· , ·〉V ′,V stands for the dual pairing between V and its dual
space V ′. Moreover, we have the formula

〈ϕt (t ),φ〉V ′,V =
d
dt
〈ϕ(t ),φ〉H for (ϕ,φ) ∈W (0,T )×V and f.a.a. t ∈ [0,T ].

Since we will consider optimal control problems in Section 1.4, we already introduce
the evolution problem with an input term. We suppose that for Nu ∈ N the input space
U = L2(0,T ;RNu ) is chosen. In particular, we identify U with its dual space U ′. For
u ∈U , y◦ ∈H and f ∈ L2(0,T ;V ′) we consider the linear evolution problem

d
dt
〈y(t ),ϕ〉H + a(t ; y(t ),ϕ) = 〈( f +Bu)(t ),ϕ〉V ′,V

∀ϕ ∈V a.e. in (0,T ],
〈y(0),ϕ〉H = 〈y◦,ϕ〉H ∀ϕ ∈H ,

(1.44)

whereB : U → L2(0,T ;V ′) is a continuous, linear (control or input) operator.

Remark 1.21. Notice that the techniques presented in this work can be adapted for prob-
lems, where the input space U is given by L2(0,T ; L2(D)) for some open and bounded
domain D ⊂R eNu for an eNu ∈N. ◊

Theorem 1.22. For t ∈ [0,T ] let a(t ; · , ·) : V ×V → R be a time-dependent symmetric
bilinear form satisfying (1.43). Then, for every u ∈ U , f ∈ L2(0,T ;V ′) and y◦ ∈ H there is
a unique weak solution y ∈W (0,T ) satisfying (1.44) and

‖y‖W (0,T ) ≤C
�

‖y◦‖H + ‖ f ‖L2(0,T ;V ′)+ ‖u‖U

�

(1.45)

for a constant C > 0 which is independent of u, y◦ and f . If f ∈ L2(0,T ; H ), a(t ; · , ·) = a(· , ·)
(independent of t ) and y◦ ∈ V hold, we even have y ∈ L∞(0,T ;V ) ∩H 1(0,T ; H ). Here,
L∞(0,T ;V ) stands for the Banach space of all measurable functions ϕ : [0,T ] → V with
esssupt∈[0,T ] ‖ϕ(t )‖V <∞ (see [70, p. 143], for instance).

Proof. For a proof of the existence of a unique solution we refer to [10, pp. 512-520]. The
a-priori error estimate follows from standard variational techniques and energy estimates.
The regularity result follows from [10, pp. 532-533] and [17, pp. 360-364].

Remark 1.23. We split the solution to (1.44) in one part, which depends on the fixed initial
condition y◦ and right-hand f , and another part depending linearly on the input variable
u. Let ŷ ∈W (0,T ) be the unique solution to

d
dt
〈ŷ(t ),ϕ〉H + a(t ; ŷ(t ),ϕ) = 〈 f (t ),ϕ〉V ′,V ∀ϕ ∈V a.e. in (0,T ],

ŷ(0) = y◦ in H .

We define the subspace

W0(0,T ) =
�

ϕ ∈W (0,T )
�

�ϕ(0) = 0 in H
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endowed with the topology of W (0,T ). Let us now introduce the linear solution operator
S : U →W0(0,T ): for u ∈U the function y =S u ∈W0(0,T ) is the unique solution to

d
dt
〈y(t ),ϕ〉H + a(t ; y(t ),ϕ) = 〈(Bu)(t ),ϕ〉V ′,V ∀ϕ ∈V a.e. in (0,T ].

From y ∈W0(0,T ) we infer y(0) = 0 in H . The boundedness of S follows from (1.45).
Now, the solution to (1.44) can be expressed as y = ŷ +S u. ◊

1.3.2 The POD method for the evolution problem

Let u ∈ U , f ∈ L2(0,T ;V ′) and y◦ ∈ H be given and y = ŷ +S u. To keep the nota-
tion simple we apply only a spatial discretization with POD basis functions, but no time
integration by, e.g., the implicit Euler method. Therefore, we utilize the continuous ver-
sion of the POD method introduced in Section 1.2.2. In this section we distinguish two
choices for X : X = H and X = V . It turns out that the choice for X leads to different
rate of convergence results. We suppose that the snapshots yk , k = 1, . . . ,℘, belong to
L2(0,T ;V ). Later, we will present different rate of convergence results for appropriate
choices of the yk ’s. Let us introduce the following notations:

RVψ=
℘
∑

k=1

∫ T

0
〈ψ, yk (t )〉V yk (t )dt for ψ ∈V ,

RHψ=
℘
∑

k=1

∫ T

0
〈ψ, yk (t )〉H yk (t )dt for ψ ∈H . (1.46)

Moreover, we set KV = R?
V and KH = R?

H . In Remark 1.17 we have introduced the
singular value decomposition of the operator Y defined by (1.25). To distinguish the
two choices for the Hilbert space X we denote by the sequence {(σV

i ,ψV
i ,φV

i )}
`
i∈I ⊂

R+0 ×V × L2(0,T ;R℘) of triples the singular value decomposition for X = V , i.e., we
have that

RVψ
V
i = λ

V
i ψ

V
i , KVφ

V
i = λ

V
i φ

V
i , σV

i =
q

λV
i , i ∈I .

Furthermore, let the sequence {(σH
i ,ψH

i ,φH
i )}

`
i∈I ⊂R

+
0 ×H × L2(0,T ;R℘) in satisfy

RHψ
H
i = λ

H
i ψ

H
i , KHφ

H
i = λ

H
i φ

H
i , σH

i =
Æ

λH
i , i ∈I . (1.47)

The relationship between the singular values σH
i and σV

i is investigated in the next lemma,
which is taken from [66].

Lemma 1.24. Suppose that the snapshots yk ∈ L2(0,T ;V ), k = 1, . . . ,℘. Then we have:

1) For all i ∈I with σH
i > 0 we have ψH

i ∈V .

2) σV
i = 0 for all i > d with some d ∈N if and only if σH

i = 0 for all i > d , i.e., we have
dH = dV if the rank ofRV is finite.

3) σV
i > 0 for all i ∈I if and only if σH

i > 0 for all i ∈I .

Proof. We argue similarly as in the proof of Lemma 3.1 in [66].
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1) Let σH
i > 0 hold. Then, it follows that λH

i > 0. We infer from yk ∈ L2(0,T ;V ) that
RHψ ∈V for anyψ ∈H . Hence, we infer from (1.47) and thatψH

i =RHψ
H
i /λ

H
i ∈

V .

2) Assume that σV
i = 0 for all i > d with some d ∈ N. Then, we deduce from (1.27)

that

yk (t ) =
d
∑

i=1

〈yk (t ),ψV
i 〉V ψ

V
i for every k = 1, . . . ,℘. (1.48)

From

RHψ
H
j =

℘
∑

k=1

∫ T

0
〈ψH

j , yk (t )〉
H

yk (t )dt

=
d
∑

i=1

� ℘
∑

k=1

∫ T

0
〈ψH

j , yk (t )〉
H
〈yk (t ),ψV

i 〉V dt
�

ψV
i , j ∈I ,

we conclude that that the range ofRH is at most d -dimensional, which implies that
λH

i = 0 for all i > d . Analogously, we deduce from σH
i = 0 for all i > d that the

range ofRV is at most d .

3) The claim follows directly from part 2).

Thus, Lemma 1.24 is proved.

Let us define the two POD subspaces

V ` = span
�

ψV
1 , . . . ,ψV

`

	

⊂V , H ` = span
�

ψH
1 , . . . ,ψH

`

	

⊂V ⊂H ,

where H ` ⊂V follows from part 1) of Lemma 1.24. Moreover, we introduce the orthog-
onal projection operatorsP `

H : V →H ` ⊂V andP `
V : V →V ` ⊂V as follows:

v` =P `
Hϕ for any ϕ ∈V iff v` solves min

w`∈H `
‖ϕ−w`‖V ,

v` =P `
Vϕ for any ϕ ∈V iff v` solves min

w`∈V `
‖ϕ−w`‖V .

(1.49)

It follows from the first-order optimality conditions that v` =P `
Hϕ satisfies

〈v`,ψH
i 〉V = 〈ϕ,ψH

i 〉V , 1≤ i ≤ `. (1.50)

Writing v` ∈ H ` in the form v` =
∑`

j=1 v`jψ
H
j we derive from (1.50) that the vector

v` = (v`1, . . . , v`
`
)> ∈R` satisfies the linear system

∑̀

j=1

〈ψH
j ,ψH

i 〉V v`j = 〈ϕ,ψH
i 〉V , 1≤ i ≤ `.

For the operatorP `
V we have the explicit representation

P `
Vϕ =

∑̀

i=1

〈ϕ,ψV
i 〉V ψ

V
i for ϕ ∈V .
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Since the linear operatorsP `
V andP `

H are orthogonal projections, we have ‖P `
V ‖L (V ) =

‖P `
H‖L (V ) = 1. As {ψV

i }i∈I is a complete orthonormal basis in V , we have

lim
`→∞

∫ T

0
‖w(t )−P `

V w(t )‖2
V dt = 0 for all w ∈ L2(0,T ;V ). (1.51)

Next we review an essential result from [66, Theorem 5.2], which we will use in our
a-priori error analysis for the choice X = H . Recall that ψH

i ∈ V holds for 1 ≤ i ≤ dH

and the image of P `
H belongs to V . Consequently, ‖ψH

i −P
`

Hψ
H
i ‖V is well-defined for

1≤ i ≤ dH .

Theorem 1.25. Suppose that yk ∈ L2(0,T ;V ) for 1≤ k ≤℘. Then,

℘
∑

k=1

∫ T

0
‖yk (t )−P `

H yk (t )‖2
V dt =

dH
∑

i=`+1

λH
i ‖ψ

H
i −P

`
Hψ

H
i ‖

2
V . (1.52)

Here, dH is the rank of the operatorRH , which may be infinite. Moreover, P `
H yk converges

to yk in L2(0,T ;V ) as ` tends to∞ for each k ∈ {1, . . . ,℘}.

Proof. Suppose that 1 ≤ ` ≤ dH and 1 ≤ `◦ <∞ hold. Then, λH
i > 0 for 1 ≤ i ≤ `.

Let I ∈ L (V ) denote the identity operator. As I −P `
H is an orthonormal projection

on V , we conclude ‖I −P `
H‖L (V ) = 1. Furthermore, yk ∈ L2(0,T ;V ) holds for each

k ∈ {1, . . .℘}. Thus, (1.51) implies thatP `◦
V yk → yk in L2(0,T ;V ) as `◦→∞ for each k.

The proof of (1.52) is essentially based on Hilbert-Schmidt theory and on the following
result [66, Lemma 5.1]:

℘
∑

k=1

∫ T

0
‖(I −P `

H )P
`◦

V yk (t ))‖
2

V dt

=
`◦
∑

i=1

λV
i ‖ψ

V
i −P

`
Hψ

V
i ‖

2
V ≤

∑

i :λV
i >0

λV
i ‖ψ

V
i −P

`
Hψ

V
i ‖

2
V <∞

(1.53)

for any `◦ ∈ N. To prove that P `
H yk converges to yk in L2(0,T ;V ) as ` tends to∞ for

each k ∈ {1, . . . ,℘} we observe that

dH
∑

i=`+1

λH
i ‖ψ

H
i −P

`
Hψ

H
i ‖

2
V ≤

dH
∑

i=`+1

λH
i ‖I −P

`
H‖L (V )‖ψ

H
i ‖

2
V

=
dH
∑

i=`+1

λH
i ‖ψ

H
i ‖

2
V

By utilizing the singular value decomposition (see Remark 1.17) it is shown in [66, Theo-
rem 5.2] that

∑dH
i=`+1

λH
i ‖ψ

H
i ‖

2
V <∞ holds. Therefore,

lim
`◦→∞

℘
∑

k=1

∫ T

0
‖(I −P `

H )P
`◦

V yk (t ))‖
2

V dt = 0

which gives the claim.
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We will also need the following result, which follows from the continuous embedding
V ,→H . For a proof we refer to [66, Proposition 5.5].

Lemma 1.26. Let yk ∈ L2(0,T ;V ) for each k ∈ {1, . . . ,℘} and λH
i > 0 for all i ∈I . Then,

lim
`→∞

‖ϕ−P `
Hϕ‖V = 0 for all ϕ ∈V .

1.3.3 The POD Galerkin approximation

After the computation of a POD basis of rank ` we are interested in deriving a low-
dimensional approximation for the evolution problem (1.44). In the context of Section 1.2.2
we choose ℘ = 1, y1 = S u and compute a POD basis {ψi}`i=1 of rank ` by solving (P`)
with ψi = ψV

i for X = V and ψi = ψH
i for X = H . Then, we define the subspace

X ` = span{ψ1, . . . ,ψ`}, i.e., X ` = V ` for X = V and X ` = H ` for X = H . Now we
approximate the state variable y by the Galerkin expansion

y`(t ) = ŷ(t )+
∑̀

i=1

y`i (t )ψi ∈V a.e. in [0,T ] (1.54)

with coefficient functions y`i : [0,T ] → R. We introduce the vector-valued coefficient
function

y` =
�

y`1, . . . , y``
�

: [0,T ]→R`.

Since ŷ(0) = y◦ holds, we suppose that y`(0) = 0. Then, y`(0) = y◦ is valid, i.e., the
POD state matches exactly the initial condition. Inserting (1.54) into (1.44) and using the
test space in V ` for 1 ≤ i ≤ ` we obtain the following POD Galerkin scheme for (1.44):
y` ∈W (0,T ) solves

d
dt
〈y`(t ),ψ〉H + a(t ; y`(t ),ψ) = 〈( f +Bu)(t ),ψ〉V ′,V ∀ψ ∈X ` a.e.,

y`(0) = 0.
(1.55)

We call (1.55) a low dimensional or reduced-order model for (1.44).

Proposition 1.27. Let all assumptions of Theorem 1.22 be satisfied and the POD basis of
rank ` be computed as desribed at the beginning of Section 1.3.1. Then, there exists a unique
solution y` ∈H 1(0,T ;V ) ,→W (0,T ) solving (1.55).

Proof. Choosing ψ = ψi , 1 ≤ i ≤ `, and applying (1.54) we infer from (1.55) that the
coefficient vector y` satisfies

M`ẏ`(t )+A`(t )y(t ) = F̂`(t ) a.e. in [0,T ], y`(0) = 0, (1.56)

where we have set

M` =
��

〈ψi ,ψ j 〉H
��

∈R`×`, A`(t ) =
��

a(t ;ψi ,ψ j )
��

∈R`×`,

F̂`(t ) =
�

〈( f +Bu)(t )− ŷt (t ),ψi 〉V ′,V − a(t ; ŷ(t ),ψi )
�

∈R`
(1.57)

with ψi = ψ
V
i for X = V and ψi = ψ

H
i for X = H . Since (1.56) is a linear ordinary dif-

ferential equation system the existence of a unique y` ∈H 1(0,T ;R`) follows by standard
arguments.
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Remark 1.28.

1) Suppose ŷ 6= 0. In contrast to [28, 71], for instance, the POD approximation does
admit values y`(t ) in X `, but (y`− ŷ)(t ) ∈ X ` holds. The benefit of this approach
is that y`(0) = y◦ – and not y`(0) = P `

H y◦ or y`(0) = P `
V y◦. This improves the

approximation quality of the POD basis which is illustrated in our numerical tests.

2) We proceed analogously to Remark 1.23 and introduce the linear and bounded so-
lution operatorS ` : U →W0(0,T ): for u ∈U the function w` =S `u ∈W (0,T )
satisfies w`(0) = 0 and

d
dt
〈w`(t ),ψ〉H + a(t ; w`(t ),ψ) = 〈(Bu)(t ),ψ〉V ′,V ∀ψ ∈X ` a.e.

Then, the solution to (1.55) is given by y` = ŷ +S `u. Analogous to the proof of
(1.45) we derive that there exists a positive constant C2 which does not depend on
` or u so that

‖S `u‖W (0,T ) ≤C ‖u‖U .

Thus, S ` is bounded uniformly with respect to `. ◊

To investigate the convergence of the error y − y` we make use of the following two
inequalities:

1) Gronwall’s inequality: For T > 0 let v : [0,T ]→R be a nonnegative, differentiable
function satisfying

v ′(t )≤ ϕ(t )v(t )+χ (t ) for all t ∈ [0,T ],

where ϕ and χ are real-valued, nonnegative, integrable functions on [0,T ]. Then

v(t )≤ exp
�
∫ t

0
ϕ(s)ds

��

v(0)+
∫ t

0
χ (s)ds

�

for all t ∈ [0,T ]. (1.58)

In particular, if
v ′ ≤ ϕv in [0,T ] and v(0) = 0

hold, then v = 0 in [0,T ].

2) Young’s inequality: For every a, b ∈R and for every ε > 0 we have

ab ≤ εa2

2
+

b 2

2ε
.

Theorem 1.29. Let u ∈U be chosen arbitrarily so that 0 6=S u ∈H 1(0,T ;V ).

1) To compute a POD basis {ψi}`i=1 of rank ` we choose ℘ = 1 and y1 = S u. Then,
y = ŷ +S u and y` = ŷ +S `u satisfies the a-priori error estimate

‖y`− y‖2
H 1(0,T ;V )

≤C1 ·































dV
∑

i=`+1
λV

i + ‖y
1
t −P `

V y1
t ‖

2
L2(0,T ;V ) if X =V ,

dH
∑

i=`+1
λH

i ‖ψ
H
i −P

`
Hψ

H
i ‖

2
V

+‖y1
t −P `

H y1
t ‖

2
L2(0,T ;V ) if X =H ,

(1.59)
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where the constant C1 depends on the terminal time T and the constants γ , γ1, γ2
introduced in (1.43).

2) If we set ℘= 2 and compute a POD basis of rank ` using the trajectories y1 =S u and
y2 = (S u)t , it follows that

‖y`− y‖2
H 1(0,T ;V )

≤C3 ·



















dV
∑

i=`+1
λV

i for X =V ,

dH
∑

i=`+1
λH

i ‖ψ
H
i −P

`
Hψ

H
i ‖

2
V for X =H

(1.60)

for a constant C3 which depends on γ , γ1, γ2, and T .

3) If S ũ belongs to H 1(0,T ;V ) for every ũ ∈ U and if λH
i > 0 for all i ∈ I , then we

have
lim
`→∞

‖S −S `‖L (U ,W (0,T )) = 0. (1.61)

Proof.

1) For almost all t ∈ [0,T ] we make use of the decomposition

y`(t )− y(t ) = ŷ(t )+ (S `u)(t )− ŷ(t )− (S u)(t )

= (S `u)(t )−P `
�

(S u)(t )
�

+P `
�

(S u)(t )
�

− (S u)(t )

= ϑ`(t )+%`(t ),

(1.62)

where ϑ` = S `u −P `(S u) ∈ X ` and %` = P `(S u)−S u. In (1.62) we will
consider the two choices P ` = P `

H for X = H and P ` = P `
V for X = V . From

y1 =S u and (1.27) we infer that

‖%`‖2
H 1(0,T ;V ) =

dV
∑

i=`+1

λV
i + ‖y

1
t −P

`
V y1

t ‖
2
L2(0,T ;V ) (1.63)

in case of X =V , where dV stands for rank ofRV . For the choice X =H we derive
from y1 =S u and Theorem 1.25 that

‖%`‖2
H 1(0,T ;V ) =

dH
∑

i=`+1

λH
i ‖ψ

H
i −P

`
Hψ

H
i ‖

2
V + ‖y

1
t −P

`
H y1

t ‖
2
L2(0,T ;V ). (1.64)

Here, dH denotes for rank ofRH . Using ϑ`t (t ) ∈H for almost all t ∈ [0,T ], (1.44),
(1.55) and (1.43a) we derive that

d
dt
〈ϑ`(t ),ψ〉H + a(t ;ϑ`(t ),ψ)

= 〈y1
t (t )−P

`y1
t (t ),ψ〉H + a(t ; y1(t )−P `y1(t ),ψ)

≤ ‖y1
t (t )−P

`y1
t (t )‖H‖ψ‖H + γ ‖y

1(t )−P `y1(t )‖V ‖ψ‖V

(1.65)
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for all ψ ∈ X ` and for almost all t ∈ [0,T ]. From choosing ψ= ϑ`(t ), (1.43b) and
(1.65) we find

d
dt
‖ϑ`(t )‖2

H + γ1 ‖ϑ
`(t )‖2

V − 3γ2 ‖ϑ
`(t )‖2

H

≤ 1
γ2
‖y1

t (t )−P
`y1

t (t )‖
2
H +

γ 2

γ1
‖y1(t )−P `y1(t )‖2

V .

From (1.58) – setting v(t ) = ‖ϑ`(t )‖2
H ≥ 0,

χ (t ) =
1
γ2
‖y1

t (t )−P
`y1

t (t )‖
2
H +

γ 2

γ1
‖y1(t )−P `y1(t )‖2

V ≥ 0,

ϕ(t ) = 3γ2 > 0 – and ϑ`(0) = 0 it follows that

‖ϑ`(t )‖2
H ≤ c1

�

‖y1
t −P

`y1
t ‖

2
L2(0,T ;H )+ ‖y

1−P `y1‖2
L2(0,T ;V )

�

for almost all t ∈ [0,T ]with the constants c1 = c2 exp(3γ2T ) and c2 =max(1/γ2,γ 2/γ1),
so that

‖ϑ`‖2
L2(0,T ;V ) ≤ c3

�

‖ϑ`‖2
L2(0,T ;H )+ ‖y

1
t −P

`y1
t ‖

2
L2(0,T ;H )

�

+ c3 ‖y
1−P `y1‖2

L2(0,T ;V )

≤ c4

�

‖y1
t −P

`y1
t ‖

2
L2(0,T ;H )+ ‖%

`(t )‖2
L2(0,T ;V )

�

(1.66)

with c3 = max(3γ2, c2)/γ1 and c4 = c3(1+ c1T ). We conclude from (1.43a), (1.59)
and (1.66) that

‖ϑ`t ‖L2(0,T ;(V `)′)

= sup
§
∫ T

0
〈ϑ`t (t ),ψ(t )〉V ′,V

�

�

�‖ψ‖L2(0,T ;V ) = 1, ψ(t ) ∈V `
ª

≤ γ ‖ϑ`‖L2(0,T ;V )+ ‖y
1
t −P

`y1
t ‖L2(0,T ;H )

≤ c5

�

‖y1
t −P

`y1
t ‖L2(0,T ;H )+ ‖y

1−P `y1‖L2(0,T ;V )

�

(1.67)

with c5 = 1+ c4γ . By assumption we have ϑ`t ∈ L2(0,T ;V ). Then, by the Riesz
theorem [60, p. 43] we have

‖ϑ`t ‖L2(0,T ;(V `)′) = ‖ϑ
`
t ‖L2(0,T ;V `) = ‖ϑ

`
t ‖L2(0,T ;V )

so that (1.62)-(1.64), (1.66) and (1.67) imply (1.59).

2) The claim follows directly from

‖y1
t −P

`y1
t ‖

2
L2(0,T ;V ) = ‖y

2−P `y2‖2
L2(0,T ;V )

(1.27) and Theorem 1.25.
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3) Recall that the space H 1(0,T ;V ) is continuously embedded in W (0,T ). Therefore,
there is a constant cW > 0 satisfying

‖ϕ‖W (0,T ) ≤ cW ‖ϕ‖H 1(0,T ;V ) for all ϕ ∈H 1(0,T ;V ).

UsingS ũ ∈H 1(0,T ;V ) for any ũ ∈U , Remark 1.9 and applying the arguments as
in part 1) we infer that there exists a constant c6 which is independent of ` satisfying





S −S `




L (U ,W (0,T ))

= sup
‖ũ‖U=1





(S −S `)ũ






W (0,T ) ≤ cW sup
‖ũ‖U=1





(S −S `)ũ






H 1(0,T ;V )

≤ c6 sup
‖ũ‖U=1

∫ T

0
‖ỹ(t )−P ` ỹ(t )‖2

V + ‖ỹt (t )−P
` ỹt (t )‖

2
V dt

with ỹ = S ũ. By assumption, the elements ỹ(t ) and ỹt (t ) belong to the space
L2(0,T ;V ). Therefore, the claim follows for X = V from (1.51) and for X = H
from Lemma 1.26.

Thus, Theorem 1.29 is proved.

Remark 1.30.

1) Note that the a-priori error estimates (1.59) and (1.60) depend an the arbitrarily
chosen, but fixed control u ∈ U , which is also utilized to compute the POD basis.
Moreover, these a-priori estimates do not involve errors by the POD discretization
of the initial condition y◦ – in contrast to the error analysis presented in [28, 38, 40,
62, 71], for instance. Further, let us mention that the a-priori error analysis holds
for T <∞.

2) From (1.61) we infer




ŷ +S ` ũ − ŷ −S ũ






W (0,T ) ≤




S −S `




L (U ,W (0,T ))‖ũ‖U
`→∞−→ 0

for any ũ ∈U .

3) For the numerical realization we have to utilize also a time integration method
like, e.g., the implicit Euler or the Crank-Nicolson method. We refer the reader to
[38, 40, 39], where different time discretization schemes are considered. Moreover,
in [45, 62] also a finite element discretization of the ansatz space V is incorporated
in the a-priori error analysis. ◊

Example 1.31. Accurate approximation results are achieved if the subspace spanned by
the snapshots is (approximatively) of low dimension. Let T > 0, Ω = (0,2) ⊂ R and
Q = (0,T )×Ω. We set f (t , x) = e−t (π2− 1) sin(πx) for (t , x) ∈Q and y◦(x) = sin(πx)
for x ∈Ω. Let H = L2(Ω), V =H 1

0 (Ω) and

a(t ;ϕ,φ) =
∫

Ω

ϕ′(x)φ′(x)dx for ϕ,φ ∈V ,

i.e., the bilinear form a is independent of t . Finally, we choose u = 0. Then, the exact
solution to (1.44) is given by y(t , x) = e−t sin(πx). Thus, the snapshot space V is the
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one-dimensional space {αψ | α ∈ R} with ψ(x) = sin(πx). Choosing the space X = H ,
this implies that all eigenvalues of the operatorRH introduced in (1.46) except of the first
one are zero and ψ1 = ψ ∈ V is the single POD element corresponding to a nontrivial
eigenvalue ofRH . Further, the reduced order model of the rank-1 POD-Galerkin ansatz

ẏ1(t )+ ‖ψ′1‖
2
H y1(t ) = 〈 f (t ),ψ1〉H for t ∈ (0,T ],

y1(0) = 〈y◦,ψ1〉H

has the solution y1(t ) = e−t , so both the projection
�

P 1y
�

(t , x) = 〈y(t ),ψ1〉Xψ1(x), (t , x) ∈Q,

of the state y on the POD-Galerkin space and the reduced-order solution y1(t ) = y1(t )ψ1
coincide with the exact solution y. In the latter case, this is due to the fact that the data
functions f and y◦ as well as all time derivative snapshots ẏ(t ) are already elements of
span(ψ1), so no projection error occurs here, cp. the a priori error bounds given in (1.60).
In the case X = V , we get the same results with ψ1(x) = sin(πx)/

p
1+π2 and y1(t ) =p

1+π2e−t .

Utilizing the techniques as in the proof of Theorem 6.5 in [66] one can derive an a-
priori error bound without including the time derivatives into the snapshot subspace. In
the next proposition we formulate the a-priori error estimate.

Proposition 1.32. Let y◦ ∈V and u ∈U be chosen arbitrarily so thatS u 6= 0. To compute
a POD basis {ψi}`i=1 of rank ` we choose ℘ = 1 and y1 = S u. Then, y = ŷ +S u and
y` = ŷ +S `u satisfies the a-priori error estimate

‖y`− y‖2
L2(0,T ;V ) ≤C ·



















dV
∑

i=`+1
λV

i ‖ψ
V
i −P

`
H ,V `ψ

V
i ‖

2

V
if X =V ,

dH
∑

i=`+1
λH

i ‖ψ
H
i ‖

2
V if X =H ,

(1.68)

where the constant C depends on the terminal time T and the constants γ , γ1, γ2 introduced
in (1.43). Moreover,P `

H ,V ` : H →V ` is the H -orthogonal projection given as follows:

v` =P `
H ,V `ϕ for any ϕ ∈H iff v`solves min

w`∈V `
‖ϕ−w`‖H .

In particular, we have y`→ y in L2(0,T ;V ) as `→∞.

1.4 The linear-quadratic optimal control problem
In this section we apply a POD Galerkin approximation to linear-quadratic optimal con-
trol problems. Linear-quadratic problems are interesting in several respects: In particular,
they occur in each level of a sequential quadratic programming (SQP) methods; see, e.g.,
[52]. In contrast to methods of balanced truncation type, the POD method is somehow
lacking a reliable a-priori error analysis. Unless its snapshots are generating a sufficiently
rich state space, it is not a-priorly clear how far the optimal solution of the POD problem
is from the exact one. On the other hand, the POD method is a universal tool that is
applicable also to problems with time-dependent coefficients or to nonlinear equations.
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By generating snapshots from the real (large) model, a space is constructed that contains
the main and relevant physical properties of the state system. This, and its ease of use
makes POD very competitive in practical use, despite of certain heuristic.

Here we prove convergence and derive a-priori error estimates for the optimal control
problem. The error estimates rely on the (unrealistic) assumption that the POD basis is
computed from the (exact) optimal solution. However, these estimates are utilized to de-
velop an a-posteriori error analysis for the POD Galerkin appproximation of the optimal
control problem. Using a perturbation method [16] we deduce how far the suboptimal
control, computed by the POD Galerkin approximation, is from the (unknown) exact
one. This idea turned out to be very efficient in our numerical examples. Thus, we are
able to compensate for the lack of an a-priori error analysis for the POD method.

1.4.1 Problem formulation

In this section we introduce our optimal control problem, which is an constrained opti-
mization problem in a Hilbert space. The objective is a quadratic function. The evolution
problem (1.44) serves as an equality constraint. Moreover, bilateral control bounds lead to
inequality constraints in the minimization. For the readers’ convenience we recall (1.44)
here. Let U = L2(0,T ;RNu ) denote the control space with Nu ∈ N. For u ∈ U , y◦ ∈ H
and f ∈ L2(0,T ;V ′) we consider the state equation

d
dt
〈y(t ),ϕ〉H + a(t ; y(t ),ϕ) = 〈( f +Bu)(t ),ϕ〉V ′,V

∀ϕ ∈V a.e. in (0,T ],
〈y(0),ϕ〉H = 〈y◦,ϕ〉H ∀ϕ ∈H ,

(1.69)

whereB : U → L2(0,T ;V ′) is a continuous, linear operator. Due to Theorem 1.22 there
exists a unique solution y ∈W (0,T ) to (1.69).

We introduce the Hilbert space

X =W (0,T )×U

endowed with the natural product topology, i.e., with the inner product

〈x, x̃〉X = 〈y, ỹ〉W (0,T )+ 〈u, ũ〉U for x = (y, u), x̃ = (ỹ, ũ) ∈X

and the norm ‖x‖X = (‖y‖2
W (0,T )+ ‖u‖

2
U )

1/2 for x = (y, u) ∈X .

Assumption 1. For t ∈ [0,T ] let a(t ; · , ·) : V×V →R be a time-dependent symmetric bilin-
ear form satisfying (1.43). Moreover, f ∈ L2(0,T ;V ′), y◦ ∈H andB ∈L (U , L2(0,T ;V ′))
holds.

In Remark 1.23 we have introduced the particular solution ŷ ∈ W (0,T ) as well as
the linear, bounded solution operatorS . Then, the solution to (1.69) can be expressed as
y = ŷ+S u. By Xad we denote the closed, convex and bounded set of admissible solutions
for the optimization problem as

Xad =
�

(ŷ +S u, u) ∈X
�

� ua ≤ u ≤ ub in RNu a.e. in [0,T ]
	

,

where ua = (ua,1, . . . , ua,Nu
), ub = (ub ,1, . . . , ub ,Nu

) ∈ U satisfy ua,i ≤ ub ,i for 1 ≤ i ≤ Nu

a.e. in [0,T ]. Since ua,i ≤ ub ,i holds for 1≤ i ≤Nu , we infer from Theorem 1.22 that the
set Xad is nonempty.
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The quadratic objective J : X →R is given by

J (x) =
σQ

2

∫ T

0
‖y(t )− yQ (t )‖

2
H

dt +
σΩ
2
‖y(T )− yΩ‖

2
H +

σ

2
‖u‖2

U (1.70)

for x = (y, u) ∈ X , where (yQ , yΩ) ∈ L2(0,T ; H )×H are given desired states. Further-
more, σQ , σΩ ≥ 0 and σ > 0. Of course, more general cost functionals can be treated
analogously.

Now the quadratic programming problem is given by

min J (x) subject to (s.t.) x ∈Xad. (P)

From x = (y, u) ∈Xad we infer that y = ŷ+S u holds. Hence, y is a dependent variable.
We call u the control and y the state. In this way, (P) becomes an optimal control problem.
Utilizing the relationship y = ŷ+S u we define a so-called reduced cost functional Ĵ : U →
R by

Ĵ (u) = J (ŷ +S u, u) for u ∈U .

Moreover, the set of admissible controls is given as

Uad =
�

u ∈U
�

� ua ≤ u ≤ ub in RNu a.e. in [0,T ]
	

,

which is convex, closed and bounded in U . Then, we consider the reduced optimal con-
trol problem:

min Ĵ (u) s.t. u ∈Uad. (P̂)

Clearly, if ū is the optimal solution to (P̂), then x̄ = (ŷ +S ū, ū) is the optimal solution
to (P). On the other hand, if x̄ = (ȳ, ū) is the solution to (P), then ū solves (P̂).

Example 1.33. We introduce an example for (P) and discuss the presented theory for this
application. Let Ω ⊂ Rd , d ∈ {1,2,3}, be an open and bounded domain with Lipschitz-
continuous boundary Γ = ∂ Ω. For T > 0 we set Q = (0,T )×Ω and Σ= (0,T )× Γ . We
choose H = L2(Ω) and V =H 1

0 (Ω) endowed with the usual inner products

〈ϕ,ψ〉H =
∫

Ω

ϕψdx , 〈ϕ,ψ〉V =
∫

Ω

ϕψ+∇ϕ · ∇ψdx

and their induced norms, respectively. Let χi ∈H , 1≤ i ≤ m, denote given control shape
functions. Then, for given control u ∈ U , initial condition y◦ ∈ H and inhomogeneity
f ∈ L2(0,T ; H ) we consider the linear heat equation

yt (t , x)−∆y(t , x) = f (t , x)+
Nu
∑

i=1

ui (t )χi (x), a.e. in Q,

y(t , x) = 0, a.e. in Σ,
y(0, x) = y◦(x), a.e. in Ω.

(1.71)

We introduce the time-independent, symmetric bilinear form

a(ϕ,ψ) =
∫

Ω

∇ϕ · ∇ψdx for ϕ,ψ ∈V
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and the bounded, linear operatorB : U → L2(0,T ; H ) ,→ L2(0,T ;V ′) as

(Bu)(t , x) =
m
∑

i=1

ui (t )χi (x) for (t , x) ∈Q a.e. and u ∈U .

Hence, we have γ = γ1 = γ2 = 1 in (1.43). It follows that the weak formulation of (1.71)
can be expressed in the form (1.44). Moreover, the unique weak solution to (1.71) belongs
to the space L∞(0,T ;V ) provided y◦ ∈V holds.

1.4.2 Existence of a unique optimal solution

We suppose the following hypothesis for the objective.

Assumption 2. In (1.70) the desired states (yQ , yΩ) belong to L2(0,T ; H )×H . Furthermore,
σQ ,σΩ ≥ 0 and σ > 0 are satisfied.

Let us review the following result for quadratic optimization problems in Hilbert
spaces; see [70, pp. 50-51].

Theorem 1.34. Suppose thatU andH are given Hilbert spaces with norms ‖·‖U and ‖·‖H ,
respectively. Furthermore, letUad ⊂U be non-empty, bounded, closed, convex and zd ∈H ,
κ ≥ 0. The mapping G :U →H is assumed to be a linear and continuous operator. Then
there exists an optimal control ū solving

min
u∈Uad

J (u) := 1
2
‖G u − zd‖

2
H +

κ

2
‖u‖2

U . (1.72)

If κ> 0 holds or if G is injective, then ū is uniquely determined.

Remark 1.35. In the proof of Theorem 1.34 it is only used thatJ is continuous and con-
vex. Therefore, the existence of an optimal control follows for general convex, continuous
cost functionals J :U →R with a Hilbert spaceU . ◊

Next we can use Theorem 1.34 to obtain an existence result for the optimal control
problem (P̂), which imply the existence of an optimal solution to (P).

Theorem 1.36. Let Assumptions 1 and 2 be valid. Moreover, let the bilateral control con-
straints ua , ub ∈ U satisfy ua ≤ ub componentwise in RNu a.e. in [0,T ]. Then, (P̂) has a
unique optimal solution ū.

Proof. Let us choose the Hilbert spacesH = L2(0,T ; H )×H andU =U . Moreover, E :
W (0,T )→ L2(0,T ; H ) is the canonical embedding operator, which is linear and bounded.
We define the operator E2 : W (0,T )→H by E2ϕ = ϕ(T ) forϕ ∈W (0,T ). Since W (0,T )
is continuously embedded into C ([0,T ]; H ), the linear operatorE2 is continuous. Finally,
we set

G =
� pσQ E1Sp

σΩE2S

�

∈L (U ,H ), zd =
� pσQ (yQ − ŷ)
p
σΩ
�

yΩ− ŷ(T )
�

�

∈H (1.73)

and Uad = Uad. Then, (P̂) and (1.72) coincide. Consequently, the claim follows from
Theorem 1.34 and σ > 0.
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Next we consider the case that ua = −∞ or/and ub = +∞. In this case Uad is not
bounded. However, we have the following result [70, p. 52].

Theorem 1.37. Let Assumptions 1 and 2 be satisfied. If ua = −∞ or/and ub = +∞,
problem (P̂) admits a unique solution.

Proof. We utilize the setting of the proof of Theorem 1.36. By assumption there exists an
element u0 ∈Uad. For u ∈U with ‖u‖2

U > 2Ĵ (u0)/σ we have

Ĵ (u) =J (u) = 1
2
‖G u − zd‖

2
H +

σ

2
‖u‖2

U ≥
σ

2
‖u‖2

U > Ĵ (u0).

Thus, the minimization of Ĵ over Uad is equivalent with the minimization of Ĵ over the
bounded, convex and closed set

Uad ∩
§

u ∈U
�

�

�‖u‖2
U ≤

2Ĵ (u0)
σ

ª

.

Now the claim follows from Theorem 1.34.

1.4.3 First-order necessary optimality conditions

In (1.72) we have introduced the quadratic programming problem

min
u∈Uad

J (u) = 1
2
‖G u − zd‖

2
H +

σ

2
‖u‖2

U . (1.74)

Existence of a unique solution has been investigated in Section 1.4.2. In this section we
characterize the solution to (1.74) by first-order optimality conditions, which are essential
to prove convergence and rate of convergence results for the POD approximations in
Section 1.4.4. To derive first-order conditions we require the notion of derivatives in
function spaces. Therefore, we recall the following definition [70, pp. 56-57].

Definition 1.38. Suppose thatB1 andB2 are real Banach spaces,U ⊂B1 be an open subset
and F : U ⊃ B1 →B2 a given mapping. The of F at a point u ∈ U in the direction
h ∈B2 is defined by

DF (u; h) := lim
ε↘0

1
ε

�

F (u + εh)−F (u)
�

provided the limit exists inB2. Suppose that the directional derivative exists for all h ∈B1
and there is a linear, continuous operator T :U →B2 satisfying

DF (u; h) =T h for all h ∈U .

Then, F is said to be -differentiable at u and T is the Gâteaux derivative of F at u. We
write T =F ′(u).

Remark 1.39. LetH be a real Hilbert space and F :H → R be Gâteaux-differentiable
at u ∈H . Then, its Gâteaux derivative F ′(u) at u belongs toH ′ =L (H ,R). Due to
Riesz theorem [60, p. 43] there exists a unique element∇F (u) ∈H satisfying

〈∇F (u), v〉H = 〈F
′(u), v〉H ′,H for all v ∈H .
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We call∇F (u) the (Gâteaux) gradient ofF at u. ◊

Theorem 1.40. Let U be a real Hilbert space and Uad be convex subset. Suppose that
ū ∈Uad is a solution to (1.74)

min
u∈Uad

J (u).

Then the following variational inequality holds

〈∇J (ū), u − ū〉U ≥ 0 for all u ∈Uad, (1.75)

where the gradient of J is given by

∇J (u) =G ?(G u − zd )+σu for u ∈U .

If ū ∈Uad solves (1.75), then ū is a solution to (1.74).

Proof. Since J is Gâteaux-differentiable and convex in U , the result follows directly
from [70, pp. 63-63].

Inequality (1.75) is a first-order necessary and sufficient condition for (1.74), which
can be expressed as

〈G ū − zd ,G u −G ū〉H + 〈σ ū, u − ū〉U ≥ 0 for all u ∈Uad. (1.76)

Next we study (1.76) for (P̂). Utilizing the setting from (1.73) we obtain

〈G ū − zd ,G (u − ū)〉H
= σQ 〈S ū − (yQ − ŷ),S (u − ū)〉

L2(0,T ;H )

+σΩ 〈(S ū)(T )− (yΩ− ŷ(T )), (S (u − ū))(T )〉H
= σQ 〈S ū,S (u − ū)〉L2(0,T ;H )+σΩ 〈(S ū)(T ), (S (u − ū))(T )〉H
−σQ 〈yQ − ŷ,S (u − ū)〉

L2(0,T ;H )
−σΩ 〈yΩ− ŷ(T ), (S (u − ū))(T )〉H .

Let us define the two linear, bounded operatorsΘ : W0(0,T )→W0(0,T )′ andΞ : L2(0,T ; H )×
H →W0(0,T )′ by

〈Θϕ,φ〉W0(0,T )′,W0(0,T ) =
∫ T

0
〈σQϕ(t ),φ(t )〉H dt + 〈σΩϕ(T ),φ(T )〉H ,

〈Ξz,φ〉W0(0,T )′,W0(0,T ) =
∫ T

0
〈σQ zQ (t ),φ(t )〉H dt + 〈σΩzΩ,φ(T )〉H

(1.77)

for ϕ, φ ∈W0(0,T ) and z = (zQ , zΩ) ∈ L2(0,T ; H )×H . Then, we find

〈G ū − zd ,G (u − ū)〉H
= 〈Θ(S ū)−Ξ(yQ − ŷ, yΩ− ŷ(T )),S (u − ū)〉

W0(0,T )′,W0(0,T )

= 〈S ′ΘS ū, u − ū〉U −〈S
′Ξ(yQ − ŷ, yΩ− ŷ(T )), u − ū〉

U
.

(1.78)

Let us define the linearA : U →W (0,T ) as follows: for given u ∈ U the function
p =A u ∈W (0,T ) is the unique solution to

− d
dt
〈p(t ),ϕ〉H + a(t ; p(t ),ϕ) =−σQ 〈(S u)(t ),ϕ〉H ∀ϕ ∈V a.e.,

p(T ) =−σΩ (S u)(T ) in H .
(1.79)
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It follows from (1.43) andS u ∈W (0,T ) that the operatorA is well-defined and bounded.

Lemma 1.41. Let Assumption 1 be satisfied and u, v ∈ U . We set y = S u ∈W0(0,T ),
w =S v ∈W0(0,T ), and p =A v ∈W (0,T ). Then,

∫ T

0
〈(Bu)(t ), p(t )〉V ′,V dt =−

∫ T

0
σQ 〈w(t ), y(t )〉H dt −σΩ 〈w(T ), y(T )〉H .

Proof. We derive from y =S u, p =A u, y ∈W0(0,T ) and integration by parts

∫ T

0
〈(Bu)(t ), p(t )〉V ′,V dt =

∫ T

0
〈yt (t ), p(t )〉V ′,V + a(t ; y(t ), p(t ))dt

=
∫ T

0
−〈pt (t ), y(t )〉V ′,V + a(t ; p(t ), y(t ))dt + 〈p(T ), y(T )〉H

=−
∫ T

0
σQ 〈w(t ), y(t )〉H dt −σΩ 〈w(T ), y(T )〉H

which is the claim.

We define p̂ ∈W (0,T ) as the unique solution to

− d
dt
〈 p̂(t ),ϕ〉H + a(t ; p̂(t ),ϕ) = σQ 〈yQ (t )− ŷ(t ),ϕ〉

H
∀ϕ ∈V a.e.,

p(T ) = σΩ (yΩ− ŷ(T )) in H .
(1.80)

Then, for every u ∈U the function p = p̂ +A u is the unique solution to

− d
dt
〈p(t ),ϕ〉H + a(t ; p(t ),ϕ) = σQ 〈yQ (t )− y(t ),ϕ〉

H
∀ϕ ∈V a.e.,

p(T ) = σΩ (yΩ− y(T )) in H

with y = ŷ +S u. Moreover, we have the following result.

Lemma 1.42. Let Assumption 1 be satisfied. Then, B ′A = −S ′ΘS ∈ L (U ), where
linear and bounded operator Θ has been defined in (1.77). Moreover, B ′ p̂ = S ′Ξ(yQ −
ŷ, yΩ− ŷ(T )), where p̂ is the solution to (1.80).

Proof. Let u, v ∈ U be chosen arbitrarily. We set y = S u ∈W0(0,T ) and w = S v ∈
W0(0,T ). Recall that we identify U with its dual space U ′. From the integration by parts
formula and Lemma 1.41 we infer that

〈S ′ΘS v, u〉U = 〈ΘS v,S u〉W0(0,T )′,W0(0,T ) = 〈Θw, y〉W0(0,T )′,W0(0,T )

=
∫ T

0
σQ 〈w(t ), y(t )〉H dt +σΩ 〈w(T ), y(T )〉H

=−〈Bu, p〉L2(0,T ;V ′),L2(0,T ;V ) =−〈u,B ′ p〉U =−〈B
′A v, u〉U .



i
i

“GubischVolkwein-2016” — 2016/2/9 — 11:59 — page 38 — #38 i
i

i
i

i
i

38 Chapter 1. POD for linear-quadratic Optimal Control

Since u, v ∈U are chosen arbitrarily, we haveB ′A =S ′ΘS . Further, we find

〈S ′Ξ(yQ − ŷ, yΩ− ŷ(T )), u〉
U
= 〈Ξ(yQ − ŷ), yΩ− ŷ(T )),S u〉

W0(0,T )′,W0(0,T )

=
∫ T

0
σQ 〈yQ (t )− ŷ(t ), y(t )〉

H
dt +σΩ 〈yΩ− ŷ(T ), y(T )〉H

=
∫ T

0
−〈 p̂t (t ), y(t )〉H + a(t ; p̂(t ), y(t ))dt + 〈 p̂(T ), y(T )〉H

=
∫ T

0
〈yt (t ), p̂(t )〉H + a(t ; y(t ), p̂(t ))dt =

∫ T

0
〈(Bu)(t ), p̂(t )〉V ′,V dt

= 〈B ′ p̂, u〉U .

which gives the claim.

We infer from (1.78) and Lemma 1.42 that

〈G ū − zd ,G (u − ū)〉H =−〈B
′( p̂ +A ū), u − ū〉U .

This implies the following variational inequality for (P̂)

〈G ū − zd ,G u −G ū〉H +σ 〈ū, u − ū〉U
= 〈σ ū −B ′( p̂ +A ū), u − ū〉U ≥ 0 for all u ∈Uad.

Summarizing we have proved the following result.

Theorem 1.43. Suppose that Assumptions 1 and 2 hold. Then, (ȳ, ū) is a solution to (P) if
and only if (ȳ, ū) satisfy together with the adjoint variable p̄ the first-order optimality system

ȳ = ŷ +S ū, p̄ = p̂ +A ū, ua ≤ ū ≤ ub (1.81a)

〈σ ū −B ′ p̄, u − ū〉U ≥ 0 for all u ∈Uad. (1.81b)

Remark 1.44. By using a Lagrangian framework it follows from Theorem 1.43 and [70]
that the variational inequality (1.81b) is equivalent to the existence of two functions µ̄a , µ̄b ∈
U satisfying µ̄a , µ̄b ≥ 0,

σ ū −B ′ p̄ + µ̄b − µ̄a = 0

and the complementarity condition

µ̄a(t )
>(ua(t )− ū(t )) = µ̄b (t )

>(ū(t )− ub (t )) = 0 f.a.a. t ∈ [0,T ].

Thus, (1.81) is equivalent to the system

ȳ = ŷ +S ū, p̄ = p̂ +A ū, σ ū −B ′ p̄ + µ̄b − µ̄a = 0,
ua ≤ ū ≤ ub , 0≤ µ̄a , 0≤ µ̄b ,

µ̄a(t )
>(ua(t )− ū(t )) = µ̄b (t )

>(ū(t )− ub (t )) = 0 a.e. in [0,T ].

(1.82)

Utilizing a complementarity function it can be shown that (1.82) is equivalent with

ȳ = ŷ +S ū, p̄ = p̂ +A ū, σ ū −B ′ p̄ + µ̄b − µ̄a = 0, ua ≤ ū ≤ ub ,

µ̄a =max
�

0, µ̄a +η(ū − ua)
�

, µ̄b =max
�

0, µ̄b +η(ū − ub )
�

,
(1.83)
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where η > 0 is an arbitrary real number. The max-and min-operations are interpreted
componentwise in the pointwise everywhere sense. ◊

The gradient∇Ĵ : U →U of the reduced cost functional Ĵ is given by

∇J (u) = σu −B? p, u ∈U ,

where p = p̂ +A u holds true; see, e.g., [26]. Thus, a first-order sufficient optimality
condition for (P̂) is given by the variational inequality

〈σ ū −B ′ p̄, u − ū〉U ≥ 0 for all u ∈Uad, (1.84)

with p̄ = p̂ +A ū.
Problem (P̂) can be solved numerically by a primal-dual active set strategy with the

choice η = σ . In this case the method is equivalent to a locally superlinearly convergent
semi-smooth Newton algorithm applied to (1.83); see [24, 26, 72]. In Algorithm 1.1 we
formulate the method in the context of our application. In Section 1.5 we compare Al-
gorithm 1.1 with the Banach fixed point iteration as well as with the projected gradient
method [36, 52].

ALGORITHM 1.1. (Primal-dual active set strategy).

Require: Starting value (u0,λ0) and maximal iteration number kmax.
1: Set k = 0. For i = 1, . . . , m determine the active sets

A k
ai =

�

t ∈ [0,T ]
�

�σuk
i +λ

k
i < uai a.e.

	

,

A k
b i =

�

t ∈ [0,T ]
�

�σuk
i +λ

k
i > ub i a.e.

	

and the inactive set I k
i = [0,T ]\A k

i withA k
i =A

k
ai ∪A

k
b i .

2: repeat
3: Compute the solution (y, p, u) to the optimality system

y = ŷ +S u, p = p̂ +A u, ui =











uai onA k
ia ,

ub i onA k
i b ,

(B ′ p)i/σ on I k
i ,

(1≤ i ≤ m)

4: Set (yk+1, uk+1, pk+1) = (y, u, p), λk+1 =B ′ pk+1−σuk+1 and k = k + 1.
5: Compute the active and inactive sets according to step 1.
6: until (A k

ai =A
k−1

ai andA k
b i =A

k−1
b i ) or k = kmax.

1.4.4 The POD Galerkin approximation for (P̂)

In this subsection we introduce the POD Galerkin schemes for the variational inequality
(1.84) using a POD Galerkin approximation for the state and dual variables. Moreover,
we study the convergence of the POD discretizations, where we make use of the analysis
in [28, 38, 40, 39, 66, 71]. For a general introduction we also refer the reader to the survey
paper [27].

In Section 1.3.3 we have introduced a POD Galerkin scheme for the state equation
(1.69). Suppose that {ψi}`i=1 be a POD basis of rank ` computed from (P`) withψi =ψ

V
i

in case of X = V and ψi = ψ
H
i in case of X = H . We set X ` = span{ψ1, . . . ,ψ`} ⊂ V .
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Let the linear and bounded projection operator P ` denote P `
V for X = V and P `

H for
X =H ; see (1.49).

Recall the POD Galerkin ansatz (1.54) for the state variable. Analogously, we approx-
imate the adjoint variable p = p̂ +A u by the Galerkin expansion

p`(t ) = p̂(t )+
∑̀

i=1

p`i (t )ψi ∈V for t ∈ [0,T ] (1.85)

with coefficient functions p`i : [0,T ]→ R and with p̂ from (1.80). Let the vector-valued
coefficient function given by

p` =
�

p`1, . . . , p``
�

: [0,T ]→R`

If we assume that p`(T ) = −σΩy`(T ) holds, then we infer from p̂(T ) = σΩ(yΩ − ŷ(T ))
and (1.85) that

p`(T ) = p̂(T )−σΩ
∑̀

i=1

y`i (t )ψi = σΩ
�

yΩ− y`(T )
�

.

This motivates the following POD scheme for the approximation of p = p̂+A u is given
as follows: p` ∈W (0,T ) satisfies

− d
dt
〈p`(t ),ψ〉H + a(t ; p`(t ),ψ) = σQ 〈(yQ − y`)(t ),ψ〉

H
∀ψ ∈X ` a.e.,

p`(T ) =−σΩy`(T ).
(1.86)

It follows by similar arguments as for (1.55) that there is a unique solution p` ∈W (0,T ).

Remark 1.45. Recall that we have introduced the linear and bounded solution opera-
tor S ` : U →W (0,T ) as an approximation for the state solution operator S ; see Re-
mark 1.28-2). Analogously, we define an approximation of the adjoint solution operator
A as follows: LetA ` : U →W (0,T ) denote the solution operator to

− d
dt
〈w`(t ),ψ〉H + a(t ; w`(t ),ψ) =−σQ 〈(S

`u)(t ),ψ〉H ∀ψ ∈X ` a.e.,

w`(T ) =−σΩ(S
`u)(T ).

Then p` = p̂ +A `u is the unique solution to (1.86). ◊

Lemma 1.46. Let Assumption 1 on page 32 be satisfied and u, v ∈ U . We set y` = S `u ∈
W0(0,T ), w` =S `v ∈W0(0,T ), and p` =A `v ∈W (0,T ). Then,

∫ T

0
〈(Bu)(t ), p`(t )〉V ′,V dt =−

∫ T

0
σQ〈w

`(t ), y`(t )〉H dt −σΩ〈w
`(T ), y`(T )〉H .

Moreover,B ′A ` =−(S `)′ΘS ` ∈L (U ), where linear and bounded operator Θ has been
defined in (1.77).

Proof. Since the POD basis for the state and adjoint coincide, the claim follows by the
same arguments used to prove Lemmas 1.41 and 1.42.
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Theorem 1.47. Suppose that Assumptions 1 and 2 hold. Let u ∈ U be arbitrarily given so
that S u,A u ∈H 1(0,T ;V ) \ {0}.

1) To compute a POD basis {ψi}`i=1 of rank ` we choose ℘= 4, y1 =S u, y2 = (S u)t ,
y3 = A u and y4 = (A u)t . Then, p = p̂ +A u and p` = p̂ +A `u satisfies the
a-priori error estimate

‖p`− p‖2
H 1(0,T ;V ) ≤



















C
dV
∑

i=`+1
λV

i if X =V ,

C
dH
∑

i=`+1
λH

i ‖ψ
H
i −P

`
Hψ

H
i ‖

2
V if X =H

(1.87)

for a constant C which depends on γ , γ1, γ2, T , σΩ and σQ .

2) If S ũ andA ũ belong to H 1(0,T ;V ) for every ũ ∈ U and if λH
i > 0 for all i ∈ I ,

then we have

lim
`→∞





A −A `




L (U ,W (0,T )) = 0. (1.88)

Proof. Analogous to (1.62) we have p`(t )− p(t ) = θ`(t )+ρ`(t ) for almost all t ∈ [0,T ]
with θ` =A `u−P `(A u) and ρ` =P `(A u)−A u. Here,P ` =P `

V for X =V and
P ` =P `

H for X = H . Now, the proof of the claims follows by similar arguments as the
proofs of Theorem 1.29, Proposition 4.7 in [28], Proposition 4.6 in [71] and Theorem 6.3
in [66]. To estimate the terminal term θ`(T ) we use observe that





θ`(T )






H =







P `
�

(A u)(T )
�

− (A `u)(T )









H

≤ σΩ
�







P `
�

(S u)(T )
�

− (S u)(T )









H
+







(S u)(T )− (S `u)(T )









H

�

≤ σΩ
�







P `(S u)−S u









C ([0,T ];H )
+







S u −S `u









C ([0,T ];H )

�

≤ σΩcE

�







P `(S u)−S u









H 1(0,T ;V )
+







S u −S `u









H 1(0,T ;V )

�

with an embedding constant cE . The first term on the right-hand side can be handled by
(1.27), the second term is estimated in Theorem 1.29. Finally, (1.88) follows from (1.61)
and the fact that the operator S ` is bounded uniformly with respect to `.

Remark 1.48.

1) The inclusion of adjoint information into the snapshot ensemble improves the ap-
proximation quality also for nonlinear problems; see [15].

2) Analogous to Remark 1.30-2) the a-priori estimate (1.87) holds for an arbitrarily
chosen, but fixed control u ∈U . Furthermore, (1.88) implies that

lim
`→∞





 p̂ +A ` ũ − p̂ −A ũ






W (0,T ) = 0

for any ũ ∈U .
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3) We can also extend the results in Proposition 1.32 for the adjoint equation and get
an a-priori error estimate choosing ℘= 2, y1 =S u and y2 =A u. ◊

The POD Galerkin approximation for (P̂) is as follows:

min Ĵ `(u) s.t. u ∈Uad, (P̂`)

where the cost is defined by Ĵ `(u) = J (ŷ +S `u, u) for u ∈ U . Let ū` be the solution
to (P̂`). Then, a first-order sufficient optimality condition is given by the variational in-
equality

〈σ ū`−B ′ p̄`, u − ū`〉U ≥ 0 for all u ∈Uad, (1.89)

where p̄` = p̂`+A ` ū` holds.

Theorem 1.49. Suppose that Assumptions 1 and 2 hold. Let u ∈ U be arbitrarily given so
that S u,A u ∈H 1(0,T ;V ) \ {0}.

1) To compute a POD basis {ψi}`i=1 of rank ` we choose ℘= 4, y1 =S u, y2 = (S u)t ,
y3 = A u and y4 = (A u)t . Then, the optimal solution ū to (P̂) and the associated
POD suboptimal solution ū` to (P̂`) satisfy

lim
`→∞





ū`− ū






U = 0 (1.90)

for X =V and X =H .

2) If an optimal POD basis of rank is computed by choosing ℘ = 4, y1 = S ū , y2 =
(S ū)t , y3 =A ū and y4 = (A ū)t , then we have





ū`− ū






U ≤



















C
σ

dV
∑

i=`+1
λV

i if X =V ,

C
σ

dH
∑

i=`+1
λH

i ‖ψ
H
i −P

`
Hψ

H
i ‖

2
V if X =H ,

(1.91)

where the constant C depends on γ , γ1, γ2, T , σΩ, σQ and the norm ‖B ′‖L (L2(0,T ;V ),U ).

Proof. Choosing u = ū` in (1.84) and u = ū in (1.89) we get the variational inequality

0≤ 〈σ(ū − ū`)−B ′( p̄ − p̄`), ū`− ū〉U . (1.92)

Utilizing Lemma 1.46 and 〈Θϕ,ϕ〉W0(0,T )′,W0(0,T ) ≥ 0 for all ϕ ∈W0(0,T ) we infer from
(1.92) that

0≤ 〈B ′A ` ū`−B ′A ū, ū`− ū〉U −σ ‖ū − ū`‖2
U

= 〈B ′A `(ū`− ū)+B ′(A `−A )ū, ū`− ū〉U −σ ‖ū − ū`‖2
U

≤ 〈ΘS `(ū − ū`),S `(ū`− ū)〉U + ‖B
′(A `−A )ū‖U‖ū

`− ū‖U −σ ‖ū − ū`‖2
U

≤ ‖B ′(A `−A )ū‖U‖ū
`− ū‖U −σ ‖ū − ū`‖2

U .
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Consequently,

‖ū − ū`‖U ≤
1
σ
‖B ′(A `−A )ū‖U .

Now (1.90) and (1.91) follow from (1.88) and (1.87), respectively.

In Algorithm 1.2 we formulate a discrete version of the primal-dual active set method
(see Algorithm 1.1) which is utilized to solve (P̂`) in Section 1.5.

ALGORITHM 1.2. (POD discretized primal-dual active set strategy).

Require: POD basis {ψi}`i=1, starting value (u`0,λ`0), maximal iteration number kmax.
1: Set k = 0, determine the active sets

A `k
ai =

�

t ∈ [0,T ]
�

�σuk`
i +λ

k`
i < uai a.e.

	

,

A `k
b i =

�

t ∈ [0,T ]
�

�σuk`
i +λ

k`
i (t )> ub i (t )

	

and the inactive sets I `k
i = [0,T ] \A `k

i withA `k
i =A

`k
ai ∪A

`k
b i .

2: repeat
3: Determine the solution (y`, u`, p`) to the optimality system

y` = ŷ +S `u`, p` = p̂ +A `u`, u` =











ua onA k`
a ,

ub onA k`
b ,

B ′ p`/σ on I k`.

4: Set (y`,k+1, u`,k+1, p`,k+1) = (y`, u`, p`), λ`,k+1 = B ′ p`,k+1 − σu`,k+1 and k =
k + 1.

5: Compute the active and inactive sets according to step 1.
6: until (A `k

a =A
`,k−1

a andA `k
b =A

`,k−1
b ) or k = kmax.

1.4.5 POD a-posteriori error analysis

In [71] a POD a-posteriori error estimates are presented which can be applied to our
optimal control problem as well. Based on a perturbation method [16] it is deduced how
far the suboptimal control ū` is from the (unknown) exact optimal control ū. Thus, our
goal is to estimate the norm ‖ū − ū`‖U without the knowledge of the optimal solution
ū. In general, ū` 6= ū holds, so that ū` does not satisfy the variational inequality (1.84).
However, there exists a function ζ ` ∈U such that

〈σ ū`−B ′ p̃`+ ζ `, u − ū`〉U ≥ 0 ∀v ∈Uad, (1.93)

with p̃` = p̂ +A ū`. Therefore, ū` satisfies the optimality condition of the perturbed
parabolic optimal control problem

min
u∈Uad

J̃ (u) = J (ŷ +S u, u)+ 〈ζ `, u〉U

with “perturbation” ζ `. The smaller ζ ` is, the closer ū` is to ū. Next we estimate ‖ū −
ū`‖U in terms of ‖ζ `‖U . By Lemma 1.42 we have

B ′
�

p̄ − p̃`
�

=B ′A
�

ū − ū`
�

=−S ′ΘS
�

ū − ū`
�

=S ′Θ
�

ỹ`− ȳ
�

(1.94)
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with ỹ` = ŷ+S ū`. Choosing u = ū` in (1.84), u = ū in (1.93) and using (1.94) we obtain

0≤ 〈−σ(ū − ū`)+B ′( p̄ − p̃`)+ ζ `, ū − ū`〉U
=−σ ‖ū − ū`‖2

U + 〈S
′Θ(ỹ`− ȳ), ū − ū`〉U + 〈ζ

`, ū − ū`〉U
=−σ ‖ū − up‖

2
U
−〈Θ(ȳ − ỹ`), ȳ − ỹ`〉W0(0,T )′,W0(0,T )+ 〈ζ

`, ū − ū`〉U

=−σ ‖ū − ū`‖2
U + 〈ζ

`, ū`− ū`〉U ≤−σ ‖ū − ū`‖2
U + ‖ζ

`‖U‖ū − ū`‖U .

Hence, we get the a-posteriori error estimation

‖ū − ū`‖U ≤
1
σ
‖ζ `‖U .

Theorem 1.50. Suppose that Assumptions 1 and 2 hold. Let u ∈ U be arbitrarily given so
that S u,A u ∈ H 1(0,T ;V ) \ {0}. To compute a POD basis {ψi}`i=1 of rank ` we choose
℘= 4, y1 =S u, y2 = (S u)t , y3 =A u and y4 = (A u)t . Define the function ζ ` ∈U by

ζ `i (t ) =











−min(0,ξ `i (t )) a.e. inA `
ai =

�

t ∈ [0,T ] |ū`i (t ) = uai (t )
	

,

−max(0,ξ `i (t )) a.e. inA `
b i =

�

t ∈ [0,T ] |ū`i (t ) = ub i (t )
	

,

− ξ `i (t ) a.e. in [0,T ] \
�

A `
ai ∪A

`
b i

�

,

where ξ ` = σ ū`−B ′( p̂ +A ū`) in U . Then, the a-posteriori error estimate

‖ū − ū`‖U ≤
1
σ
‖ζ `‖U . (1.95)

In particular, lim
`→∞





ζ `






U = 0.

Proof. Estimate (1.95) has already be shown. We proceed by constructing the function
ζ `. Here we adapt the lines of the proof of Proposition 3.2 in [71] to our optimal control
problem. Suppose that we know ū` and p̃` = p̂+A ū`. The goal is to determine ζ ` ∈U
satisfying (1.93). We distinguish three different cases.

• Case ū`i (t ) = uai (t ) for fixed t ∈ [0,T ] and i ∈ {1, . . . ,Nu}: Then, ui (t )− ū`i (t ) =
ui (t )− uai (t )≥ 0 for all u ∈Uad . Hence, ζ `i (t ) has to satisfy

�

σ ū`−B ′ p̃`
�

i (t )+ ζ
`

i (t )≥ 0. (1.96)

Setting ζ `i (t ) =−min(0, (σ ū`−B ′ p̃`)i (t )) the value ζ `i (t ) satisfies (1.96).

• Case ū`i (t ) = ub i (t ) for fixed t ∈ [0,T ] and i ∈ {1, . . . ,Nu}: Now, ui (t )− ū`i (t ) =
u(t )− ub i (t ) ≤ 0 for all u ∈ Uad . Analogously to the first case we define ζ `i (t ) =
−max(0, (σ ū`−B ′ p̃`)i (t )) to ensure (1.96).

• Case uai (t )< ū`i (t )< ub i (t ) for fixed t ∈ [0,T ] and i ∈ {1, . . . ,Nu}: Consequently,
(σ ū`−B ′ p̃`)i (t )+ζ `i (t ) = 0 holds so that ζ `i (t ) =−(σ ū`−B ′ p̃`)i (t ) guarantees
(1.96).
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It remains to prove that ζ ` tends to zero for `→∞. Here we follow adapt the proof of
Theorem 4.11 in [71]. By Theorem 1.49-1), the sequence {ū`}`∈N converges to ū in U .
Since the linear operatorB ′A is bounded and p̃` = p̂ +A ū` holds, {B ′ p̃`}`∈N tends
to B ′ p̄ = B ′A ū as well. Hence, there exist subsequences {ū`k }k∈N and {B ′ p̃`k }k∈N
satisfying

lim
k→∞

ū`k
i (t ) = ūi (t ) and lim

k→∞
(B ′ p̃`k )i (t ) = (B

′ p̄)i (t )

f.a.a. t ∈ [0,T ] and for 1≤ i ≤Nu . Next we consider the active and inactive sets for ū.

• Let t ∈ Ji = {t ∈ [0,T ] | uai (t ) < ūi (t ) < ub i (t )} for i ∈ {1, . . . ,Nu}. For k◦ =
k◦(t ) ∈N sufficiently large, ū`k

i (t ) ∈ (uai (t ), ub i (t )) for all k ≥ k◦ and f.a.a. t ∈Ji .
Thus, (σ ū`k −B ′ p̃`k )i (t ) = 0 for all k ≥ k◦(t ) in Ji a.e. This implies

ζ `k
i (t ) = 0 ∀k ≥ k◦ and f.a.a. t ∈Ji . (1.97)

• Suppose that t ∈ Aai = {t ∈ [0,T ] | uai (t ) = ūi (t )} for i ∈ {1, . . . ,Nu}. From
(σ ūi −B ′ p̄)i (t )≥ 0 inAai a.e. we deduce

lim
k→∞

ζ `k
i (t ) =−min(0, (σ ū`k −B ′ p̃`k )i (t )) = 0 f.a.a. t ∈Aai .

• Suppose that t ∈ Ab i = {t ∈ [0,T ] | ub i (t ) = ūi (t )}. Analogously to the second
case we find

lim
k→∞

ζ `k
i (t ) = 0 f.a.a. t ∈Ab i . (1.98)

Combining (1.97)-(1.98) we conclude that limk→∞ ζ
`k

i = 0 a.e. in [0,T ] and for 1 ≤ i ≤
Nu . Utilizing the dominated convergence theorem [60, p. 24] we have

lim
k→∞





ζ `k






U = 0.

Since all subsequences contain a subsequence converging to zero, the claim follows from
a standard argument.

Remark 1.51.

1) Theorem 1.50 shows that ‖ζ `‖U tends to zero as ` goes to infinity. Thus, ‖ζ `‖U is
smaller than any tolerance ε > 0 provided that ` is taken sufficiently large. Moti-
vated by this result we set up Algorithm 1.3. Note that the approximation quality
of the POD Galerkin scheme is improved by only increasing the number of POD
basis elements: A rank-` POD basis can be extended to a rank-(`+ 1) POD basis
by adding a new eigenfunction and keeping all the old ones. Especially, the system
matrices and projected data functions can be extended by the new element, they do
not have to be reconstructed in all components. Another approach is to update the
POD basis in the optimization process; see, e.g., [1, 3, 41].

2) We infer from Proposition 1.32 and Remark 1.48-3) that Theorem 1.50 holds still
true if we take ℘= 2, y1 =S u and y2 =A u.
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3) In [68]POD a-posteriori error estimates are tested numerically for a linear-quadratic
optimal control problem. It turns out that in certain cases a change of the POD ba-
sis is required in order to improve the approximation quality of the POD scheme;
see also [41, 74], for instance.

4) Let us refer to [33], where POD a-posteriori error estimates are combined with an
sequential quadratic programming method in order to solve a nonlinear PDE con-
strained optimal control problem. Furthermore, the presented analysis for linear-
quadratic problems can be extended to semilinear optimal control problems by a
second-order analysis; see in [34]. ◊

ALGORITHM 1.3. (POD reduced-order method with a-posteriori estimator).

Require: Initial control u0` ∈U , initial number ` for the POD ansatz functions, a max-
imal number `max > ` of POD ansatz functions, and a stopping tolerance ε > 0.

1: Determine ŷ, p̂, y1 =S u0`, y2 =A u0`.
2: Compute a POD basis {ψi}

`max

i=1 choosing y1 and y2. Set `= 1.
3: repeat
4: Establish the POD Galerkin discretization using {ψi}`i=1.
5: Call Algorithm 1.2 to compute suboptimal control ū`.
6: Determine ζ ` according to Theorem 1.47 and compute εape = ‖ζ `‖U/σ .
7: if εape < ε or `= `max then
8: Return ` and suboptimal control ū` and STOP.
9: end if

10: Set `= `+ 1.
11: until ` > `max

1.5 Numerical experiments
In this section we present numerical test examples to illustrate our theoretical findings.
The programs are written in MATLAB utilizing the PARTIAL DIFFERENTIAL EQUA-
TION TOOLBOX for the computation of the finite element (FE) discretization. For the
temporal integration the implicit Euler method is applied based on the equidistant time
grid t j = ( j − 1)∆t , j = 1, . . . , n and∆t = T /(n− 1).

Run 1 (POD for the heat equation). Let us apply the setting of Example 1.33. We choose
the final time T = 3, the spatial domain Ω = (0,2) ⊂ R, the Hilbert spaces H = L2(Ω),
V =H 1

0 (Ω), the source term f (t , x) = t 3− x2 for (t , x) ∈Q and the discontinuous initial
value y◦(x) = χ(0.5,1.0) − χ(1,1.5) for x ∈ Ω, where, e.g., χ(0.5,1) denotes the characteristic
function on the subdomain (0.5,1) ⊂ Ω, χ(0.5,1)(x) = 1 for x ∈ (0.5,1) and χ(0.5,1)(x) = 0
otherwise. We consider a discretization of the controlled linear heat equation

yt (t , x)−∆y(t , x) = f (t , x)+
m
∑

i=1

ui (t )χi (x), a.e. in Q,

y(t , x) = 0, a.e. in Σ,
y(0, x) = y◦(x), a.e. in Ω.

(1.99)

To obtain an accurate approximation of the exact solution we choose n = 4000 so that
∆t ≈ 7.5 · 10−4 holds. For the FE discretization we choose m = 500 spatial grid points
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Figure 1.1. Run 1: The FE solution y h (left) and the residuals corresponding to the POD basis
rank ` (right).

and the equidistant mesh size h = 2/(m + 1) ≈ 4 · 10−3. Thus, the FE error – measured
in the H -norm – is of the order 10−4. In the left graphic of Figure 1.1, the FE solution
y h to the state equation (1.71) is visualized. To compute a POD basis {ψi}`i=1 of rank
` we utilize the multiple discrete snapshots y1

j = y h (t j ) for 1 ≤ j ≤ n as well y2
1 = 0

and y2
j = (y

h (t j ) − y h (t j−1)/∆t , j = 2, . . . , n, i.e., we include the temporal difference
quotients. We choose X = H and utilize the (stable) singular value decomposition to
determine the POD basis of rank `; compare Remark 1.12. We address this issue in a
more detail in Run 4. Since the snapshots are FE functions, the POD basis elements are
also FE functions. In the right plot of Figure 1.1, the projection and reduced-order error
given by

PROJ Error(`) =
� n
∑

j=1

α j








y h (t j )−
∑̀

i=1

〈y h (t j ),ψi 〉H ψi










2

H

�1/2

,

ROM Error(`) =
� n
∑

j=1

α j





y h (t j )− y`(t j )






2
H

�1/2

are plotted for different POD basis ranks `. The chosen trapezoidal weights α j have been
introduced in (1.31). We observe that both errors decay rapidly and coincide until the
accuracy 10−12, which is already significant smaller than the FE discretisation error. This
numerical results reflects the a-priori error estimates of Theorem 1.29.
Run 2 (POD for a convection dominated parabolic problem). To present a more
challenging situation, we study a convection-reaction-diffusion equation with a source
term which is close to be singular: Let T , Ω, y◦, H and V be given as in Run 1. The
time-independent bilinear form a corresponding to

yt (t , x)−η2yx x (t , x)
+η1yx (t , x)+η0y(t , x) = f (t , x)+ (Bu)(t , x), a.e. in Q,

y(t , x) = 0, a.e. in Σ,
y(0, x) = y◦(x), a.e. in Ω.

(1.100)

is given by

a(φ,ϕ) = η2 〈φ
′,ϕ′〉H +η1 〈φ

′,ϕ〉H +η0 〈φ,ϕ〉H for ϕ,φ ∈V .
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Figure 1.2. Run 2: The FE solution y h (left) and the residuals corresponding the POD basis
rank ` (right).

We choose the diffusivity η2 = 0.025, the velocity η = 1.0 that determines the speed in
which the initial profile y◦ is shifted to the boundary and the reaction rate η0 = −0.001.
Finally, f (t , x) = P( 1

1−t )cos(πx) for (t , x) ∈Q, where (Pz)(t ) =min(+l ,max(−l , z(t )))
restricts the image of z on a bounded interval. In this situation, the state solution y devel-
ops a jump at t = 1 for l →∞; see the left plot of Figure 1.2. The right plot of Figure 1.2
demonstrates that in this case, the decay of the reconstruction residuals and the decay of
the errors are much slower. The manifold dynamics of the state solution require an incon-
venient large number of POD basis elements. Since the supports of these ansatz functions
in general cover the whole domain Ω, the corresponding system matrices M` and A` of
the reduced model (compare (1.57)) are not sparse in contrast to the matrices arising in
the finite element Galerkin framework, so the model order reduction cannot be provided
efficiently for this example if a good accuracy of the solution function y` is required.
Run 3 (True and exact approximation error). Let us consider the setting of Run 1 again.
The exact solution to (1.71) does not possess a representation by elementary functions.
Hence, the presented reconstruction and reduction errors actually are the residuals with
respect to a high-order finite element solution y h . To compute an approximation y of the
exact solution ye x we apply a Crank-Nicolson method (with Rannacher smoothing [57])
ensuring ‖y−ye x‖L2(0,T ;H ) = O (∆t 2+h2)≈ 10−5. In the context of model reduction, such
a state is sometimes called the “true” solution. To compute the FE state y h we apply the
implicit Euler method. In the left plot of Figure 1.3 we compare the true solution with
the associated POD approximation for different values n = N t ∈ {64,128,256, ..., 8192}
of the time integration and for the spatial mesh size h = 4 · 10−3. For the norm we apply
a discrete L2(0,T ; H )-norm as in Run 1. Let us mention that we compute for every n a
corresponding FE solution y h . We observe that the residuals ignore the errors arising by
the application of time and space discretization schemes for the full-order model. The
errors decay below the discretization error 10−5. If these discretization errors are taken
into account, the residuals stagnate at the level of the full-order model accuracy instead
of decaying to zero; see the right plot of Figure 3. Due to the implicit Euler method
we have ‖y h − ye x‖L2(0,T ;H ) = O (∆t + h2) with h = 4 · 10−3. In particular, from n ∈
{64,128,256, ..., 8192} it follows that ∆t > 3 · 10−4 > h2 = 1.6 · 10−5. Therefore, the
spatial error is dominated by the time error for all values of n. We can observe that the
exact residuals do not decay below a limit of the order∆t . One can observe that for fixed
POD basis rank `, the residuals with respect to the true solution increase if the high-order
accuracy is improved by enlarging n, since the reduced order model has to approximate a
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Figure 1.3. Run 3: The ROM errors with respect to the true solution (left) and the exact one (right).
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Figure 1.4. Run 4: Singular values σi using the SVD (SVD Vals) or the eigenvalue decom-
position (EIG Vals) and the associated ROM errors (SVD error and EIG Error, respectively) (left); ROM
errors for different the choices for X , the error norm and the snapshot ensembles (right).

more complex system in this case, where the residuals with respect to the exact solution
decrease due to the lower limit of stagnation∆t = 3/(n− 1).

Run 4 (Different strategies for the POD basis computation). Let Y ∈Rm×n denote the
matrix of snapshots in the discrete setting, W = (〈ϕi ,ϕ j 〉X ) ∈Rm×m be the (sparse) spatial

weight matrix arising from the finite element basis {ϕi}m
i=1 and D =∆t diag( 12 , 1, ..., 1, 1

2 ) ∈
Rn×n be the trapezoidal time integration matrix fitting to implicit Euler discretization.
As it is stated in Remark 1.11, the POD basis {ψi}`i=1 of rank ` can be determined by pro-
viding an eigenvalue decomposition of the matrix Ŷ Ŷ> = W 1/2Y DY>W 1/2 ∈ Rm×m ,
one of Ŷ>Ŷ = D1/2Y>W Y D1/2 ∈ Rn×n , or a singular value decomposition of Ŷ =
W 1/2Y D1/2 ∈Rm×n . Since n� m in Runs 1-3, the first variant is the cheepest one from
a computational point of view. In case of multiple space dimensions or if a second-order
time integration scheme such as some Crank-Nicolson technique is applied, the situation
is converse. On the other hand, a singular value decomposition is more accurate than
an eigenvalue decomposition if the POD elements corresponding to eigenvalues/singular
values which are close to zero are taken into account: Since λi = σ

2
i holds for all eigenval-

ues λi and singular values σi , the singular values are able to decay to machine precision,
where the eigenvalues stagnate significantly above. This is illustrated in the left graphic of
Figure 1.4. Indeed, for ` > 20 the EIG-ROM system matrices become singular due to the
numerical errors in the eigenfunctions and the reduced order system is ill-posed in this case
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while the SVD-ROM model remains stable. In the right plot of Figure 1.4 POD elements
are constructed with respect to different scalar products and the resulting ROM errors are
compared: ‖ · ‖H -residuals for X = H (denoted by POD(H)), ‖ · ‖V -residuals for X = V
(denoted by POD(V)), ‖ · ‖V -residuals for X = H (denoted by POD(H,V)), which also
works quite well, the consideration of time derivatives in the snapshot sample (denoted
by POD(H,dt)) which allows to apply the a priori error estimate given in (1.60) and the
corresponding sums of singular values (denoted by SV(H,dt)) corresponding to the un-
used eigenfunctions in the latter case which indeed nearly coincide with the ROM errors.
In many applications, the quality of the reduced order model does not vary significantly
if the weights matrix W refers to the space X =H or X =V and if time derivatives of the
used snapshots are taken into account or not. Especially, the ROM residual decays with
the same order as the sum over the remaining singular values, ‖y− y`‖W (0,T ) ∼

∑∞
i=`+1σi

independent of the chosen geometrical framework.
Run 5 (Iterative methods for the optimal control problem). In this numerical test
we consider solution techniques for the linear-quadratic optimal control problem (P).
We define the weights σQ = 1, σΩ = 0, the desired state yQ (t , x) = t (1− (x − 1)2) for
(t , x) ∈ Q, the desired final state yΩ = 0 (which is redundant due to σΩ = 0, of course),
the upper and lower bounds ua = 0.25, ub = 0.75, the control operator (Bu)(t , x) =
u1(t )χΩ1

(x) + · · ·+ u10(t )χΩ10
(x), where {Ωi | i = 1, ..., 10} is a uniform partition of Ω

(especially, (B? p)i (t ) =
∫

Ω
χi (x)p(t , x)dx holds) and initial control u◦(t )≡ 1.

1) Banach fixed point method: The first-order necessary and sufficient optimality con-
ditions (1.81) can be refurmaleted as the equivalent fixpoint problem

u = P
�

1
σ

�

B ′A u −B ′ p̂
��

=: F (u),

where P(u) = min(max(u, ua), ub ) is the orthogonal projection on the set of ad-
missible points Uad. The optimal control ū ∈ U can therefore be determined by
the Banach fixpoint iteration uk+1 = F (uk ) (k > 0) with arbitrary initialization
u0 ∈ Uad provided that F is a contraction. Since P is Lipschitz-continuous with
respect to the Lipschitz constant 1, we get

‖F (u)− F (v)‖U ≤
‖B ′A‖L (U )

σ
‖u − v‖U for all u, v ∈U ,

so the contraction of F is guaranteed if the regularization parameter σ is sufficiently
large. Except of matrix multiplications, each iteration step requires the forward
solving of the state equation for ỹ(u) = S u and the backwards solving of the
adjoint equation for p̃(ỹ) = A u. As it can be observed in the left plot of Fig-
ure 1.5, the iteration indeed does not converge ifσ is smaller than some critical calue
σ◦ ≈ 0.02. Furthermore, the convergence speed of the iteration loop tends to zero
for σ ↓ σ◦. We therefore can make use of this method if the control term ‖u‖2

U/2
in the objective functional J models a control cost such as the required energy and
hence shall be small. On the other hand, if we just penalize the objective functional
to enforce the strict convexity property and are interested in the case σ → 0 (the
resulting controls usually are of “bang-bang”-type in this case, i.e. u(t ) ∈ {ua , ub }
for almost all t ∈ [0,T ]), we shall apply some other optimization technique.

2) Projected gradient method: A suitable steepest descent method for the control-constrained
optimization problem is the projected gradient algorithm; see, [36], for instance.
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Figure 1.5. Residuals of the Banach fixpoint iteration (left) and the projected gradient method
(right) for different regularization parameters σ .

Here, the next iteration point is given by the formula uk+1 = P(uk + sk dk ), where
dk =−∇J (uk ) =−σuk+B ′(A uk+ p̂) is the direction of the steepest descent of J
in the current iteration point uk and sk > 0 is chosen by Algorithm 1.4. This pro-
cedure is globally convergent. However, as before, the convergence speed becomes
extremely slow for σ → 0. In addition, if the step size condition Ĵ (uk + s ( j )dk ) ≤
Ĵ (uk )− c/s ( j ) ‖dk‖U is just fulfilled for very small step sizes s ( j ), many evaluations
of the reduced objective functional are required to test whether Ĵ (uk + s ( j )dk ) ≤
Ĵ (uk ) − c s ( j ) ‖dk‖U is satisfied. Here, each evaluation requires to solve the state
equation. Therefore, also the single iteration steps may become quite expensive.
The right plot of Figure 1.5 demonstrates that also the projected gradient method
cannot deal with small regularizations. In contrast to the Banach iteration, the resid-
uals decay for arbitrarily small values of σ , but the numerical effort explodes if σ
tends to zero.

3) Primal-dual active set strategy: This method – see Algorithm 1.1 for the infinite-
dimensional case and Algorithm 1.2 for the POD discretization – solves the state
and the adjoint equation simultaneously within the implicit linear scheme

uk+1(t ) = χA k
a
(t )ua +χA k

b
(t )ub (t )+χI k (t )

1
σ
(B ′A uk+1)(t )

f.a.a. t ∈ [0,T ]. Since this technique is equivalent to a semismooth Newton proce-
dure [24] locally superlinear convergence rates are provided. Further, the algorithm
is able to deal with smaller regularizations than the other two methods presented:
Reasonable computation times are provided for all σ > σ◦ ≈ 0.0002, see Figure 1.6.
For parameters below this critical value, the bang-bang-control u oscillates between
ua and ub at the boundary grid points of the active sets. Notice that both the crit-
ical σ◦ and the error between the exact solution and the suboptimal final iteration
depend on the number of discretization points. The numerical effort of the simulta-
neous solving operations in each iteration step is significantly larger than the single
solution since the initial condition for the state and the final condition for the ad-
joint state prevent to iteratively solve n times a system of dimension 2m; instead,
all time and space values (y(ti , x j ), p(ti , x j )) are determined by solving a linear sys-
tem of the dimension 2nm. Here, the model order reduction techniques come into
play which will lead to formidable calculation time reductions (or even make an
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Figure 1.6. Run 5: The number of grid points, where the previous and the actual active sets
differ for different regularization parameters σ .

execution of the primal-dual active set strategy just possible). In the following, we
will make use of this optimization procedure.

ALGORITHM 1.4. (Backtracking strategy).

Require: Maximal number jmax of iterations and parameter c ∈ (0,1).
1: Set s (0) = 1 and j = 1.
2: while Ĵ (uk + s ( j )dk )> Ĵ (uk )− c/s ( j ) ‖dk‖U and j < jmax do
3: Set s ( j+1) = s ( j )/2 and j = j + 1.
4: end while
5: return sk = s ( j )

Run 6 (Different Galerkin expansions). In this run we compare the modified POD
Galerkin expansions (1.54) for the state variable and (1.85) for the dual variable with the
standard Galerkin approximations:

y`(t ) =
∑̀

i=1

y`i (t )ψi , p`(t ) =
∑̀

i=1

p`i (t )ψi for t ∈ [0,T ]. (1.101)

We choose the same setting as in Run 5. Let σ = 0.1. In Figures 1.7 and 1.8 we plot
the optimal FE solution components (ȳ h , ū h , p̄ h , λ̄h ) obtained by using the primal-dual
active set strategy. We observe that the support of the multiplier B λ̄h coincides with
the active set for the control variableB ū h . Further, the relation ū h = P(B ′ p̄ h/σ) can
be observed. As it is stated in Remark 1.28-1) the advantage of the modified Galerkin
ansatz is that the ROM errors do not include the projection of the initial value on the
POD space. Figure 1.9 illustrates the impact of homogenization, where we not only plot
the ROM errors, but also the a-posteriori error estimate for different `; compare Sec-
tion 1.4.5. First we see that the ROM errors and the a-posteriori error estimate nearly
coincide in all scenarios. In the left plot of Figure 1.9 the POD basis is computed from
snapshots of the state equation taking the control guess u0 ≡ 1. One observes that the
dynamics of the corresponding homogeneous snapshots in the modified ansatz are not
sufficient to decrease the control error below a level of 10−3 while the standard Galerkin
ansatz, exploiting also the dynamics of the initial value and the inhomogeneity, induces
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Figure 1.7. Run 6: The optimal FE controlB ū h (left) and the optimal FE state ȳ h (right).
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Figure 1.8. Run 6: The optimal FE adjoint state p̄ h and the optimal FE Lagrange multiplierB λ̄h .

a higher dimensional POD space and leads to an error order below 10−6. In the right
plot of Figure 1.9 the optimal FE control ū h creates the snapshots. Here, the modified
Galerkin ansatz pays: The approximation error in the standard Galerkin ansatz is dom-
inated by the projection error of the initial value y◦ on the POD Galerkin ansatz space.
This example also shows that good approximations of the reduced order model are just
guaranteed in the case that the snapshots which build up the POD basis include the dy-
namics of the optimal state solution; otherwise, enlarging the POD basis rank does not
necessarily improve the accuracy of the results. Algorithm 1.3 proposes a solution for this
problem: Here, basis updates are provided if the a posteriori error estimator presented in
Theorem 1.50 indicate that the control error does not decay in the current POD model.
Figure 1.9 shows that these error bounds are sharp. Indeed, if the algorithm is initialized
with the control guess u◦ ≡ 1 and a single basis update is provided, i.e., a new POD basis
is calculated with respect to the achieved suboptimal POD control u`max

1 . This new POD
basis coincides with the POD basis associated with the best (but usually unknown) con-
trol guess ū h . Thus, the resulting error decay by enlarging ` is the same one as in the right
graphic of Figure 1.9. In Figure 1.10 the first POD basis functions are presented for the
modified and standard Galerkin expansions. Consequently, the reconstruction of the ini-
tial condition y◦ with the standard Galerkin ansatz works quite well as it is demonstrated
in Figure 1.11 – especially, due to the shape of the POD basis functions, no oscillations
at the jump points occur as can be observed by trigonometric Fourier approximations,
for instance. For the modified POD Galerkin ansatz it is neither required nor possible to
build up the initial value y◦ accurately. But this is not needed, because the initial condi-
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Figure 1.9. Run 6: The ROM errors for the standard and the modified POD ansatz for initial
control guesses u0 = 1 (left) and u0 = ū h (right).
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Figure 1.10. Run 6: The first POD basis elements for the modified (left) and the standard
(right) Galerkin expansion.

tion is explicitly included in the initial condition; see (1.54). If the model data is perturbed
by noise, the improvement of homogenization is even significantly stronger. For the fol-
lowing simulation, we add random data onto the initial value y◦. The controls gained by
the modified model then reach the optimal precision 10−13 with 29 POD basis functions,
where even 50 basis elements are not sufficient in the standard ansatz to decrease the er-
ror below a level of 10−11, see Figure 1.12. We observe that the noise in the initial value
is inherited to the POD basis elements of the modified Galerkin ansatz; despite of this
perturbation, their shape does not differ much from those of the POD basis for the un-
perturbed initial conditions standard Galerkin ansatz. This is different for the standard
POD Galerkin ansatz; compare Figures 1.10 and 1.13.



i
i

“GubischVolkwein-2016” — 2016/2/9 — 11:59 — page 55 — #55 i
i

i
i

i
i

1.5. Numerical experiments 55

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

Ψ
ℓ
yℓ ◦(

x
)

first seven homogeneous POD expansions of y0

Ψ1
2y

1
◦(x)

Ψ2
2y

2
◦(x)

Ψ3y3◦(x)
Ψ4y4◦(x)
Ψ5y5◦(x)
Ψ6y6◦(x)
Ψ7y7◦(x)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

Ψ
ℓ
yℓ ◦(

x
)

first seven inhomogeneous POD expansions of y0

Ψ1
2y

1
◦(x)

Ψ2
2y

2
◦(x)

Ψ3y3◦(x)
Ψ4y4◦(x)
Ψ5y5◦(x)
Ψ6y6◦(x)
Ψ7y7◦(x)
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i=1〈y◦,ψi 〉H ψi for the initial con-
dition y◦ for the modified (left) and the standard (right) POD Galerkin expansions.
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ȳ(
t,
x
)

5 10 15 20 25 30 35 40 45 50
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Reduced order model errors

Pod basis rank ℓ

E
rr
or
(ℓ
)

Modified aposti bound
Modified reduction error
Classical aposti bound
Classical reduction error

Figure 1.12. Run 6: The optimal state solution for perturbed initial data (left) and the ROM
errors for the two POD ansatzes (right).
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