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CHAPTER 1

Balanced Truncation and the POD Method

This chapter is devoted to introduce two methods of model reduction: the balanced truncation method
and the POD method. The balanced truncation approach has been successfully applied in approximating
the input-output behavior of linear systems, and a-posteriori error bounds can be easily computed, in
particular, with respect linear-quadratic optimal control problems. Proper orthogonal decomposition (POD)
is a powerful technique for model reduction of non–linear systems. It is based on a Galerkin type discretization
with basis elements created from the dynamical system itself. The POD method is highly problem specific.
There are first results available in the proof of a-posteriori errors [41]. Both methods coincide for a specific
choice of snapshots, which are needed to compute a POD basis.

The chapter is organized in the following manner: In Section 1 we recall the balanced truncation method
for linear, time-invariant systems. The POD method is studied in Section 2, where we discuss different
application areas:

• The POD method and singular value decomposition (Section 2.1),
• POD for dynamical systems (Section 2.2 and Section 2.3),
• POD for parabolic partial differential equations (Section 2.4), and
• POD for elliptic, parameter-dependent partial differential equations (Section 2.5).

Finally, in Section 3 we discuss the relationship between the balanced truncation method and the POD
method.

1. The balanced truncation method

In this section we recall the balanced truncation method. For the presentation we follow parts of the
book [46].

1.1. Linear time-invariant dynamical systems. Let us consider the linear time-invariant system

ẋ(t) = Ax(t) +Bu(t) for t ∈ (0,∞) and x(0) = x0,(1.1a)

y(t) = Cx(t) for t ∈ [0,∞),(1.1b)

where x(t) ∈ Rmx is called the system state, x0 ∈ Rmx is the initial condition of the system, u(t) ∈ Rmu

is said to be the system input and y(t) ∈ Rmy is called the system output. The matrices A, B and C are
assumed to have appropriate sizes.

It is helpful to analyze the linear system (1.1) through the Laplace transform.

Definition 1.1. Let f(t) be a time-varying vector. Then its Laplace transform is defined by

(1.2) L[f ](s) =

∫ ∞

0

e−stf(t) dt for s ∈ R.

The Laplace transform is defined for those values of s, for which (1.2) converges.

The Laplace transforms of u(t) and y(t) are given by

L[u](s) =

∫ ∞

0

e−stu(t) dt and L[y](s) =

∫ ∞

0

e−sty(t) dt = CL[x](s),

5



6 1. BALANCED TRUNCATION AND THE POD METHOD

where we have used (1.1b). Note that

L[ẋ](s) =

∫ ∞

0

e−stẋ(t) dt = −
∫ ∞

0

(−s)e−stx(t) dt+
(
e−stx(t)

)
∣
∣
∣

s=∞

s=0

= sL[x](s) − x0.

Therefore, the Laplace transform of the dynamical system (1.1a) yields

sL[x](s) − x(0) = AL[x](s) +BL[u](s),

which gives
L[x](s) = (sI −A)−1x(0) + (sI −A)−1BL[u](s).

Thus,

(1.3) L[y](s) = CL[x](s) = C(sI −A)−1x(0) + C(sI −A)−1BL[u](s).

For x(0) = 0 the expression (1.3) reduces to

(1.4) L[y](s) = G(s)L[u](s),

where

(1.5) G(s) = C(sI − A)−1B

is called the transfer matrix of the system.
Given the initial state x0 and the input u(t), the dynamical system response x(t) and y(t) for t ∈ [0, T ]

satisfy

x(t) = etAx0 +

∫ t

0

e(t−s)ABu(s) ds and y(t) = Cx(t).

If u(t) = 0 holds for all t ∈ [0, T ], we infer that

x(t) = e(t−t1)Ax(t1)

for any t1, t ∈ [0, T ]. The matrix e(t−t1)A acts as a transformation from one state to another. Therefore,
Φ(t, t1) = e(t−t1)A is often called the state transition matrix.

1.2. Controllability and observability. Next we turn to the essential properties controllability and
em observability.

Definition 1.2. The dynamical system (1.1a) or the pair (A,B) are called controllable if for any
x0 ∈ R

mx , t ∈ [0, T ] and final state xT ∈ R
mx there exists a (piecewise continuous) input u such that the

solution to (1.1a) satisfies x(T ) = xT . Otherwise, (A,B) is said to be uncontrollable.

Controllability can be verified as stated in the next theorem. For a proof we refer to [46, Theorem 3.1].

Theorem 1.3. The following claims are equivalent:

1) (A,B) are controllable.
2) The matrix

Wc(t) =

∫ t

0

esABBT esA
T

ds

is positive definite for every t > 0.
3) The controllability matrix

C =
[
B AB A2B . . . Amx−1B

]
∈ R

mx×(mxmu)

has full row rank.
4) The matrix [A− λI|B] ∈ Rmx×(mx+mu) possesses full row rank for all λ ∈ C.
5) Let λ be an eigenvalue of A with associated left eigenvalue v 6= 0, i.e., vHA = λvH . Then, vHB 6= 0.
6) The eigenvalues of the matrix A + BF can be freely assigned with the restriction that complex

eigenvalues are in conjugate pairs) by a suitable choice of the matrix F ∈ Rmu×mx .
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Let us recall the definition of a stable system.

Definition 1.4. 1) The unforced system ẋ(t) = Ax(t) is called stable, if the eigenvalues of A are
in the open left half plane, i.e., ℜeλ < 0 for every eigenvalue λ. A matrix with this property is said
to be stable or Hurwitz.

2) The dynamical system (1.1a) or (A,B) are called stabilizable if there exists a state-feedback u(t) =
−Kx(t) so that A−BK is stable.

The next result, which is proved in [46, Theorem 3.2], is a consequence of Theorem 1.3.

Theorem 1.5. The following claims are equivalent:

1) (A,B) are stabilizable.
2) The matrix [A − λI B] ∈ Rmx×(mx+mu) has full row rank for all λ ∈ C with a negative real part,

i.e., ℜeλ < 0.
3) For all λ ∈ C and v ∈ Rn \ {0} satisfying vTA = λvT and ℜeλ ≥ 0 we have vTB 6= 0.
4) There exists a matrix F ∈ R

mu×mx such that A+BF is Hurwitz.

Let us now consider the notions of observability.

Definition 1.6. The dynamical system (1.1) or (A,C) are called observable if for any t1 ∈ (0, T ], the
initial condition x0 ∈ Rmx can be determined from the time history of the input u(t) and the output y(t) in
the interval [0, t1] ⊂ [0, T ]. Otherwise, the system or (A,C) is said to be unobservable.

For a proof of the next theorem we refer the reader to [46, Theorem 3.3].

Theorem 1.7. The following claims are equivalent:

1) (A,C) is observable.
2) The matrix

Wo(t) =

∫ t

0

esA
T

CTCesA ds

is positive definite for every t > 0.
(3) The observability matrix

O =








C
CA
...

CAmx−1








∈ R
(mxmy)×mx

has full column rank.
4) The matrix

(
A− λI
C

)

has full column rank for all λ ∈ C.
5) Let λ be an eigenvalue of A and v 6= 0 the associated right eigenvector of A, i.e., Av = λv. Then,

Cv 6= 0.
6) The eigenvalues of the matrix A + LC can be freely assigned (with the restriction that complex

eigenvalues are in conjugate pairs) by a suitable chosen matrix L ∈ Rmx×my .

Definition 1.8. We say that the system (or the pair) (C,A) is detectable, if there exists a matrix
L ∈ R

mx×my such that A+ LC is stable.

We have the next characterizations:

Theorem 1.9. The following claims are equivalent:

1) The pair (C,A) is detectable.
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2) The matrix
(
A− λI
C

)

possesses full column rank for all λ ∈ C with non-negative real part.
3) For all λ ∈ C and v ∈ Rn \ {0} with Av = λv and ℜe(λ) ≥ 0 we have Cv 6= 0.
4)
5) The pair (AT , CT ) is stabilizable.

Often the next definitions of modal controllability and observability are used.

Definition 1.10. Let λ ∈ C be an eigenvalue of A. Then we call λ a mode of the system. Moreover,
λ is called controllable (observable) if V HB 6= 0 (vHC 6= 0) for all left (right) eigenvectors of A associated
with the eigenvalue λ, i.e., vHA = λvH (Av = λv) and v 6= 0 ∈ Cn. Otherwise, λ is said to be uncontrollable
(unobservable).

Example 1.11 (see [46, pp. 52-53]). We consider the system

(
A C
C D

)

=









λ1 1 0 0 0
0 λ1 1 0 1
0 0 λ1 0 α
0 0 0 λ2 1
1 0 0 β 0









ith λ1 6= λ2. Then, the mode λ1 is not controllable if α = 0. In fact, e3 = (0, 0, 1, 0)T ∈ R4 is a left eigenvalue
of A, i.e., eT3 A = λ1e3. However, eT3 B = α = 0 holds. Thus, λ1 is uncontrollable for α = 0.
Notice that e4 = (0, 0, 0, 1) ∈ R4 is a right eigenvector of A with the associated eigenvalue λ2, i.e., Ae4 = λ2e4.
However, for β = 0 we find that Ce4 = β = 0. Thus, λ2 is not observable.
If λ1 = λ2 holds, the vectors e3 and e4 are left eigenvectors of A associated with λ1. Hence, vTA = λ1v for
v = e3 − αe4, but vTB = α− α = 0 for any α ∈ R. Hence, λ1 is uncontrollable for any α. ♦

1.3. State-space realizations for transfer matrices. Let G(s) be a real-rational transfer matrix.
Then, we call a state-space modal (A,B,C,D) satisfying

G(s) =

(
A B
C D

)

a realization of G(s).

Definition 1.12. We call a state-space realization (A,B,C,D) of G(s) minimal if A has the smallest
dimension.

We have the next characterization of a minimal realization [46, pp. 68-69].

Theorem 1.13. A state-space realization (A,B,C,D) of G(s) is minimal if and only if (A,B) is con-
trollable and (C,A) is observable.

Minimal realizations have the following property [46, p. 69].

Theorem 1.14. Let (A1, B1, C1, D) and (A2, B2, C2, D) be two minimal realizations of a real rational
transfer matrix G(s). Moreover, suppose that C1, C2, O1, and O2 are the corresponding controllability and
observability matrices, respectively. Then there exists a unique non-singular matrix T such that

A2 = TA1T
−1, B2 = TB1, C2 = C1T

−1.

Furthermore, T is given by

T = (OT
2 O2)

−1O2O1 or T−1 = C1CT2 (C2CT2 )−1.

The balanced realization method is a numerically reliable method to eliminate uncontrollable and/or
unobservable states.



1. THE BALANCED TRUNCATION METHOD 9

1.4. Lyapunov equations. To investigate the stability, controllability and Observability of the linear
system one can often utilize the Lyapunov theory. For that purpose consider for X ∈ Rmx×mx the matrix
equation

(1.6) ATX +XA+Q = 0

with given A, Q ∈ Rmx×mx . It is proved in [46, Chapter 2] that (1.6) has a unique solution if and only if

λi(A) + λj(A) 6= 0 for all i, j ∈ {1, . . . ,mx} with i 6= j,

where λj(A) denotes the complex conjugate of λj(A). Moreover, the matrices A and X are related as stated
in the next lemma.

Lemma 1.15. Let A be stable. Then, it follows:

1) X =
∫∞

0 eA
T sQeAs ds.

2) X > 0 if Q ≻ 0, and X � 0 if Q � 0.
3) if Q � 0, then (A,A) is observable if and only if X ≻ 0 holds.

We conclude from Lemma 1.15-part 3) that for a given stable A the pair (C,A) is observable provided
the solution Lo of

(1.7) ATLo + LoA+ CTC = 0

is positive definite. The solution matrix L0 ∈ R
mx×mx is salled observability Gramian. Similarly, a pair

(A,B) is controllable if and only if the solution Lc of

(1.8) ALc + LcA
T +BBT = 0

is positive definite. The matrix Lc ∈ Rmx×mx is the controllability Gramian.
If we have computed a solution to (1.6) we can say if A is stable or not. This is formulated in the next

lemma. For a proof we refer to [46, p. 72].

Lemma 1.16. Let X be the solution to(1.6). Then,

1) ℜeλi(A) ≤ 0 if X ≻ 0 and Q � 0,
2) A is stable if X ≻ 0 and Q ≻ 0,
3) A is stable if X � 0, Q � 0, and (Q,A) is detectable.

1.5. Balanced realizations. In this section we concentrate on a very useful class of realizations for a
given transfer matrix that is often used in control engineering and signal processing.

Lemma 1.17. Suppose that
(
A B
C D

)

is a state-space realization of a (not necessarily stable) transfer matrix G(s). Let there exist a symmetric
matrix

P = PT =

(
P1 0
0 0

)

∈ R
mx×mx ,

where P1 ∈ Rk×k, k ∈ {1, . . . ,mx}, is non-singular so that

AP + PAT + BBT = 0.

We write
(
A B
C D

)

=





A11 A12 B1

A21 A22 B2

C1 C2 D





with A11 ∈ Rk×k, A12 ∈ Rk×(mx−k), A21 ∈ Rmx−k)×(mx−k), B1 ∈ Rk×mu , B2 ∈ R(mx−k)×mu , C1 ∈ Rmy×k,
and C2 ∈ Rmy×(mx−k). Then,

(
A11 B1

C1 D

)
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is also a realization of G. Moreover, (A11, B1) is controllable if A11, is stable.

For a proof of Lemma 1.17 we refer to [46, p. 73]. An analogous result can be formulated regarding the
observability of the system; see also [46, p. 73].

Lemma 1.18. Let
(
A B
C D

)

be a state-space realization of a (not necessarily stable) transfer matrix G. Supose that there is a symmetric
matrix

Q = QT =

(
Q1 0
0 0

)

∈ R
mx×mx ,

where Q1 ∈ Rk×k, k ∈ {1, . . . ,mx}, is non-singular so that

QA+ATQ+ CTC = 0.

Setting

(
A B
C D

)

=





A11 A12 B1

A21 A22 B2

C1 C2 D





as in Lemma 1.17 the matrix
(
A11 B1

C1 D

)

is also a realization of G. Moreover, (C1, A11) is observable if A11 is stable.

Due to Lemmas 1.17 and 1.18 a minimal realization can be derived from a non-minimal one by elimination
all states corresponding to the zero block diagonal term of the controllability Gramian P and the observability
Gramian Q. In the case, where P is not block diagonal, we can proceed as described in [46, p. 74].

It turns out that controllability (or observability) Gramian alone does not describe very well the dom-
inance of the system states in the input/output behavior. This motivates the introduction of a balanced
realization giving balanced Gramians both for controllability and for observability. Let

G(s) =

(
A B
C D

)

be stable, i.e., A is stable. By P and Q we denote the controllability Gramian and observability Gramian,
respectively. Then, by Lemma 1.15, the matrices P and Q satisfy the Lyapunov equations

AP + PAT + BBT = 0,(1.9a)

ATQ+QA+ CTC = 0(1.9b)

and P, Q � 0 hold. The pair (A,B) is controllable if and only if P ≻ 0. Moreover, (C,A) is observable if
and only if Q ≻ 0. Assume that we transform the state by utilizing a non-singular matrix T ∈ R

mx×mx , i.e.,
x̂ = Tx. Then, we derive the realization

Ĝ(s) =

(
Â B̂

Ĉ D̂

)

=

(
TAT−1 TB
CT−1 D

)

.

It follows from (1.9a) and P̂ = TPT−1 that

ÂP̂ + P̂ ÂT + B̂B̂T = (TAT−1) (TPT T ) + (TPT T ) (T−1AT )T + (TB) (TB)T

= T
(
AP + PAT +BBT

)
T T = 0
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is satisfied. Analogously, we derive from (1.9a) and Q = T−TQT−1

ÂT Q̂+ Q̂Â+ ĈT Ĉ = (TAT−1)T (T−TQT−1) + (T−TQT−1) (TAT−1)

+ (CT−1)T (CT−1)

= T−T
(
ATQ+QA+ CTC

)
T−1 = 0.

Thus, the Gramians are transformed to

P̂ = TPT T and Q̂ = T TQT−1.

Furthermore, P̂ Q̂ = TPQT−1. This implies that P̂ Q̂ is similar to PQ and therefore the eigenvalues of P̂ Q̂
are the same as for PQ.

Next we consider a specific transformation T , which gives the eigenvalue decomposituion of the symmetric
matrix PQ, i.e., we have

PQ = T−1DT with D = diag (λ1, . . . , λmx
) ∈ R

mx×mx .

Then, the columns of T−1 are eigenvectors of PQ corresponding to the eigenvalues λ1, . . . , λmx
. Since P

and Q are positive semi-definite, PQ � 0 follows from Theorem 1.19 below. Therefore, λi ≥ 0 holds for
1 ≤ i ≤ mx.

Theorem 1.19. Suppose that P and Q are two symmetric and positive semi-definite matrices. Then,
there exists a regular matrix T such that

(1.10) TPT T =







Σ1

Σ2

0
0







and T−TQT−1 =







Σ1

0
Σ3

0







respectively, where Σ1, Σ2, Σ3 are diagonal and positive definite matrices.

Theorem 1.19 is proved in [46, pp. 76-77]. A consequence of this theorem is the fact that the product
of two positive semi-definite matrices is similar to a positive semi-definite matrix. Moreover, for any stable
system

G(s) =

(
A B
C D

)

there exists a non-singular T such that

Ĝ(s) =

(
TAT−1 TB
CT−1 D

)

has a controllability Gramian P and observability matrix Q satisfying (1.10). In case of a minimal realization
the eigenvectors in the columns of T−1 can always be chosen such that

P̂ TPT T = Σ and Q̂ = (T−1)TQT−1 = Σ,

where Σ = diag (σ1, . . . , σmx
) and Σ2 = D = diag (λ1, . . . , λmx

). This new realization with controllability

and observability Gramians P̂ = Q̂ = Σ is called a balanced realization. The values σ1 ≥ σ2 ≥ . . . ≥ σmx

are called the Hankel singular values of the system. In [46, p. 78] an algorithm is presented how we can
compute a balanced realization from a minimal realization.

1.6. Model reduction by balanced truncation. The goal of this section is to reduce the order of a
multivariable dynamical system, where we focus on the balanced truncation method.

First we introduce the following spaces of complex-valued matrix functions:

1) L∞(R) or simply L∞ is a Banach space of matrix- (or scalar-) valued functions that are essentially
bounded on R with the norm

‖G‖∞ = ess sup
ω∈R

σ
(
G(ω)

)
,
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where σ(G(R)) denotes the largest singular value of the matrix G(ω). The rational subspace of
L∞ — denoted by RL∞(R) or simply RL∞ — consists of all proper and real rational transfer
matrices with no poles on the imaginary axis.

2) By H∞ we denote the (closed) subspace of L∞ containing all functions of L∞ that areanalytic and
bounded in the open right half plane. On H∞ we utilize the norm

‖G‖∞ = sup
ℜes>0

σ
(
G(s)

)
= sup
ω∈R

σ
(
G(ω)

)
.

The real rational subspace of H∞ is denoted by RH∞ consisting of all proper and real rational
stable transfer functions.

Let

G(s) =

(
A B
C D

)

∈ RH∞

be a balanced realization, i.e., its controllability and observability Gramians are equal and diagonal. We
denote by Σ the balanced Gramians. Then, we have

AΣ + ΣAT +BBT = 0,(1.11a)

ATΣ + ΣA+ CTC = 0.(1.11b)

We suppose that

Σ =

(
Σ1 0
0 Σ2

)

with Σ1 ∈ R
k×k, Σ2 ∈ R

(mx−k)×(mx−k),

k ∈ {1, . . . ,mx}, and let

G(s) =





A11 A12 B1

A21 A22 B2

C1 C2 D





as in Lemma 1.17. Then, if Σ1 and Σ2 have no diagonal entries in common, it follows that both subsystems
(Aii, Bi, Ci), i = 1, 2, are asymptotically stable [46, pp. 157-158]. If

Σ1 = diag
(
σ1Is1 , . . . , σrIsr

)
∈ R

k×k, k =

r∑

i=1

si ≤ mx,

Σ2 = diag
(
σr+1Isr+1

, . . . , σN IsN

)
∈ R

(mx−k)×(mx−k),
N∑

i=r+1

si = mx − k,

where σi has the multiplicity si, i = 1, . . . , N , with σ1 > σ2 > . . . > σN then the truncated system

Gr(s) =

(
A11 B1

C1 D

)

is balanced and asymptotically stable. Furthermore,

‖G−Gr‖∞ ≤ 2

N∑

i=r+1

σi

and, in particular,

‖G−GN−1‖∞ = 2σN ,

see [46, pp. 159-160].

2. The POD Method

In this section we introduce the POD method in the Euclidean space Rm and study the close connection
to the SVD of rectangular matrices; see [20]. We also refer to the monograph [12].
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2.1. POD and singular value decomposition. Let Y = [y1, . . . , yn] be a real-valued m× n matrix
of rank d ≤ min{m,n} with columns yj ∈ Rm, 1 ≤ j ≤ n. Consequently,

(1.12) ȳ =
1

n

n∑

j=1

yj

can be viewed as the column-averaged mean of the matrix Y .
SVD [33] guarantees the existence of real numbers σ1 ≥ σ2 ≥ . . . ≥ σd > 0 and orthogonal matrices

U ∈ Rm×m with columns {ui}mi=1 and V ∈ Rn×n with columns {vi}ni=1 such that

(1.13) UTY V =

(
D 0
0 0

)

=: Σ ∈ R
m×n,

where D = diag (σ1, . . . , σd) ∈ Rd×d and the zeros in (1.13) denote matrices of appropriate dimensions.
Moreover the vectors {ui}di=1 and {vi}di=1 satisfy

(1.14) Y vi = σiui and Y Tui = σivi for i = 1, . . . , d.

They are eigenvectors of Y Y T and Y TY , respectively, with eigenvalues λi = σ2
i > 0, i = 1, . . . , d. The

vectors {ui}mi=d+1 and {vi}ni=d+1 (if d < m respectively d < n) are eigenvectors of Y Y T and Y TY with
eigenvalue 0.

From (1.13) we deduce that

Y = UΣV T .

It follows that Y can also be expressed as

(1.15) Y = UdD(V d)T ,

where Ud ∈ Rm×d and V d ∈ Rn×d are given by

Udij = Uij for 1 ≤ i ≤ m, 1 ≤ j ≤ d,

V dij = Vij for 1 ≤ i ≤ n, 1 ≤ j ≤ d.

Setting Bd = D(V d)T ∈ Rd×n we can write (1.15) in the form

Y = UdBd with Bd = D(V d)T ∈ R
d×n.

Thus, the column space of Y can be represented in terms of the d linearly independent columns of Ud. The
coefficients in the expansion for the columns yj , j = 1, . . . , n, in the basis {ui}di=1 are given by the jth-column
of Bd. Since U is orthogonal, we find that

yj =

d∑

i=1

BdijU
d
·,i =

d∑

i=1

(
D(V d)T

)

ij
ui =

d∑

i=1

(
(Ud)TUd
︸ ︷︷ ︸

=Id∈Rd×d

D(V d)T
)

ij
ui

(1.15)
=

d∑

i=1

(
(Ud)TY

)

ij
ui =

d∑

i=1

( m∑

k=1

UdkiYkj

︸ ︷︷ ︸

=uT
i
yj

)

ui =

d∑

i=1

〈ui, yj〉Rm ui,

where 〈· , ·〉Rm denotes the canonical inner product in Rm. Thus,

(1.16) yj =

d∑

i=1

〈yj , ui〉Rm ui for j = 1, . . . , n

Let us now interprete SVD in terms of POD. One of the central issues of POD is the reduction of data
expressing their essential information by means of a few basis vectors. The problem of approximating all
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spatial coordinate vectors yj of Y simultaneously by a single, normalized vector as well as possible can be
expressed as

(P1) max
u∈Rm

n∑

j=1

∣
∣〈yj , u〉Rm

∣
∣
2

subject to (s.t.) ‖u‖2
Rm = 1,

where ‖u‖Rm =
√

〈u, u〉Rm for u ∈ Rm.
Note that (P1) is a constrained optimization problem that can be solved by considering first-order

necessary optimality conditions. For that purpose let L : Rm×R → R be the Lagrange functional associated
with (P1), i.e.,

L(u, λ) =

n∑

j=1

∣
∣〈yj , u〉Rm

∣
∣
2
+ λ
(
1 − ‖u‖2

Rm

)
for (u, λ) ∈ R

m × R.

Suppose that u ∈ Rm is a solution to (P1). Then, a first-order necessary optimality condition is given by

∇L(u, λ)
!
= 0 in R

m × R.

We compute the gradient of L with respect to u:

∂L
∂ui

(u, λ) =
∂

∂ui

(
n∑

j=1

∣
∣
∣
∣

m∑

k=1

Ykjuk

∣
∣
∣
∣

2

+ λ

(

1 −
m∑

k=1

u2
k

))

= 2

n∑

j=1

( m∑

k=1

Ykjuk

)

Yij − 2λui

= 2

m∑

k=1

( n∑

j=1

YijY
T
jk

︸ ︷︷ ︸

=(Y Y T )ik

uk

)

− 2λui.

Thus,

(1.17) ∇uL(u, λ) = 2
(
Y Y Tu− λu

) !
= 0 in R

m.

Equation (1.17) yields the eigenvalue problem

(1.18a) Y Y Tu = λu in R
m.

Notice that Y Y T ∈ Rm×m is a symmetric matrix satisfying

uT (Y Y T )u = (Y Tu)TY Tu = ‖Y Tu‖2

Rn ≥ 0 for all u ∈ R
m.

Thus, Y Y T is positive semi-definite. It follows that Y Y T possesses m non-negative eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λm ≥ 0 and the corresponding eigenvectors can be chosen such that they are pairwise orthonormal.

From ∂L
∂λ (u, λ)

!
= 0 in R we infer the constraint

(1.18b) ‖u‖
Rm = 1.
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Due to SVD the vector u1 solves (1.18) and
n∑

j=1

∣
∣〈yj , u1〉Rm

∣
∣
2

=
n∑

j=1

〈yj , u1〉Rm〈yj , u1〉Rm =
n∑

j=1

〈
〈yj , u1〉Rmyj, u1

〉

Rm

=

〈 n∑

j=1

〈yj , u1〉Rmyj , u1

〉

Rm

=

〈 n∑

j=1

( m∑

k=1

Ykj(u1)k

)

yj , u1

〉

Rm

=

〈 m∑

k=1

( n∑

j=1

Y·,jY
T
jk(u1)k

)

, u1

〉

Rm

=
〈
Y Y Tu1, u1

〉

Rm

= λ1

〈
u1, u1

〉

Rm = λ1 ‖u1‖2
Rm = λ1.

We next prove that u1 solves (P1). Suppose that ũ ∈ Rm is an arbitrary vector with ‖ũ‖Rm = 1. Since
{ui}mi=1 is an orthonormal basis in Rm, we have

ũ =

m∑

i=1

〈ũ, ui〉Rm ui.

Thus,

n∑

j=1

∣
∣〈yj , ũ〉Rm

∣
∣
2

=

n∑

j=1

∣
∣
∣
∣
∣

〈

yj,

m∑

i=1

〈ũ, ui〉Rm ui

〉

Rm

∣
∣
∣
∣
∣

2

=
n∑

j=1

m∑

i=1

m∑

k=1

(〈
yj , 〈ũ, ui〉Rm ui

〉

Rm

〈
yj , 〈ũ, uk〉Rm uk

〉

Rm

)

=

n∑

j=1

m∑

i=1

m∑

k=1

(
〈yj , ui〉Rm〈yj , uk〉Rm〈ũ, ui〉Rm〈ũ, uk〉Rm

)

=

m∑

i=1

m∑

k=1

(〈 n∑

j=1

〈yj , ui〉Rm yj

︸ ︷︷ ︸

=λiui

, uk

〉

Rm

〈ũ, ui〉Rm〈ũ, uk〉Rm

)

=

m∑

i=1

m∑

k=1

(

〈λiui, uk〉Rm

︸ ︷︷ ︸

=λiδik

〈ũ, ui〉Rm〈ũ, uk〉Rm

)

=

m∑

i=1

λi
∣
∣〈ũ, ui〉Rm

∣
∣
2 ≤ λ1

m∑

i=1

∣
∣〈ũ, ui〉Rm

∣
∣
2

= λ1 ‖ũ‖2
R

= λ1

=
n∑

j=1

∣
∣〈yj , u1〉Rm

∣
∣
2
.

Consequently, u1 solves (P1) and argmax(P1) = σ2
1 = λ1.

If we look for a second vector, orthogonal to u1 that again describes the data set {yi}ni=1 as well as
possible then we need to solve

(P2) max
u∈Rm

n∑

j=1

∣
∣〈yj , u〉Rm

∣
∣
2

s.t. ‖u‖
Rm = 1 and 〈u, u1〉Rm = 0.

SVD implies that u2 is a solution to (P2) and argmax (P2) = σ2
2 = λ2. In fact, u2 solves the first-order

necessary optimality conditions (1.18) and for

ũ =

m∑

i=1

〈ũ, ui〉Rm ui ∈ span {u1}⊥
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we have
n∑

j=1

∣
∣〈yj , ũ〉Rm

∣
∣
2 ≤ λ2 =

n∑

j=1

∣
∣〈yj, u2〉Rm

∣
∣
2
.

Clearly this procedure can be continued by finite induction. We summarize our results in the following
theorem.

Theorem 2.1. Let Y = [y1, . . . , yn] ∈ Rm×n be a given matrix with rank d ≤ min{m,n}. Further, let
Y = UΣV T be the singular value decomposition of Y , where U = [u1, . . . , um] ∈ R

m×m, V = [v1, . . . , vn] ∈
Rn×n are orthogonal matrices and the matrix Σ ∈ Rm×n has the form as (1.13). Then, for any ℓ ∈ {1, . . . , d}
the solution to

(1.19) max
ũ1,...,ũℓ∈Rm

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ũi〉Rm

∣
∣
2

s.t. 〈ũi, ũj〉Rm = δij for 1 ≤ i, j ≤ ℓ

is given by the singular vectors {ui}ℓi=1, i.e., by the first ℓ columns of U . Moreover,

argmax (1.19) =

ℓ∑

i=1

σ2
i =

ℓ∑

i=1

λi.

Proof. Since (1.19) is an equality constrained optimization problem, we introduce the Lagrangian

L : R
m × . . .× R

m

︸ ︷︷ ︸

ℓ-times

×R
ℓ×ℓ

by

L(ψ1, . . . , ψℓ,Λ) =

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ψi〉Rm

∣
∣
2
+

ℓ∑

i,j=1

λij
(
δij − 〈ψi, ψj〉Rm

)

for ψ1, . . . , ψℓ ∈ Rm and Λ = ((λij)) ∈ Rℓ×ℓ. First-order necessary optimality conditions for (1.19) are given
by

(1.20)
∂L
∂ψk

(ψ1, . . . , ψℓ,Λ)δψk = 0 for all δψk ∈ R
m and k ∈ {1, . . . , ℓ}.

From

∂L
∂ψk

(ψ1, . . . , ψℓ,Λ)δψk = 2

ℓ∑

i=1

n∑

j=1

〈yj , ψi〉Rm〈yj , δψk〉Rmδik

−
ℓ∑

i,j=1

λij〈ψi, δψk〉Rmδjk −
ℓ∑

i,j=1

λij〈δψk, ψj〉Rmδki

= 2
n∑

j=1

〈yj , ψk〉Rm〈yj , δψk〉Rm −
ℓ∑

i=1

(λik + λki) 〈ψi, δψk〉Rm

=

〈

2

n∑

j=1

〈yj , ψk〉Rm yj −
ℓ∑

i=1

(λik + λki)ψi, δψk

〉

Rm

and (1.20) we infer that

(1.21)

n∑

j=1

〈yj , ψk〉Rm yj =
1

2

ℓ∑

i=1

(λik + λki)ψi in R
m and for all k ∈ {1, . . . , ℓ}.

Note that

Y Y Tψ =
n∑

j=1

〈yj , ψ〉Rm yj for ψ ∈ R
m.
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Thus, condition (1.21) can be expressed as

(1.22) Y Y Tψk =
1

2

ℓ∑

i=1

(λik + λki)ψi in R
m and for all k ∈ {1, . . . , ℓ}.

Now we proceed by induction. For ℓ = 1 we have k = 1. It follows from (1.22) that

(1.23) Y Y Tψ1 = λ1ψ1 in R
m

with λ1 = λ11. Next we suppose that for ℓ ≥ 1 the first-order optimality conditions are given by

(1.24) Y Y Tψk = λkψk in R
m and for all k ∈ {1, . . . , ℓ}.

We want to show that the first-order necessary optimality conditions for a POD basis {ψi}ℓ+1
i=1 of rank ℓ+ 1

are given by

(1.25) Y Y Tψk = λkψk in R
m and for all k ∈ {1, . . . , ℓ+ 1}.

By assumption we have (1.24). Thus, we only have to prove that

(1.26) Y Y Tψℓ+1 = λℓ+1ψℓ+1 in R
m.

Due to (1.22) we have

(1.27) Y Y Tψℓ+1 =
1

2

ℓ+1∑

i=1

(λi,ℓ+1 + λℓ+1,i)ψi in R
m.

Since {ψi}ℓ+1
i=1 is a POD basis we have 〈ψℓ+1, ψj〉Rm = 0 for 1 ≤ j ≤ ℓ. Using (1.24) and the symmetry of

Y Y T we have for any j ∈ {1, . . . , ℓ}
0 = λj 〈ψℓ+1, ψj〉Rm = 〈ψℓ+1, Y Y

Tψj〉Rm = 〈Y Y Tψℓ+1, ψj〉Rm

=
1

2

ℓ+1∑

i=1

(λi,ℓ+1 + λℓ+1,i) 〈ψi, ψj〉Rm = (λj,ℓ+1 + λℓ+1,j) .

This gives

(1.28) λℓ+1,i = −λi,ℓ+1 for any i ∈ {1, . . . , ℓ}.
Inserting (1.28) into (1.27) we obtain

Y Y Tψℓ+1 =
1

2

ℓ∑

i=1

(λi,ℓ+1 + λℓ+1,i)ψi + λℓ+1,ℓ+1 ψℓ+1

=
1

2

ℓ∑

i=1

(λi,ℓ+1 − λi,ℓ+1)ψi + λℓ+1,ℓ+1 ψℓ+1 = λℓ+1,ℓ+1 ψℓ+1.

Setting λℓ+1 = λℓ+1,ℓ+1 we obtain (1.26).
Summarizing, the necessary optimaity conditions for (1.19) are given by the symmetric m ×m eigenvalue
problem

(1.29) Y Y Tui = λiui for i = 1, . . . , ℓ.

It follows from SVD that {ui}ℓi=1 solves (1.29). The proof that {ui}ℓi=1 is a solution to (1.19) and that

argmax (1.19) =
∑ℓ
i=1 σ

2
i holds is analogous to the proof for (P1); see Exercise 1.1). �

Motivated by the previous theorem we give the next definition.

Definition 2.2. For ℓ ∈ {1, . . . , d} the vectors {ui}ℓi=1 are called POD basis of rank ℓ.

The following result states that for every ℓ ≤ d the approximation of the columns of Y by the first ℓ
singular vectors {ui}ℓi=1 is optimal in the mean among all rank ℓ approximations to the columns of Y .
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Corollary 2.3 (Optimality of the POD basis). Let all hypotheses of Theorem 2.1 be satisfied. Suppose

that Ûd ∈ Rm×d denotes a matrix with pairwise orthonormal vectors ûi and that the expansion of the columns
of Y in the basis {ûi}di=1 be given by

Y = ÛdCd, where Cdij = 〈ûi, yj〉Rm for 1 ≤ i ≤ d, 1 ≤ j ≤ n.

Then for every ℓ ∈ {1, . . . , d} we have

(1.30) ‖Y − U ℓBℓ‖F ≤ ‖Y − Û ℓCℓ‖F .

In (1.30), ‖ · ‖F denotes the Frobenius norm given by

‖A‖F =

√
√
√
√

m∑

i=1

n∑

j=1

∣
∣Aij

∣
∣
2

=
√

trace
(
ATA

)
for A ∈ R

m×n,

the matrix U ℓ denotes the first ℓ columns of U , Bℓ the first ℓ rows of B and similarly for Û ℓ and Cℓ.

Remark 2.4. Notice that

‖Y − Û ℓCℓ‖2

F =
m∑

i=1

n∑

j=1

∣
∣
∣Yij −

ℓ∑

k=1

Û ℓikCkj

∣
∣
∣

2

=
n∑

j=1

m∑

i=1

∣
∣
∣Yij −

ℓ∑

k=1

〈ûk, yj〉RmÛ
ℓ
ik

∣
∣
∣

2

=

n∑

j=1

∥
∥
∥yj −

ℓ∑

k=1

〈yj , ûk〉Rm ûk

∥
∥
∥

2

Rm
.

Analogously,

‖Y − U ℓBℓ‖2

F =

n∑

j=1

∥
∥
∥yj −

ℓ∑

k=1

〈yj , uk〉Rmuk

∥
∥
∥

2

Rm
.

Thus, (1.30) implies that

n∑

j=1

∥
∥
∥yj −

ℓ∑

k=1

〈yj , uk〉Rmuk

∥
∥
∥

2

Rm
≤

n∑

j=1

∥
∥
∥yj −

ℓ∑

k=1

〈yj , ûk〉Rm ûk

∥
∥
∥

2

Rm

for any other set {ûi}ℓi=1 of ℓ pairwise orthonormal vectors. Hence, the POD basis of rank ℓ can also be
determined by solving

(1.31) min
ũ1,...,ũℓ∈Rm

n∑

j=1

∥
∥
∥yj −

ℓ∑

i=1

〈yj , ũi〉Rm ũi

∥
∥
∥

2

Rm
s.t. 〈ũi, ũj〉Rm = δij , 1 ≤ i, j ≤ ℓ.

♦

Proof of Corollary 2.3. Note that (see Exercise 1.2))

‖Y − Û ℓCℓ‖2

F = ‖Ûd(Cd − Cℓ0)‖
2

F = ‖Cd − Cℓ0‖
2

F =
d∑

i=ℓ+1

n∑

j=1

∣
∣Cdij

∣
∣
2
,
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where Cℓ0 ∈ Rd×n results from C ∈ Rd×n by replacing the last d− ℓ rows by 0. Similarly,

(1.32)

‖Y − U ℓBℓ‖2

F = ‖Uk(Bd −Bℓ0)‖
2

F = ‖Bd −Bℓ0‖
2

F =
d∑

i=ℓ+1

n∑

j=1

∣
∣Bdij

∣
∣
2

=
d∑

i=ℓ+1

n∑

j=1

∣
∣〈yj , ui〉Rm

∣
∣
2

=
d∑

i=ℓ+1

n∑

j=1

〈
〈yj , ui〉Rmyj , ui

〉

Rm =
d∑

i=ℓ+1

〈Y Y Tui, ui〉Rm

=
d∑

i=ℓ+1

σ2
i ,

By Theorem 2.1 the vectors u1, . . . , uℓ solve (1.19). From (1.32),

‖Y ‖2
F = ‖ÛdCd‖2

F = ‖Cd‖2

F =
d∑

i=1

n∑

j=1

∣
∣Cdij

∣
∣
2

and

‖Y ‖2
F = ‖UdBd‖2

F = ‖Bd‖2

F =
d∑

i=1

n∑

j=1

∣
∣Bdij

∣
∣
2

=
d∑

i=1

σ2
i

we infer that

‖Y − U ℓBℓ‖2

F =

d∑

i=ℓ+1

σ2
i =

d∑

i=1

σ2
i −

ℓ∑

i=1

σ2
i = ‖Y ‖2

F −
ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ui〉Rm

∣
∣
2

≤ ‖Y ‖2
F −

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ûi〉Rm

∣
∣
2

=
d∑

i=1

n∑

j=1

∣
∣Cdij

∣
∣
2 −

ℓ∑

i=1

n∑

j=1

∣
∣Cdij

∣
∣
2

=

d∑

i=ℓ+1

n∑

j=1

∣
∣Cdij

∣
∣
2

= ‖Y − Û ℓCℓ‖2

F ,

which gives (1.30). �

Remark 2.5. It follows from Corollary 2.3 that the POD basis of rank ℓ is optimal in the sense of
representing in the mean the columns {yj}nj=1 of Y as a linear combination by an orthonormal basis of rank
ℓ:

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ui〉Rm

∣
∣
2

=
ℓ∑

i=1

σ2
i =

ℓ∑

i=1

λi ≥
ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ûi〉Rm

∣
∣
2

for any other set of orthonormal vectors {ûi}ℓi=1. ♦

The next corollary states that the POD coefficients are uncorrelated.

Corollary 2.6 (Uncorrelated POD coefficients). Let all hypotheses of Theorem 2.1 hold. Then.
n∑

j=1

〈yj , ui〉Rm〈yj , uk〉Rm =

n∑

j=1

BℓijB
ℓ
kj = σ2

i δik for 1 ≤ i, k ≤ ℓ.

Proof. The claim follows from (1.29) and 〈ui, uk〉Rm = δik for 1 ≤ i, k ≤ ℓ:
n∑

j=1

〈yj , ui〉Rm〈yj , uk〉Rm =

〈 n∑

j=1

〈yj , ui〉Rmyj

︸ ︷︷ ︸

=Y Y Tui

, uk

〉

Rm

= 〈σ2
i ui, uk〉Rm = σ2

i δik.
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�

Next we turn to the practical computation of a POD-basis of rank ℓ. If n < m then one can determine
the POD basis of rank ℓ as follows: Compute the eigenvectors v1, . . . , vℓ ∈ Rn by solving the symmetric
n× n eigenvalue problem

(1.33) Y TY vi = λivi for i = 1, . . . , ℓ

and set, by (1.14),

ui =
1√
λi
Y vi for i = 1, . . . , ℓ.

For historical reasons [38] this method of determing the POD-basis is sometimes called the method of
snapshots. On the other hand, if m < n holds, we can obtain the POD basis by solving the m×m eigenvalue
problem (1.29).

For the application of POD to concrete problems the choice of ℓ is certainly of central importance for
applying POD. It appears that no general a-priori rules are available. Rather the choice of ℓ is based on
heuristic considerations combined with observing the ratio of the modeled to the total energy contained in
the system Y , which is expressed by

E(ℓ) =

∑ℓ
i=1 λi

∑d
i=1 λi

.

Let us mention that POD is also called Principal Component Analysis (PCA) and Karhunen-Loève
Decomposition.

Let us endow the Euclidean space Rm with the weighted inner product

(1.34) 〈u, ũ〉W = uTWũ = 〈u,Wũ〉
Rm = 〈Wu, ũ〉

Rm for u, ũ ∈ R
m,

where W ∈ Rm×m is a symmetric, positive-definite matrix. Furthermore, let ‖u‖W =
√

〈u, u〉W for u ∈ Rm

be the associated induced norm. For the choice W = I, the inner product (1.34) coincides the Euclidean
inner product.

Example 2.7. Let us motivate the weighted inner product by an example. Suppose that Ω = (0, 1) ⊂ R

holds. We consider the space L2(Ω) of square integrable functions on Ω:

L2(Ω) =

{

ϕ : Ω → R

∣
∣
∣

∫

Ω

|ϕ|2 dx <∞
}

.

Recall that L2(Ω) is a Hilbert space endowed with the inner product

〈ϕ, ϕ̃〉L2(Ω) =

∫

Ω

ϕϕ̃dx for ϕ, ϕ̃ ∈ L2(Ω)

and the induced norm ‖ϕ‖L2(Ω) =
√
〈ϕ,ϕ〉L2(Ω) for ϕ ∈ L2(Ω). For the step size h = 1/(m − 1) let us

introduce a spatial grid in Ω by
xi = (i− 1)h for i = 1, . . . ,m.

For any ϕ, ϕ̃ ∈ L2(Ω) we introduce a discrete inner product by trapezoidal approximation:

(1.35) 〈ϕ, ϕ̃〉L2
h
(Ω) = h

(
ϕh1 ϕ̃

h
1

2
+
m−1∑

i=2

(
ϕhi ϕ̃

h
i

)
+
ϕhmϕ̃

h
m

2

)

,

where

ϕhi =







2

h

∫ h/2

0

ϕ(x) dx for i = 1,

1

h

∫ xi+h/2

xi−h/2

ϕ(x) dx for i = 2, . . . ,m− 1,

2

h

∫ 1

1−h/2

ϕ(x) dx for i = m
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and the ϕ̃hi ’s are defined analogously. Setting W = diag (h/2, h, . . . , h, h/2) ∈ Rm×m, ϕh = (ϕh1 , . . . , ϕ
h
m)T ∈

R
m and ϕ̃h = (ϕ̃h1 , . . . , ϕ̃

h
m)T ∈ R

m we find

〈ϕ, ϕ̃〉L2
h
(Ω) = 〈ϕh, ϕ̃h〉W = (ϕh)TWϕ̃h.

Thus, the discrete L2-inner product can be written as a weighted inner product of the form (1.34). ♦

Now we replace (P1) by

(P1
W ) max

u∈Rm

n∑

j=1

∣
∣〈yj , u〉W

∣
∣
2

s.t. ‖u‖W = 1.

Analogously to Section 1.1 we treat (P1
W ) as an equality constrained optimization problem. The Lagrangian

L : Rm × R → R for (P1
W ) is given by

L(u, λ) =

n∑

j=1

∣
∣〈yj , u〉W

∣
∣
2
+ λ
(
1 − ‖u‖2

W

)
for (u, λ) ∈ R

m × R.

Suppose that u ∈ Rm is a solution to (P1
W ). Then, a first-order necessary optimality condition is given by

∇L(u, λ)
!
= 0 in R

m × R.

We compute the gradient of L with respect to u: Since W is symmetric, we derive

∂L
∂ui

(u, λ) =
∂

∂ui

(
n∑

j=1

∣
∣
∣
∣

m∑

k=1

m∑

ν=1

Y TjνWνkuk

∣
∣
∣
∣

2

+ λ

(

1 −
m∑

k=1

m∑

ν=1

uνWνkuk

))

= 2

n∑

j=1

( m∑

k=1

m∑

ν=1

Y TjνWνkuk

)( m∑

µ=1

Y TjµWµi

)

− λ

( m∑

ν=1

uνWνi +

m∑

k=1

Wikuk

)

= 2

m∑

k=1

m∑

ν=1

m∑

µ=1

Wiµ

n∑

j=1

YµjY
T
jνWνkuk − 2λ

( m∑

k=1

Wikuk

)

= 2

(

WY Y TWu− λWu

)

i

.

Thus,

(1.36) ∇uL(u, λ) = 2
(
WY Y TWu− λWu

) !
= 0 in R

m.

Equation (1.36) yields the generalized eigenvalue problem

(1.37) (WY )(WY )Tu = λWu.

Since W is symmetric and positive definite, W possesses an eigenvalue decomposition of the form W =
QDQT , where D = diag (η1, . . . , ηm) contains the eigenvalues η1 ≥ . . . ≥ ηm > 0 of W and Q ∈ Rm×m is an
orthogonal matrix. We define

Wα = Qdiag (ηα1 , . . . , η
α
m)QT for α ∈ R.

Note that (Wα)−1 = W−α and Wα+β = WαW β for α, β ∈ R; see Exercise 1.3). Moreover, we have

〈u, ũ〉W = 〈W 1/2u,W 1/2ũ〉
Rm for u, ũ ∈ R

m

and ‖u‖W = ‖W 1/2u‖Rm for u ∈ Rm.
Setting ū = W 1/2u ∈ Rm and Ȳ = W 1/2Y ∈ Rm×n and multiplying (1.37) by W−1/2 from the left we

deduce the symmetric, m×m eigenvalue problem

(1.38a) Ȳ Ȳ T ū = λū in R
m.
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From ∂L
∂λ (u, λ)

!
= 0 in R we infer the constraint ‖u‖W = 1 that can be expressed as

(1.38b) ‖ū‖
Rm = 1.

Thus, the first-order optimality conditions (1.38) for (P1
W ) are — as for (P1) (compare (1.18)) — an

m × m eigenvalue problem, but the matrix Y as well as the vector u have to be weighted by the matrix
W 1/2.

It can be shown (see Exersice 1.4.1)) that

u1 = W−1/2ū1

solves (P1
W ), where ū1 is an eigenvector of Ȳ Ȳ T corresponding to the largest eigenvalue λ1 with ‖ū1‖Rm = 1.

Due to SVD the vector u1 can be also determined by solving the symmetric n× n eigenvalue problem

Ȳ T Ȳ v̄1 = λ1v̄1

where Ȳ T Ȳ = Y TWY , and setting

(1.39) u1 = W−1/2ū1 =
1√
λ1

W−1/2Ȳ v̄1 =
1√
λ1

Y v̄1.

As in Section 1.1 we can continue by looking at a second vector u ∈ Rm with 〈u, u1〉W = 0 that maximizes
∑n

j=1 |〈yj , u〉W |2. Let us generalize Theorem 2.1 as follows.

Theorem 2.8. Let Y ∈ Rm×n be a given matrix with rank d ≤ min{m,n}, W a symmetric, positive
definite matrix, Ȳ = W 1/2Y and ℓ ∈ {1, . . . , d}. Further, let Ȳ = ŪΣV̄ T be the singular value decomposition
of Ȳ , where Ū = [ū1, . . . , ūm] ∈ Rm×m, V̄ = [v̄1, . . . , v̄n] ∈ Rn×n are orthogonal matrices and the matrix Σ
has the form

ŪT Ȳ V̄ =

(
D 0
0 0

)

= Σ ∈ R
m×n.

Then the solution to

(Pℓ
W ) max

ũ1,...,ũℓ∈Rm

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ũi〉W

∣
∣
2

s.t. 〈ũi, ũj〉W = δij for 1 ≤ i, j ≤ ℓ

is given by the vectors ui = W−1/2ūi, i = 1, . . . , ℓ. Moreover,

(1.40) argmax (Pℓ
W ) =

ℓ∑

i=1

σ2
i =

ℓ∑

i=1

λi.

Proof. Using similar arguments as in the proof of Theorem 2.1 one can prove that {ui}ℓi=1 solves (Pℓ
W );

see Exersice 1.4). �

Remark 2.9. Due to SVD and Ȳ T Ȳ = Y TWY the POD basis {ui}ℓi=1 of rank ℓ can be determined by
the method of snapshots as follows: Solve the symmetric n× n eigenvalue problem

Y TWY v̄i = λiv̄i for i = 1, . . . , ℓ,

and set

ui = W−1/2ūi =
1√
λi
W−1/2

(
Ȳ v̄i

)
=

1√
λi
W−1/2W 1/2Y v̄i =

1√
λi
Y v̄i

for i = 1, . . . , ℓ. Notice that

〈ui, uj〉W = uTi Wuj =
δijλj
√
λiλj

for 1 ≤ i, j ≤ ℓ.

For m≫ n the method of snapshots turns out to be faster than computing the POD basis via (1.38). Notice
that the matrix W 1/2 is also not required for the method of snapshots. ♦
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2.2. POD for nonlinear dynamical systems. For T > 0 we consider the semi-linear initial value
problem

ẏ(t) = Ay(t) + f(t, y(t)) for t ∈ (0, T ],(1.41a)

y(0) = y0,(1.41b)

where y0 ∈ Rm is a chosen initial condition, A ∈ Rm×m is a given matrix, f : [0, T ]×Rm → Rm is continuous
in both arguments and locally Lipschitz-continuous with respect to the second argument. It is well known
that (1.41) has a unique (classical) solution y ∈ C1(0, T ; Rm) ∩ C([0, T ]; Rm) given by the implicit integral
representation

y(t) = etAy0 +

∫ t

0

e(t−s)Af(s, y(s)) ds

with etA =
∑∞
i=0 t

nAn/(n!). Let 0 ≤ t1 < t2 < . . . < tn ≤ T be a given time grid in the interval [0, T ]. For
simplicity of the presentation, the time grid is assumed to be equidistant with step-size ∆t = T/(n− 1), i.e.,
tj = (j−1)∆t. We suppose that we know the solution to (1.41) at the given time instances tj , j ∈ {1, . . . , n}.
Our goal is to determine a POD basis of rank ℓ ≤ n that desribes the ensemble

yj = y(tj) = etjAy0 +

∫ tj

0

e(tj−s)Af(s, y(s)) ds, j = 1, . . . , n,

as well as possible with respect to the weighted inner product:

(P̂n,ℓ
W ) min

ũ1,...,ũℓ∈Rm

n∑

j=1

αj

∥
∥
∥yj −

ℓ∑

i=1

〈yj , ũi〉W ũi
∥
∥
∥

2

W
s.t. 〈ũi, ũj〉W for 1 ≤ i, j ≤ ℓ,

where the αj ’s denote non-negative weights which will be specified later on. Note that for αj = 1 for

j = 1, . . . , n and W = I problem (P̂n,ℓ
W ) coincides with (1.31).

Example 2.10. Let us consider the following one-dimensional heat equation:

θt(t, x) = θxx(t, x) for all (t, x) ∈ Q = (0, T ) × Ω,(1.42a)

θx(t, 0) = θx(t, 1) = 0 for all t ∈ (0, T ),(1.42b)

θ(0, x) = θ0(x) for all x ∈ Ω = (0, 1) ⊆ R,(1.42c)

where θ0 ∈ C(Ω) is a given initial condition. To solve (1.42) numerically we apply a classical finite difference
approximation for the spatial variable x. In Example 2.7 we have introduced the spatial grid {xi}mi=1 in the
interval [0, 1]. Let us denote by yi : [0, T ] → R the numerical approximation for θ(· , xi) for i = 1, . . . ,m.
The second partial derivative θxx in (1.42a) and the boundary conditions (1.42b) are discretized by centered
difference quotients of second-order so that we obtain the following ordinary differential equations for the
time-dependent functions yi:

(1.43a)







ẏ1(t) =
−2y1(t) + 2y2(t)

h2
,

ẏi(t) =
yi−1(t) − 2yi(t) + yi+1(t)

h2
, i = 2, . . . ,m− 1,

ẏm(t) =
−2ym(t) + 2ym−1(t)

h2

for t ∈ (0, T ]. From (1.42c) we infer the initial condion

(1.43b) yi(0) = θ0(xi), i = 1, . . . ,m.
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Introducing the matrix

A =
1

h2










−2 2 0
1 −2 1

. . .
. . .

. . .

1 −2 1
0 2 −2










∈ R
m×m

and the vectors

y(t) =






y1(t)
...

ym(t)




 for t ∈ [0, T ], y0 =






θ0(x1)
...

θ0(xm)




 ∈ R

m

we can express (1.43) in the form

(1.44)
ẏ(t) = Ay(t) for t ∈ (0, T ],
y(0) = y0

Setting f ≡ 0 the linear initial-value problem coincides with (1.41). Note that now the vector y(t), t ∈ [0, T ],
represents a function in Ω evaluated at m grid points. Therefore, we should supply Rm by a weighted inner
product representing a discretized inner product in an appropriate function space. Here we choose the inner
product introduced in (1.35); see Example 2.7. Next we choose a time grid {tj}nj=1 in the interval [0, T ] and

define yj = y(tj) for j = 1, . . . , n. If we are interested in finding a POD basis of rank ℓ ≤ n that desribes

the ensemble {yj}nj=1 as well as possible, we end up with (P̂n,ℓ
W ). ♦

To solve (P̂n,ℓ
W ) we apply the techniques used in Sections 1.1 and 1.2, i.e., we use the Lagrangian

framework. Thus, we introduce the Lagrange functional

L : R
m × . . .× R

m

︸ ︷︷ ︸

ℓ−times

×R
ℓ×ℓ → R

by

L(u1, . . . , uℓ,Λ) =
n∑

j=1

αj

∥
∥
∥yj −

ℓ∑

i=1

〈yj , ui〉Wui
∥
∥
∥

2

W
+

ℓ∑

i=1

ℓ∑

j=1

Λij
(
1 − 〈ui, uj〉W

)

for u1, . . . , uℓ ∈ Rm and Λ ∈ Rℓ×ℓ with elements Λij , 1 ≤ i, j ≤ ℓ. It turns out that the solution to (P̂n,ℓ
W ) is

given by the first-order necessary optimality condions

(1.45a) ∇ui
L(u1, . . . , uℓ,Λ)

!
= 0 in R

m, 1 ≤ i ≤ ℓ,

and

(1.45b) 〈ui, uj〉W
!
= δij , 1 ≤ i, j ≤ ℓ.

From (1.45a) we derive

(1.46) Y DY TWui = λiui for i = 1, . . . , ℓ,

where D = diag (α1, . . . , αn) ∈ Rn×n. Inserting ui = W−1/2ūi in (1.46) and multiplying (1.46) by W 1/2

from the left yield

(1.47a) W 1/2Y DY TW 1/2ūi = λiūi.

From (1.45b) we find

(1.47b) 〈ūi, ūj〉Rm = ūTi ūj = uTi Wuj = 〈ui, uj〉W = δij , 1 ≤ i, j ≤ ℓ.

Setting Ȳ = W 1/2Y D1/2 ∈ R
m×n and using WT = W as well as DT = D we infer from (1.47) that the

solution {ui}ℓi=1 to (P̂n,ℓ
W ) is given by the symmetric m×m eigenvalue problem

Ȳ Ȳ T ūi = λiūi, 1 ≤ i ≤ ℓ and 〈ūi, ūj〉Rm = δij , 1 ≤ i, j ≤ ℓ.
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Note that

Ȳ T Ȳ = D1/2Y TWYD1/2 ∈ R
n×n.

Thus, the POD basis of rank ℓ can also be computed by the methods of snapshots as follows: First solve the
symmetric n× n eigenvalue problem

Ȳ T Ȳ v̄i = λiv̄i, 1 ≤ i ≤ ℓ and 〈v̄i, v̄j〉Rn = δij , 1 ≤ i, j ≤ ℓ.

Then we set (by SVD)

ui = W−1/2ūi =
1√
λi
W−1/2Ȳ v̄i =

1√
λi
Y D1/2v̄i, 1 ≤ i ≤ ℓ;

compare (1.39).
Note that

〈ui, uj〉W = uTi Wuj =
1

√
λiλj

v̄Ti D
1/2Y TWYD1/2

︸ ︷︷ ︸

=Ȳ T Ȳ

v̄j =
λi

√
λiλj

v̄Ti v̄j =
λiδij
√
λiλj

for 1 ≤ i, j ≤ ℓ, i.e., the POD basis vectors u1, . . . , uℓ are orthonormal in Rm with respect to the inner
product 〈· , ·〉W .

2.3. Continuous POD for nonlinear dynamical systems. Of course, the snapshot ensemble {yj}nj=1

for (P̂n,ℓ
W ) and therefore the snapshot set span {y1, . . . , yn} depend on the chosen time instances {tj}nj=1. Con-

sequently, the POD basis vectors {ui}ℓi=1 and the corresponding eigenvalues {λi}ℓi=1 depend also on the time
instances, i.e.,

ui = uni and λi = λni , 1 ≤ i ≤ ℓ.

Moreover, we have not discussed so far what is the motivation to introduce the non-negative weights {αj}nj=1

in (P̂n,ℓ
W ). For this reason we proceed by investigating the following two questions:

• How to choose good time instances for the snapshots?
• What are appropriate non-negative weights {αj}nj=1?

To address these two questions we will introduce a continuous version of POD. Let y : [0, T ] → Rm be
the unique solution to (1.41). If we are interested to find a POD basis of rank ℓ that describes the whole
trajectory {y(t) | t ∈ [0, T ]} ⊂ Rm as good as possible we have to consider the following minimization problem

(P̂ℓ
W )

min
ũ1,...,ũℓ∈Rm

∫ T

0

∥
∥
∥y(t) −

ℓ∑

i=1

〈y(t), ũi〉W ũi

∥
∥
∥

2

W
dt

s.t. 〈ũi, ũj〉W = δij , 1 ≤ i, j ≤ ℓ,

To solve (P̂ℓ
W ) we use similar arguments as in Sections 1.1 and 1.2. For ℓ = 1 we obtain instead of (P̂ℓ

W )
the minimization problem

(1.48) min
ũ∈Rm

∫ T

0

∥
∥
∥y(t) − 〈y(t), ũ〉W ũ

∥
∥
∥

2

W
dt s.t. ‖ũ‖2

W = 1,

Suppose that {ũi}mi=2 are chosen in such a way that {ũ, ũ2, . . . , ũm} is an orthonormal basis in Rm with
respect to the inner product 〈· , ·〉W . Then we have

y(t) = 〈y(t), ũ〉W ũ+

m∑

i=2

〈y(t), ũi〉W ũi for all t ∈ [0, T ].
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Thus,
∫ T

0

∥
∥
∥y(t) − 〈y(t), ũ〉W ũ

∥
∥
∥

2

W
dt =

∫ T

0

∥
∥
∥

m∑

i=2

〈y(t), ũ〉W ũi
∥
∥
∥

2

W
dt

=

m∑

i=2

∫ T

0

∣
∣〈y(t), ũi〉W

∣
∣
2
dt

we conclude that (1.48) is equivalent with the following maximization problem

(1.49) max
ũ∈Rm

∫ T

0

∣
∣〈y(t), ũ〉W

∣
∣
2
dt s.t. ‖ũ‖2

W = 1.

The Lagrange functional L : R
m × R → R associated with (1.49) is given by

L(u, λ) =

∫ T

0

∣
∣〈y(t), u〉W

∣
∣
2
dt+ λ

(
1 − ‖u‖2

W

)
for (u, λ) ∈ R

m × R.

First-order necessary optimality conditions are given by

∇L(u, λ)
!
= 0 in R

m × R.

Therefore, we compute the partial derivative of L with respect to the ith component ui of the vector u:

∂L
∂ui

(u, λ) =
∂

∂ui

(∫ T

0

∣
∣
∣

m∑

k=1

m∑

ν=1

yk(t)Wkνuν

∣
∣
∣

2

dt+ λ
(

1 −
m∑

k=1

m∑

ν=1

ukWkνuν

))

= 2

∫ T

0

( m∑

k=1

m∑

ν=1

yk(t)Wkνuν

) m∑

µ=1

yµ(t)Wµi dt− 2λ
m∑

k=1

Wikuk

= 2

(∫ T

0

〈y(t), u〉WWy(t) dt− λWu

)

i

for i ∈ {1, . . . ,m}. Thus,

∇uL(u, λ) = 2

(∫ T

0

〈y(t), u〉WWy(t) dt− λWu

)

!
= 0 in R

m,

which gives

(1.50)

∫ T

0

〈y(t), u〉WWy(t) dt = λWu in R
m.

Multiplying (1.50) by W−1 from the left yields

(1.51)

∫ T

0

〈y(t), u〉W y(t) dt = λu in R
m.

We define the operator R : Rm → Rm as

(1.52) Ru =

∫ T

0

〈y(t), u〉W y(t) dt for u ∈ R
m.

Lemma 2.11. The operator R is linear and bounded (i.e., continuous). Moreover,

1) R is non-negative:

〈Ru, u〉W ≥ 0 for all u ∈ R
m.

2) R is self-adjoint (or symmetric):

〈Ru, ũ〉W = 〈u,Rũ〉W for all u, ũ ∈ R
m.
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Proof. For arbitrary u, ũ ∈ Rm and α, α̃ ∈ R we have

R
(
αu+ α̃ũ

)
=

∫ T

0

〈y(t), αu + α̃ũ〉W y(t) dt

=

∫ T

0

(α 〈y(t), u〉W + α̃ 〈y(t), ũ〉W ) y(t) dt

= α

∫ T

0

〈y(t), u〉W y(t) dt+ α̃

∫ T

0

〈y(t), ũ〉W y(t) dt = αRu+ α̃Rũ,

so that R is linear. From the Cauchy-Schwarz inequality we derive

‖Ru‖W ≤
∫ T

0

∥
∥〈y(t), u〉W y(t)

∥
∥
W

dt =

∫ T

0

∣
∣〈y(t), u〉W

∣
∣ ‖y(t)‖W dt

≤
∫ T

0

‖y(t)‖2
W ‖u‖W dt =

(∫ T

0

‖y(t)‖2
W dt

)

‖u‖W = ‖y‖2
L2(0,T ;Rm)‖u‖W

for an arbitrary u ∈ Rm. Since y ∈ C([0, T ]; Rm) ⊂ L2(0, T ; Rm) holds, the norm ‖y‖L2(0,T ;Rm) is bounded.
Therefore, R is bounded. Since

〈Ru, u〉W =

(∫ T

0

〈y(t), u〉W y(t) dt

)T

Wu =

∫ T

0

〈y(t), u〉W y(t)TWu dt

=

∫ T

0

∣
∣〈y(t), u〉W

∣
∣
2
dt ≥ 0

for all u ∈ R
m holds, R is non-negative. Finally, we infer from

〈Ru, ũ〉W =

∫ T

0

〈y(t), u〉W 〈y(t), ũ〉W dt =

〈∫ T

0

〈y(t), ũ〉W y(t) dt, u

〉

W

= 〈Rũ, u〉W = 〈u,Rũ〉W
for all u, ũ ∈ Rm that R is self-adjoint. �

Utilizing the operator R we can write (1.51) as the eigenvalue problem

Ru = λu in R
m.

It follows from Lemma 2.11 that R possesses eigenvectors {ui}mi=1 and associated real eigenvalues {λi}mi=1

such that

(1.53) Rui = λiui for 1 ≤ i ≤ m and λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0.

Note that
∫ T

0

∣
∣〈y(t), ui〉W

∣
∣
2
dt =

∫ T

0

〈
〈y(t), ui〉W y(t), ui

〉

W
dt = 〈Rui, ui〉W = λi ‖ui‖2

W = λi

for i ∈ {1, . . . ,m} so that u1 solves (1.48).
Proceeding as in Sections 1.1 and 1.2 we obtain the following result.

Theorem 2.12. Let y ∈ C([0, T ]; Rm) be the unique solution to (1.41). Then the POD basis of rank

ℓ solving the minimization problem (P̂ℓ
W ) is given by the eigenvectors {ui}ℓi=1 of R corresponding to the ℓ

largest eigenvalues λ1 ≥ . . . ≥ λℓ.

Remark 2.13 (Methods of snapshots). Let us introduce the linear and bounded operator Y : L2(0, T ) →
Rm by

Yv =

∫ T

0

v(t)y(t) dt for v ∈ L2(0, T ).

The adjoint Y⋆ : Rm → L2(0, T ) satisfying

〈Y⋆u, v〉L2(0,T ) = 〈u,Yv〉W for all (u, v) ∈ R
m × L2(0, T )
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is given as

(Y⋆u)(t) = 〈u, y(t)〉W for u ∈ R
m and almost all t ∈ [0, T ].

Then we have

YY⋆u =

∫ T

0

〈u, y(t)〉W y(t) dt =

∫ T

0

〈y(t), u〉W y(t) dt = Ru

for all u ∈ R
m, i.e., R = YY∗ holds. Furthermore,

(Y⋆Yv)(t) =

〈∫ T

0

v(s)y(s) dt, y(t)

〉

W

=

∫ T

0

〈y(s), y(t)〉W v(s) ds =: (Kv)(t)

for all v ∈ L2(0, T ) and almost all t ∈ [0, T ]. Thus, K = Y⋆Y. It can be shown that the operator K is linear,
bounded, non-negartive and self-adjoint. Moreover, K is compact. Therefore, the POD basis can also be
computed as follows: Solve

(1.54) Kvi = λivi for 1 ≤ i ≤ ℓ, λ1 ≥ . . . ≥ λℓ > 0,

∫ T

0

vi(t)vj(t) dt = δij

and set

ui =
1√
λi

Yvi =
1√
λi

∫ T

0

vi(t)y(t) dt for i = 1, . . . , ℓ.

Note that (1.54) is a symmetric eigenvalue problem in the infinite-dimensional function space L2(0, T ). For
the functional analytic theory we refer, e.g., to [36]. ♦

Let us turn back to the optimality conditions (1.46). For any u ∈ Rm and i ∈ {1, . . . ,m} we derive

(
Y DY TWu

)

i
=

m∑

ν=1

m∑

j=1

m∑

k=1

αjYijYkjWkνuν =

n∑

j=1

αjYij 〈yj , u〉W

=

n∑

j=1

αj 〈yj , u〉W (yj)i,

where (yj)i stands for the ith component of the vector yj ∈ Rm. Thus,

Y DY TWu =

n∑

j=1

αj 〈yj , u〉W yj =: Rnu.

Note that the operator Rn : Rm → Rm is linear and bounded. Moreover,

〈Rnu, u〉W =

〈 n∑

j=1

αj 〈yj , u〉W yj , u
〉

W

=

n∑

j=1

αj
∣
∣〈yj , u〉W

∣
∣
2 ≥ 0

holds for all u ∈ Rm so that Rn is non-negative. Further,

〈Rnu, ũ〉W =

〈 n∑

j=1

αj 〈yj , u〉W yj, ũ
〉

W

=

n∑

j=1

αj 〈yj , u〉W 〈yj , ũ〉W

=

〈 n∑

j=1

αj 〈yj , ũ〉W yj, u
〉

W

= 〈Rnũ, u〉W = 〈u,Rnũ〉W

for all u, ũ ∈ Rm, i.e., Rn is self-adjoint. Therefore, Rn has the same properties as the operator R.
Summarizing, we have

Rnuni = λni u
n
i , λn1 ≥ . . . λnℓ ≥ . . . λnd(n) > λnd(n)+1 = . . . = λnm = 0,(1.55a)

Rui = λiui, λ1 ≥ . . . λℓ ≥ . . . λd > λd+1 = . . . = λm = 0.(1.55b)
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Let us note that

(1.56)

∫ T

0

‖y(t)‖2
W dt =

d∑

i=1

λi =
m∑

i=1

λi.

In fact,

Rui =

∫ T

0

〈y(t), ui〉W y(t) dt for every i ∈ {1, . . . ,m}.

Taking the inner product with ui, using (1.55b) and summing over i we arrive at

d∑

i=1

∫ T

0

∣
∣〈y(t), ui〉W

∣
∣
2
dt =

d∑

i=1

〈Rui, ui〉W =

d∑

i=1

λi =

m∑

i=1

λi.

Expanding y(t) ∈ Rm in terms of {ui}mi=1 we have

y(t) =

m∑

i=1

〈y(t), ui〉W ui

and hence
∫ T

0

‖y(t)‖2
W dt =

m∑

i=1

∫ T

0

∣
∣〈y(t), ui〉W

∣
∣
2
dt =

m∑

i=1

λi,

which is (1.56). Analogously, we obtain

(1.57)

n∑

j=1

αj ‖y(tj)‖2
W =

d(n)
∑

i=1

λni =

m∑

i=1

λni for every n ∈ N.

For convenience we do not indicate the dependence of αj on n. Let y ∈ C([0, T ]; Rm) hold. To ensure

(1.58)

n∑

j=1

αj ‖y(tj)‖2
W →

∫ T

0

‖y(t)‖2
W dt as ∆t → 0

we have to choose the αj ’s appropriately. Here we take the trapezoidal weights

(1.59) α1 =
∆t

2
, αj = ∆t for 2 ≤ j ≤ n− 1, αn =

∆t

2
.

Suppose that we have

(1.60) lim
n→∞

‖Rn −R‖L(Rm) = lim
n→∞

sup
‖u‖W =1

‖Rnu−Ru‖W = 0

provided y ∈ C1([0, T ]; Rm) is satisfied. In (1.60) L(Rm) denotes the Banach space of all linear and bounded
operators mapping from Rm into itself. Combining (1.58) with (1.56) and (1.57) we find

(1.61)

m∑

i=1

λni →
m∑

i=1

λi as n→ ∞.

Now choose and fix

(1.62) ℓ such that λℓ 6= λℓ+1.

Then by spectral analysis of compact operators ([19, pp. 212–214]) and (1.60) it follows that

(1.63) λni → λi for 1 ≤ i ≤ ℓ as n→ ∞.

Combining (1.61) and (1.63) there exists n̄ ∈ N such that

m∑

i=ℓ+1

λni ≤ 2

m∑

i=ℓ+1

λi for all n ≥ n̄,
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if
∑m

i=ℓ+1 λi 6= 0. Moreover, for ℓ as above, n̄ can also be chosen such that

(1.64)

d(n)
∑

i=ℓ+1

∣
∣〈y0, uni 〉W

∣
∣
2 ≤ 2

m∑

i=ℓ+1

∣
∣〈y0, ui〉W

∣
∣
2

for all n ≥ n̄,

provided that
∑m

i=ℓ+1 |〈y0, ui〉W |2 6= 0 (1.60) hold. Recall that the vector y0 ∈ Rm stands for the initial
condition in (1.41b). Then we have

(1.65) ‖y0‖2
W =

m∑

i=1

∣
∣〈y0, ui〉W

∣
∣
2
.

If t1 = 0 holds, we have y0 ∈ span {yj}nj=1 for every n and

(1.66) ‖y0‖2
W =

d(n)
∑

i=1

∣
∣〈y0, uni 〉W

∣
∣
2
.

Therefore, for ℓ < d(n) by (1.65) and (1.66)

d(n)
∑

i=ℓ+1

∣
∣〈y0, uni 〉W

∣
∣
2

=

d(n)
∑

i=1

∣
∣〈y0, uni 〉W

∣
∣
2 −

ℓ∑

i=1

∣
∣〈y0, uni 〉W

∣
∣
2
+

ℓ∑

i=1

∣
∣〈y0, ui〉W

∣
∣
2

+
m∑

i=ℓ+1

∣
∣〈y0, ui〉W

∣
∣
2 −

m∑

i=1

∣
∣〈y0, ui〉W

∣
∣
2

=

ℓ∑

i=1

(∣
∣〈y0, ui〉W

∣
∣
2 −

∣
∣〈y0, uni 〉W

∣
∣
2
)

+

m∑

i=ℓ+1

∣
∣〈y0, ui〉W

∣
∣
2
.

As a consequence of (1.60) and (1.62) we have limn→∞ ‖uni − ui‖W = 0 for i = 1, . . . , ℓ and hence (1.64)
follows.

Summarizing we have the following theorem.

Theorem 2.14. Assume that y ∈ C1([0, T ]; Rm) is the unique solution to (1.41). Let {(uni , λni )}mi=1 and
{(ui, λi)}mi=1 be the eigenvector-eigenvalue pairs given by (1.55). Suppose that ℓ ∈ {1, . . . ,m} is fixed such
that (1.62) and

m∑

i=ℓ+1

λi 6= 0,
m∑

i=ℓ+1

∣
∣〈y0, ui〉W

∣
∣
2 6= 0

hold. Then we have

(1.67) lim
n→∞

‖Rn −R‖L(Rm) = 0.

This implies

lim
n→∞

∣
∣λni − λi

∣
∣ = lim

n→∞
‖uni − ui‖W = 0 for 1 ≤ i ≤ ℓ,

lim
n→∞

m∑

i=ℓ+1

(
λni − λi

)
= 0 and lim

n→∞

m∑

i=ℓ+1

∣
∣〈y0, uni 〉W

∣
∣
2

=

m∑

i=ℓ+1

∣
∣〈y0, ui〉W

∣
∣
2
.

Proof. We only have to verify (1.67). For that purpose we choose an arbitrary u ∈ Rm with ‖u‖W = 1
and introduce fu : [0, T ] → Rm by

fu(t) = 〈y(t), u〉W y(t) for t ∈ [0, T ].

Then, we have fu ∈ C1([0, T ]; Rm) with

ḟu(t) = 〈ẏ(t), u〉W y(t) + 〈y(t), u〉W ẏ(t) for t ∈ [0, T ]
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By Taylor expansion there exist τj1(t), τj2(t) ∈ [tj , tj+1] depending on t
∫ tj+1

tj

fu(t) dt =
1

2

∫ tj+1

tj

fu(tj) + ḟu(τj1(t))(t− tj) dt

+
1

2

∫ tj+1

tj

fu(tj+1) + ḟu(τj2(t))(t− tj+1) dt

=
∆t

2
(fu(tj) + fu(tj+1)) +

1

2

∫ tj+1

tj

ḟu(τj1(t))(t − tj) dt

+
1

2

∫ tj+1

tj

ḟu(τj2(t))(t − tj+1) dt.

Hence,

∥
∥Rnu−Ru

∥
∥
W

=

∥
∥
∥
∥
∥

n∑

j=1

αjfu(tj) −
∫ T

0

fu(t) dt

∥
∥
∥
∥
∥
W

=

∥
∥
∥
∥
∥

n−1∑

j=1

(
∆t

2
(fu(tj) + fu(tj+1)) −

∫ tj+1

tj

fu(t) dt

)
∥
∥
∥
∥
∥
W

≤ 1

2

n−1∑

j=1

∫ tj+1

tj

∥
∥ḟu(τj1(t))

∥
∥
W

∣
∣t− tj

∣
∣+
∥
∥ḟu(τj2(t))

∥
∥
W

∣
∣t− tj+1

∣
∣dt

≤ 1

2
max
t∈[0,T ]

∥
∥ḟu(t)

∥
∥
W

n−1∑

j=1

(

(t− tj)
2

2
− (tj+1 − t)2

2

∣
∣
∣
∣

t=tj+1

t=tj

)

=
∆t

2
max
t∈[0,T ]

∥
∥ḟu(t)

∥
∥
W

n−1∑

j=1

∆t =
∆t T

2
max
t∈[0,T ]

∥
∥ḟu(t)

∥
∥
W

≤ ∆t T

2
max
t∈[0,T ]

∥
∥ḟu(t)

∥
∥
W

=
∆t T

2
max
t∈[0,T ]

∥
∥〈ẏ(t), u〉W y(t) + 〈y(t), u〉W ẏ(t)

∥
∥
W

= ∆t T max
t∈[0,T ]

‖ẏ(t)‖W ‖y(t)‖W ≤ ∆t T ‖y‖2
C1([0,T ];Rm).

Consequently,

‖Rn −R‖L(Rm) = sup
‖u‖W =1

‖Rnu−Ru‖W ≤ 2∆t ‖y‖2
C1([0,T ];Rm)

∆t→0−→ 0

which is (1.67). �

2.4. POD for parabolic problems. Let V and H be real separable Hilbert spaces and suppose that
V is dense in H with compact embedding. By 〈· , ·〉H we denote the inner product in H . The inner product
in V is given by a symmetric bounded, coercive, bilinear form a : V × V → R:

(1.68) 〈ϕ, ψ〉V = a(ϕ, ψ) for all ϕ, ψ ∈ V

with associated norm given by ‖ · ‖V =
√

a(· , ·). Since V is continuously injected into H , there exists a
constant cV > 0 such that

(1.69) ‖ϕ‖H ≤ cV ‖ϕ‖V for all ϕ ∈ V.

We associate with a the linear operator A:

〈Aϕ,ψ〉V ′,V = a(ϕ, ψ) for all ϕ, ψ ∈ V,
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where 〈· , ·〉V ′,V denotes the duality pairing between V and its dual. Then A is an isomorphism from V onto

V ′. Alternatively, A can be considered as a linear unbounded self-adjoint operator in H with domain

D(A) = {ϕ ∈ V : Aϕ ∈ H}.
By identifying H and its dual H ′ it follows that

D(A) →֒ V →֒ H = H ′ →֒ V ′,

each embedding being continuous and dense, when D(A) is endowed with the graph norm of A.
We introduce the continuous operator R : V → V ′, which maps D(A) into H and satisfies

‖Rϕ‖H ≤ cR ‖ϕ‖1−δ1
V ‖Aϕ‖δ1H for all ϕ ∈ D(A),

|〈Rϕ,ϕ〉V ′,V | ≤ cR ‖ϕ‖1+δ2
V ‖ϕ‖1−δ2

H for all ϕ ∈ V

for a constant cR > 0 and for δ1, δ2 ∈ [0, 1). We also assume that A+R is coercive on V , i.e., there exists a
constant η > 0 such that

a(ϕ,ϕ) + 〈Rϕ,ϕ〉V ′,V ≥ η ‖ϕ‖2
V for all ϕ ∈ V.

Moreover, let B : V × V → V ′ be a bilinear continuous operator mapping D(A) × D(A) into H such
that there exist constants cB > 0 and δ3, δ4, δ5 ∈ [0, 1) satisfying

〈B(ϕ, ψ), ψ〉V ′,V = 0,
∣
∣〈B(ϕ, ψ), φ〉V ′,V

∣
∣ ≤ cB ‖ϕ‖δ3H‖ϕ‖1−δ3

V ‖ψ‖V ‖φ‖
δ3
V ‖φ‖1−δ3

H ,

‖B(ϕ, χ)‖H + ‖B(χ, ϕ)‖H ≤ cB ‖ϕ‖V ‖χ‖
1−δ4
V ‖Aχ‖δ4H ,

‖B(ϕ, χ)‖H ≤ cB ‖ϕ‖δ5H‖ϕ‖1−δ5
V ‖χ‖1−δ5

V ‖Aχ‖δ5H ,
for all ϕ, ψ, φ ∈ V , for all χ ∈ D(A). To simplify the notation we set B(ϕ) = B(ϕ,ϕ) for ϕ ∈ V .

For given f ∈ L2(0, T ;H) and y0 ∈ V we consider the nonlinear evolution problem

(1.70a)
d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) +

〈
B(y(t)) +Ry(t), ϕ

〉

V ′,V
= 〈f(t), ϕ〉H

for all ϕ ∈ V and t ∈ (0, T ] a.e. and

(1.70b) y(0) = y0 in H.

It follows from Theorem 2.1 in [39, p. 111] that (1.70) has a unique solution satisfying

(1.71) y ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)) ∩H1(0, T ;H).

Next we discuss the POD method for (1.70). We denote by y the unique solution to (1.70) satisfying
(1.71). Moreover, we suppose that f ∈ C([0, T ];H). For given n ∈ N let

0 = t0 < t2 < . . . < tn ≤ T

denote a grid in the interval [0, T ] and set δtj = tj − tj−1, j = 1, . . . , n. Define

∆t = max (δt1, . . . , δtn) and δt = min (δt1, . . . , δtn).

Suppose that the snapshots y(tj) of (1.70) at the given time instances tj , j = 0, . . . , n, are known. We set

V = span {y(t0), . . . , y(tn)},
and refer to V as the ensemble consisting of the snapshots {y(tj)}nj=0, at least one of which is assumed to
be nonzero. Notice that V ⊂ V by construction. Throughout the remainder of this section we let X denote
either the space V or H .

Let {ψi}di=1 denote an orthonormal basis for V with d = dimV . Then each member of the ensemble can
be expressed as

(1.72) y(tj) =

d∑

i=1

〈y(tj), ψi〉Xψi for j = 0, . . . , n.
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The method of POD consists in choosing an orthonormal basis such that for every ℓ ∈ {1, . . . , d} the mean
square error between the elements y(tj), 0 ≤ j ≤ n, and the corresponding ℓ-th partial sum of (1.72) is
minimized on average:

(1.73)
min

{ψi}ℓ
i=1

n∑

j=0

αj

∥
∥
∥y(tj) −

ℓ∑

i=1

〈y(tj), ψi〉Xψi
∥
∥
∥

2

X

subject to 〈ψi, ψj〉X = δij for 1 ≤ i ≤ ℓ, 1 ≤ j ≤ i.

Here {αj}nj=0 are positive weights, which for our purposes are chosen to be

α0 =
δt1
2
, αj =

δtj + δtj+1

2
for j = 1, . . . , n− 1, and αn =

δtn
2
.

A solution {ψi}ℓi=1 to (1.73) is called POD basis of rank ℓ. The subspace spanned by the first ℓ POD basis
functions is denoted by V ℓ.

The solution of (1.73) is characterized by the necessary optimality condition. For that purpose we endow
Rn+1 with the weighted inner product

〈v, w〉
Rn+1 =

n∑

j=0

αjvjwj for v = (v0, . . . , vn)T, w = (w0, . . . , wn)
T ∈ R

n+1.

Let us introduce the bounded linear operator Yn : Rn+1 → X by

Ynv =

n∑

j=0

αjvjy(tj) for v ∈ R
n+1.

Then the adjoint Y∗
n : X → Rn+1 is given by

Y∗
nz = (〈z, y(t0)〉X , . . . , 〈z, y(tn)〉X)

T
for z ∈ X.

It follows that Rn = YnY∗
n ∈ L(X) and Kn = Y∗

nYn ∈ R(n+1)×(n+1) are given by

Rnz =

n∑

j=0

αj〈z, y(tj)〉Xy(tj) for z ∈ X and
(
Kn
)

ij
= 〈y(tj), y(ti)〉X ,

respectively. Here L(X) denotes the Banach space of all bounded linear operators on X .
Using a Lagrangian framework we derive the following optimality conditions for the optimization problem

(1.73):
Rnψ = λψ,

compare e.g. [12, 43]. Note that Rn is a bounded, self-adjoint and nonnegative operator. Moreover, since
the image of Rn has finite dimension, Rn is also compact. By Hilbert–Schmidt theory (see e.g. [36, p. 203])
there exist an orthonormal basis {ψi}i∈N for X and a sequence {λi}i∈N of nonnegative real numbers so that

Rnψi = λiψi, λ1 ≥ . . . ≥ λd > 0 and λi = 0 for i > d.

Moreover, V = span {ψi}di=1.
Note that {λi}i∈N as well as {ψi}i∈N depend on n. Contents permitting the notation of this dependence

is dropped.

Remark 2.15. Setting

vi =
1√
λi

Y∗
nψi for i = 1, . . . , d

we find Knvi = λivi and 〈vi, vj〉Rn+1 = δij for 1 ≤ i, j ≤ d. Thus, {vi}di=1 is an orthonormal basis of
eigenvectors of Kn for the image of Kn. Conversely, if {vi}di=1 is a given orthonormal basis for the image of
Kn, then it follows that the first d eigenfunctions of Rn can be determined by

ψi =
1√
λi

Ynvi for i = 1, . . . , d. ♦
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The sequence {ψi}ℓi=1 solves the optimization problem (1.73). This fact as well as the error formula
below were proved in [12, 43], for example.

Proposition 2.16. Let λ1 ≥ . . . ≥ λd > 0 denote the positive eigenvalues of Rn with the associated
eigenvectors ψ1, . . . , ψd ∈ X. Then, {ψni }ℓi=1 is a POD basis of rank ℓ ≤ d, and we have the error formula

(1.74)

n∑

j=0

αj

∥
∥
∥y(tj) −

ℓ∑

i=1

〈y(tj), ψi〉Xψi
∥
∥
∥

2

X
=

d∑

i=ℓ+1

λi.

The eigenvalues {λi}i∈N depend on the time instances {tj}nj=0. Next we investigate
∑d

i=ℓ+1 λi as ∆t

tends to zero, i.e., n→ ∞. Let us define the bounded linear operator Y : L2(0, T ; R) → X by

Yϕ =

∫ T

0

ϕ(t)y(t) dt for ϕ ∈ L2(0, T ; R).

The adjoint Y∗ : X → L2(0, T ; R) is given by
(
Y∗z

)
(t) = 〈z, y(t)〉X for z ∈ X.

For R = YY∗ ∈ L(X) we find

Rz =

∫ T

0

〈z , y(t)〉Xy(t) dt for z ∈ X.

Notice that Rnϕ is the trapezoidal approximation for the integral Rϕ. If yt ∈ L2(0, T ;X) then we obtain

(1.75) lim
∆t→∞

‖Rn −R‖L(X) = 0.

Let us mention that as far as the following analysis is concerned any other choice of positive weights αj is
possible provided that (1.75) hold.

We proceed to investigate the relationship between Rn and R. Notice that R is self-adjoint and
nonnegative. Since y ∈ C([0, T ];V ), the Kolmogorov compactness criterion in L2(0, T ; R) implies that
Y∗ : X → L2(0, T ;X) is compact. Boundedness of Y implies that R is a compact operator as well. From
the Hilbert–Schmidt theorem it follows that there exists a complete orthonormal basis {ψ∞

i }i∈N for X and
a sequence {λ∞i }i∈N of nonnegative real numbers so that

Rψ∞
i = λ∞i ψ

∞
i , λ∞1 ≥ λ∞2 ≥ . . . , and λ∞i → 0 as i→ ∞.

Remark 2.17. Analogous to Remark 2.15 we set

v∞i =
1

√
λ∞i

Y∗ψ∞
i =

1
√
λ∞i

〈ψ∞
i , y(t)〉X dt for i ∈ {j ∈ N : λ∞j > 0}.

Let K = Y∗Y ∈ L(L2(0, T ; R)) be given by

Kϕ =

∫ T

0

〈y(s), y(t)〉Xϕ(s) ds for ϕ ∈ L2(0, T ; R).

It follows that
(
Kv∞i

)
(t) = λ∞i v

∞
i (t)

and consequently, the v∞i ’s are the eigenfunctions of K for i ∈ N with λ∞i > 0. ♦

Henceforth we denote by {λni }
d(n)
i=1 the positive eigenvalues of Rn with associated eigenfunctions {ψni }

d(n)
i=1 .

Similarly {λ∞i }i∈N denote the positive eigenvalues of R with associated eigenfunctions {ψ∞
i }i∈N. In each

case the eigenvalues are considered according to their multiplicity. Now choose and fix

(1.76) ℓ such that λ∞ℓ 6= λ∞ℓ+1.
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It follows from spectral analysis of compact operators ([19, pp. 212–214]) and from [22] that there exists
∆t > 0 such that

(1.77)

∞∑

i=ℓ+1

λni ≤ 2

∞∑

i=ℓ+1

λ∞i for all ∆t ≤ ∆t,

if
∑∞

i=ℓ+1 λ
∞
i 6= 0. Moreover, for ℓ as above, ∆t can also be chosen such that

(1.78)

d(n)
∑

i=ℓ+1

∣
∣〈ψni , y0〉X

∣
∣
2 ≤ 2

∞∑

i=ℓ+1

∣
∣〈ψ∞

i , y0〉X
∣
∣
2

for all ∆ ≤ ∆t,

provided that
∑∞

i=ℓ+1 |〈y0, ψ∞
i 〉X |2 6= 0. As a consequence of (1.75) and (1.76) we have lim∆t→0 ψ

n
i = ψ∞

i

for i = 1, . . . , ℓ and hence (1.78) follows.

2.5. POD for parameter-dependent elliptic systems. As in the previous let V and H be real
separable Hilbert spaces and suppose that V is dense in H with compact embedding. By 〈· , ·〉H and 〈· , ·〉V
we denote the inner products in H and V , respectively. Since V is continuously injected into H , there exists
a constant cV > 0 satisfying (1.69).

For µa, µb ∈ R with µa < µb we introduce the interval I = [µa, µb] containing the admissible values for
the parameters. Then we define the parametrized bilinear form a : V × V × I → R as

a(ϕ, φ;µ) = 〈ϕ, φ〉V + µ 〈ϕ, φ〉H for ϕ, φ ∈ V and µ ∈ I.
For any µ ∈ I we obtain

|a(ϕ, φ;µ)| ≤
(
1 + c2V max{|µa|, |µb|}

)
‖ϕ‖V ‖φ‖V for all ϕ, φ ∈ V,

i.e., the bilinear form a(· , · ;µ) is continuous on V × V for any µ ∈ I. Since

a(ϕ,ϕ;µ) = ‖ϕ‖2
V + µ ‖ϕ‖2

H for all ϕ ∈ V and µ ∈ I,
it follows that a(· , · ;µ) is coercive on V × V for every µ ∈ I provided

(1.79) ηa = 1 + 2c2V min{0, µa} > 0.

Let f ∈ V ′ be given. For given parameter µ ∈ I we consider the following variational problem: Find
u = u(µ) ∈ V such that

(1.80) a(u, ϕ;µ) = 〈f, ϕ〉V ′,V for all ϕ ∈ V,

where 〈· , ·〉V ′,V stands for the duality pairing of V and its dual space V ′.
If (1.79) holds, it follows from the Lax-Milgram lemma [5] that for every µ ∈ I there exists a unique

solution u = u(µ) ∈ V to (1.80).
Together with (1.80) we will consider a discretized variational problem, where we apply POD for the

discretization of V . We follow the arguments for time-dependent systems. Henceforth, we denote by u =
u(µ) ∈ V the associated solution to (1.80) for chosen parameter µ ∈ I. We define the bounded linear
operator Y : L2(I) → V by

Yϕ =

∫

I

ϕ(µ)u(µ) dµ for ϕ ∈ L2(I).

Its Hilbert space adjoint Y∗ : V → L2(I) is given by
(
Y∗z

)
(µ) = 〈z, u(µ)〉V for z ∈ V and µ ∈ I.

Furthermore, we find that the bounded, linear, symmetric and non-negative operator R = YY∗ : V → V
has the form

(1.81) Rz =

∫

I

〈z, u(µ)〉V u(µ) dµ for z ∈ V.
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The operator K = Y∗Y : L2(I) → L2(I) is given by

(1.82)
(
Kϕ
)
(µ̄) =

∫

I

〈u(µ), u(µ̄)〉V ϕ(µ) dµ for ϕ ∈ L2(I).

It follows that K = Y∗Y is compact and, therefore, R = YY∗ is compact as well. From the Hilbert-Schmidt
theorem it follows that there exists a complete orthonormal basis {ψi}i∈N for V and a sequence {λi}i∈N of
non-negative real numbers so that

Rψi = λiψi, λ1 ≥ λ2 ≥ . . . , and λi → 0 as i→ ∞.

Remark 2.18. Analogous to the theory of singular value decomposition for matrices, we find that the
bounded, linear, symmetric and non-negative operator K (see (1.82) has the same eigenvalues {λi}i∈N as the
operator R and the eigenfunctions

vi(t) =
1√
λi

(
C∗ψi

)
(µ) =

1√
λi

〈ψi, u(µ)〉V

for i ∈ {j ∈ N : λj > 0} and almost all µ ∈ D. ♦

For given ℓ ∈ N we introduce the mapping

J : V × . . .× V
︸ ︷︷ ︸

ℓ−times

→ R

by

(1.83) J(ψ1, . . . , ψℓ) =

∫

I

∥
∥
∥u(µ) −

ℓ∑

i=1

〈u(µ), ψi〉V ψi
∥
∥
∥

2

V
dµ.

In the following proposition [12, Section 3.3] we formulate properties of the eigenvalues and eigenfunctions
of R.

Proposition 2.19. Let {λi}i∈N and {ψi}i∈N denote the eigenvalues and eigenfunctions, respectively, of
R introduced in (1.81). Then, for every ℓ ∈ N the first ℓ eigenfunctions ψ1, . . . , ψℓ ∈ V solve the minimization
problem

(1.84) min J(ψ̃1, . . . , ψ̃ℓ) s.t. 〈ψ̃j , ψ̃i〉V = δij for 1 ≤ i, j ≤ ℓ,

where J is defined in (1.83). Moreover,

J(ψ1, . . . , ψℓ) =

∞∑

i=ℓ+1

λi for any ℓ ∈ N.

In applications the weak solution to (1.80) is not known for all parameters µ ∈ I, but only for a given
grid in I. For that purpose let

(1.85) µa = µ1 < µ2 < . . . < µn = µb

be a grid in I and let ui = u(µi), 1 ≤ i ≤ n, denote the corresponding solutions to (1.79) for the grid points
µi. We define the snapshot set Vn = span {u1, . . . , un} ⊂ V and determine a POD basis of rank ℓ ≤ n for
Vn by solving

(1.86) min

n∑

j=1

αj

∥
∥
∥
∥
uj −

ℓ∑

i=1

〈uj , ψi〉V ψi
∥
∥
∥
∥

2

V

s.t. 〈ψi, ψj〉V = δij , 1 ≤ i, j ≤ ℓ

where the αj ’s are non-negative weights. The solution to (1.86) is given by the solution to the eigenvalue
problem

Rnψni = λni ψ
n
i , i = 1, . . . , ℓ,



3. BALANCED TRUNCATION AND POD METHOD 37

with

Rnψ =

n∑

j=1

αj 〈uj , ψ〉V uj for ψ ∈ V.

In contrast to R introduced in (1.81) the operator Rn and therefore its eigenvalues and eigenfunctions
depend on the grid {µj}nj=1. Furthermore, the image space of Rn has finite dimension dn ≤ n, whereas, in
general, the image space of the operator R is infinite-dimensional. Since Rn is a linear, bounded, compact,
non-negative, self-adjoint operator, there exist eigenvalues {λni }d

n

i=1 and orthonormal eigenfunctions {ψni }ℓi=1

with λ1 ≥ λ2 ≥ . . . ≥ λdn > 0 and

n∑

j=1

αj

∥
∥
∥
∥
uj −

ℓ∑

i=1

〈uj , ψi〉V ψi
∥
∥
∥
∥

2

V

=
dn

∑

i=ℓ+1

λni .

Remark 2.20 (Snapshot POD [38]). Let us supply R
n with the weighted inner product

〈v, w〉
Rn =

n∑

i=1

αiviwi for v = (v1, . . . , vn)
T , w = (w1, . . . , wn)

T ∈ R
n.

If the αi’s are trapezoidal weights corresponding to the parameter grid {µi}ni=1 then the inner product 〈· , ·〉Rn

is a discrete version of the inner product in L2(I). We define the symmetric non-negative matrix Kn ∈ Rn×n

with the elements 〈ui, uj〉V , 1 ≤ i, j ≤ n, and consider the eigenvalue problem

(1.87) Knvni = λni v
n
i , 1 ≤ i ≤ ℓ and 〈vni , vnj 〉Rn

= δij , 1 ≤ i, j ≤ ℓ ≤ dn

From singular value decomposition it follows that Kn has the same eigenvalues {λni }d
n

i=1 as the operator Rn;
compare Remark 2.18 and [22]. Furthermore, the POD basis functions are given by the formula

ψi =
1

√
λni

n∑

j=1

αj(v
n
i )juj for i = 1, . . . , ℓ,

where (vni )j denotes the jth-component of the eigenvector vni ∈ Rn. ♦

3. Balanced truncation and POD method

In Section 1.4 the controllability Gramian Lc and the observability Gramian Lo have been introduced.
Both Gramians can be computed by solving the Lyapunov equations (1.8) and (1.7), respectively. In another
approach, see [26, 32], Lc and Lo can be derived from numerical simulations. This gives the possibility to
extend the balanced truncation method to nonlinear systems. In this context, Lc and Lo are called empirical
Gramians.

Let us consider the linear, time-invariant system (1.1) with mu inputs. We write B = (b1| . . . |bmu
) ∈

Rmx×mu with bi ∈ Rmx for 1 ≤ i ≤ mx. Then, its solution/response xi(t) ∈ Rmx to unit impulses
ui(t) = δ(t)ei, where ei ∈ Rmx denotes the i-th canonical unit vector and

∫ T

0

δ(s)f(s) ds = f(0) for any continuous f : [0, T ] → R,

satisfies

xi(t) = etAx0 +

∫ T

0

e(t−s)ABui(t) ds = etAx0 +

∫ T

0

δ(s)e(t−s)ABei ds

= etAx0 +

∫ T

0

δ(s)e(t−s)Abi ds = etAx0 + etAbi.
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In particular, for x0 = 0 we find xi(t) = etAbi for 1 ≤ i ≤ mu. From Lemma 1.15 we have

Lc =

∫ ∞

0

etABBT etA
T

dt =

∫ ∞

0

etA
(
b1| . . . |bmu

)(
b1| . . . |bmu

)T
etA

T

dt

=

∫ ∞

0

(
etAb1| . . . |etAbmu

)(
etAb1| . . . |etAbmu

)T
dt

=

∫ ∞

0

(
x1(t)| . . . |xmu(t)

)(
x1(t)| . . . |xmu(t)

)T
dt

=

∫ ∞

0

x1(t)
(
x1(t)

)T
+ . . .+ xmu(t)

(
xmu(t)

)T
dt.

Hence, the controllability matrix can also be computed from mu the simulations xi(t) with the inputs
ui(t) = δ(t)ei, 1 ≤ i ≤ mu.

Let us introduce the snapshot set

V =

mu⋃

i=1

span
{
xi(t) | t ∈ [0,∞)

}
⊂ R

mx .

We consider the following problem

(1.1)







min
ψ1,...,ψℓ

∫ ∞

0

mu∑

j=1

∥
∥
∥xj(t) −

ℓ∑

i=1

〈xj(t), ψi〉Rmx ψi

∥
∥
∥

2

Rmx

dt

s.t. 〈ψi, ψj〉Rmx
= δij for 1 ≤ i, j ≤ ℓ

The first-order necessary optimality conditions for (1.1) are given by the symmetric eigenvalue problem

R̃ψi = λiψi for 1 ≤ i ≤ ℓ

with R̃ = Lc. Hence, the POD eigenvectors for the snapshot set V of the impulse responses are the
eigenvectors of the controllability Gramian corresponding to the largest eigenvalues. Therefore, ψ1, . . . , ψℓ
are the most controllable modes of the realization.

Utilizing the dual equations an analogous approach can be used for the computation of the observability
Gramian [37].



CHAPTER 2

Reduced-Order Modelling with POD

If the POD basis is computed, it can be used to derive a so-called low-dimensional approximation or a
reduced-order model (ROM). This is the focus of this chapter, which is organized as follows: In Section 1 we
consider a ROM for dynamical systems in Rm and derive error estimates in Section 2. A ROM for parabolic
problems (see previous chapter in Section 2.4) are studied in Section 3. Error estimates are presented from
the works [21, 22, 23]. A ROM for elliptic problems is investigated in Section 4. For the error analysis
estimates are presented from [15].

1. ROM for dynamical systems

Suppose that we have determined a POD basis {uj}ℓj=1 of rank ℓ ∈ {1, . . . ,m} in Rm. Then we make
the ansatz

(2.1) yℓ(t) =

ℓ∑

j=1

〈yℓ(t), uj〉W
︸ ︷︷ ︸

=:yℓ
j
(t)

uj for all t ∈ [0, T ],

where the Fourier coefficients yℓj , 1 ≤ j ≤ ℓ, are functions mapping [0, T ] into R. Since

y(t) =

m∑

j=1

〈y(t), uj〉W uj for all t ∈ [0, T ]

holds, yℓ(t) is an approximation for y(t) provided ℓ < m. Inserting (2.1) into (1.41) yields

ℓ∑

j=1

ẏℓj(t)uj =

ℓ∑

j=1

yℓj(t)Auj + f(t, yℓ(t)), t ∈ (0, T ],(2.2a)

ℓ∑

j=1

yℓj(0)uj = y0(2.2b)

Note that (2.2) is an initial-value problem in Rm for ℓ ≤ m coefficient functions yℓj(t), 1 ≤ j ≤ ℓ and
t ∈ [0, T ], so that the coefficients are overdetermined. Therefore, we assume that (2.2) holds after projection
on the ℓ dimensional subspace V ℓ = span {uj}ℓj=1. From (2.2a) and 〈uj , ui〉W = δij we infer that

(2.3) ẏℓi(t) =
ℓ∑

j=1

yℓj(t) 〈Auj , ui〉W + 〈f(t, yℓ(t)), ui〉W

for 1 ≤ i ≤ ℓ and t ∈ (0, T ]. Let us introduce the matrix

A = ((aij
))

∈ R
ℓ×ℓ with aij = 〈Auj , ui〉W ,

the vector-valued mapping

yℓ =






yℓ1
...
yℓℓ




 : [0, T ] → R

ℓ

39
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and the non-linearity F = (F1, . . . ,Fℓ)
T : [0, T ]× Rℓ → Rℓ by

Fi(t, y) =

〈

f

(

t,

ℓ∑

j=1

yjuj

)

, ui

〉

W

for t ∈ [0, T ] and y = (y1, . . . , yℓ) ∈ R
ℓ.

Then, (2.3) can be expressed as

(2.4a) ẏℓ(t) = Ayℓ(t) + F(t, yℓ(t)) for t ∈ (0, T ]

From (2.2b) we derive

(2.4b) yℓ(0) = y0,

where

y0 =






〈y0, u1〉W
...

〈y0, uℓ〉W




 ∈ R

ℓ

holds. System (2.4) is called the POD-Galerkin projection for (1.41). In case of ℓ ≪ m the ℓ-dimensional
system (2.4) is a low-dimensional approximation for (1.41). Therefore, (2.4) is a reduced-order model for
(1.41).

2. Error estimation

In this section we focus on error analysis for POD Galerkin approximations. For a more detailed
presentation we refer the reader to [21, 22, 23] and [15].

Let us suppose that y ∈ C([0, T ]; Rm) ∩ C1(0, T ; Rm) is the unique solution to (1.41) and {ui}ℓi=1 the
POD basis of rank ℓ solving

(2.5) min

∫ T

0

∥
∥
∥y(t) −

ℓ∑

i=1

〈y(t), ui〉W ui

∥
∥
∥

2

W
dt s.t. 〈uj , ui〉W = δij , 1 ≤ i, j ≤ ℓ.

The reduced-order model for (1.41) is given by (2.4). We are interested in estimating the error
∫ T

0

‖y(t) − yℓ(t)‖2

W dt.

Let us introduce the finite-dimensional space

V ℓ = span {u1, . . . , uℓ} ⊂ R
m

and the projection Pℓ : Rm → V ℓ by

Pℓu =

ℓ∑

i=1

〈u, ui〉W ui for u ∈ R
m.

Then,

Pℓ
(
αu+ α̃ũ

)
=

ℓ∑

i=1

〈αu+ α̃ũ, ui〉W ui =
ℓ∑

i=1

(

α 〈u, ui〉W + α̃ 〈ũ, ui〉W
)

ui

= αPℓu+ α̃Pℓũ
for all α, α̃ ∈ R and u, ũ ∈ Rm so that Pℓ is linear. Further,

(2.6)

‖Pℓ‖2

L(Rm) = sup
‖u‖

W
=1

‖Pℓu‖2

W = sup
‖u‖

W
=1

ℓ∑

i=1

∣
∣〈u, ui〉W

∣
∣
2

≤ sup
‖u‖

W
=1

m∑

i=1

∣
∣〈u, ui〉W

∣
∣
2

= sup
‖u‖

W
=1

‖u‖2
W = 1,
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i.e., Pℓ is bounded and therefore continuous. In particular, (2.6) and ‖Pℓu‖W = ‖u‖W for any u ∈ V ℓ imply
‖Pℓ‖L(Rm) = 1.

Throughout we shall use the decomposition

(2.7) y(t) − yℓ(t) = y(t) − Pℓy(t) + Pℓy(t) − yℓ(t) = ̺ℓ(t) + ϑℓ(t),

where ̺ℓ(t) = y(t) − Pℓy(t) and ϑℓ(t) = Pℓy(t) − yℓ(t). Note that

∫ T

0

∥
∥
∥y(t) −

ℓ∑

i=1

〈y(t), ui〉W ui

∥
∥
∥

2

W
dt =

∫ T

0

‖y(t) − Pℓy(t)‖2

W dt =

∫ T

0

‖̺ℓ(t)‖2

W dt.

Since {ui}ℓi=1 is a POD basis of rank ℓ we have

(2.8)

∫ T

0

‖̺ℓ(t)‖2

W dt =

m∑

i=ℓ+1

λi.

Next we estimate the term ϑℓ(t). Utilizing (1.41a) and (2.4) we obtain for every uℓ ∈ V ℓ and t ∈ (0, T ]

(2.9)

〈ϑ̇ℓ(t), uℓ〉W = 〈Pℓẏ(t) − ẏ(t), uℓ〉W + 〈ẏ(t) − ẏℓ(t), uℓ〉W
= 〈Pℓẏ(t) − ẏ(t), uℓ〉W

+〈A(y(t) − yℓ(t)) + f(t, y(t)) − f(t, yℓ(t)), uℓ〉W

We choose uℓ = ϑℓ(t) ∈ V ℓ. Let

‖A‖ = max
‖u‖

W
=1

‖Au‖W

the matrix norm induced by the vector norm ‖ · ‖W . Further,

1

2

d

dt
‖ϑℓ(t)‖2

W = 〈ϑ̇ℓ(t), ϑℓ(t)〉W for every t ∈ (0, T ].

holds. Then, we infer from (2.9)

(2.10)

1

2

d

dt
‖ϑℓ(t)‖2

W ≤ ‖A‖
(
‖̺ℓ(t)‖W + ‖ϑℓ(t)‖W

)
‖ϑℓ(t)‖W

+‖f(t, y(t)) − f(t, yℓ(t))‖W ‖ϑℓ(t)‖W
+‖Pℓẏ(t) − ẏ(t)‖W ‖ϑℓ(t)‖W .

Suppose that f is Lipschitz-continuous with respect to the second argument, i.e., there exists a constant
Lf ≥ 0 satisfying

‖f(t, u)− f(t, ũ)‖W ≤ Lf ‖u− ũ‖W for all u, ũ ∈ R
m and t ∈ [0, T ].

Moreover, we have

‖Pℓẏ(t) − ẏ(t)‖2

W =

∥
∥
∥
∥

m∑

i=ℓ+1

〈ẏ(t), ui〉W ui

∥
∥
∥
∥

2

W

=

m∑

i=ℓ+1

∣
∣〈ẏ(t), ui〉W

∣
∣
2
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for all t ∈ (0, T ). Consequently, (2.10) and (2.7) imply

1

2

d

dt
‖ϑℓ(t)‖2

W ≤ ‖A‖
2

(

‖̺ℓ(t)‖2

W + ‖ϑℓ(t)‖2

W

)

+ ‖A‖ ‖ϑℓ(t)‖2

W

+ Lf ‖̺ℓ(t) + ϑℓ(t)‖W ‖ϑℓ(t)‖W
+

1

2

(

‖Pℓẏ(t) − ẏ(t)‖2

W + ‖ϑℓ(t)‖2

W

)

≤ ‖A‖
2

‖̺ℓ(t)‖2

W +

(
1

2
‖A‖ +

1

2
+ Lf

)

‖ϑℓ(t)‖2

W

+ Lf ‖̺ℓ(t)‖W ‖ϑℓ(t)‖W +

m∑

i=ℓ+1

∣
∣〈ẏ(t), ui〉W

∣
∣
2

≤ ‖A‖ + Lf
2

‖̺ℓ(t)‖2

W +

(
3

2

(
‖A‖ + Lf

)
+

1

2

)

‖ϑℓ(t)‖2

W

+

m∑

i=ℓ+1

∣
∣〈ẏ(t), ui〉W

∣
∣
2
.

Consequently,

d

dt
‖ϑℓ(t)‖2

W ≤
(

3
(
‖A‖ + Lf

)
+ 1
)

‖ϑℓ(t)‖2

W +
(
‖A‖ + Lf

)
‖̺ℓ(t)‖2

W

+

m∑

i=ℓ+1

∣
∣〈ẏ(t), ui〉W

∣
∣
2
.

Using Gronwall’s lemma (see Exercise 2.1)) and (2.8) we arrive at

(2.11)

‖ϑℓ(t)‖2

W ≤ c1

(

‖ϑℓ(0)‖2

W +
(
‖A‖ + Lf

)
∫ t

0

‖̺ℓ(s)‖2

W ds

)

+c1

m∑

i=ℓ+1

∫ t

0

∣
∣〈ẏ(s), ui〉W

∣
∣
2
ds

≤ c2

(

‖ϑℓ(0)‖2

W +
m∑

i=ℓ+1

(

λi +

∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt
))

where c1 = exp(3(‖A‖ + Lf) + 1)T ) and c2 = c1 max{‖A‖ + Lf , 1}.
Theorem 2.1. Let y ∈ C([0, T ]; Rm) ∩ C1(0, T ; Rm) be the unique solution to (1.41), ℓ ∈ {1, . . . ,m} be

fixed and {ui}ℓi=1 a POD basis of rank ℓ solving (2.5). Let yℓ be the unique solution to the reduced-order
model (2.4). Then

∫ T

0

‖y(t) − yℓ(t)‖2

W dt ≤ C

m∑

i=ℓ+1

(

λi +

∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt

)

for a constant C > 0.

Proof. From (2.8), (2.11) and ϑℓ(0) = Pℓy0 − yℓ(0) = 0 we find
∫ T

0

‖y(t) − yℓ(t)‖2

W dt =

∫ T

0

‖̺ℓ(t) + ϑℓ(t)‖2

W dt

≤ 2

∫ T

0

‖̺ℓ(t)‖2

W + ‖ϑℓ(t)‖2

W dt

≤ 2

m∑

i=ℓ+1

λi + c3

m∑

i=ℓ+1

(

λi +

∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt

)
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with c3 = 2c2. Setting C = 2 + c3 the claim follows directly. �

Remark 2.2. The term
m∑

i=ℓ+1

∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt

can not be estimated by the sum over the eigenvalues λℓ+1, . . . , λm. If we replace (2.5) by

(2.12a) min

∫ T

0

∥
∥
∥y(t) −

ℓ∑

i=1

〈y(t), ui〉W ui

∥
∥
∥

2

W
+
∥
∥
∥ẏ(t) −

ℓ∑

i=1

〈ẏ(t), ui〉W ui

∥
∥
∥

2

W
dt

subject to

(2.12b) 〈uj , ui〉W = δij for 1 ≤ i, j ≤ ℓ,

we end up with the estimate
∫ T

0

‖y(t) − yℓ(t)‖2

W dt ≤ C̃

m∑

i=ℓ+1

λ̃i

for a constant C̃ > 0. In this case the time derivatives are also included in the snapshot ensemble. Of course,
the operator R defined in (1.52) has to be replaced. It turns out that the POD basis {ui}ℓi=1 is given by the
eigenvalue problem

R̃ũi = λ̃iũi for 1 ≤ i ≤ m and λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃m ≥ 0

where the operator R̃ : R
m → R

m is defined by

R̃u =

∫ T

0

〈y(t), u〉W y(t) + 〈ẏ(t), u〉W ẏ(t) dt

for u ∈ Rm. ♦

From a practical point of view we do not have the information on the whole trajectory in [0, T ]. Therefore,
let ∆t = T/(n− 1) be a fixed time step size and tj = (j − 1)∆t for 1 ≤ j ≤ n a given time grid in [0, T ]. To
simplify the presentation we choose an equidistant grid. Of course, non-equidistant meshes can be treated
analogously [22]. We compute a POD basis {uni }ℓi=1 of rank ℓ by solving the constrained minimization

problem (P̂n,ℓ
W ). After the POD basis has been determined, we derive the reduced-order model as described

in Section 2.1. Thus,

yℓ(t) =

ℓ∑

i=1

yℓj(t)u
n
i , t ∈ [0, T ],

solves the POD Galerkin projection of (1.41)

〈ẏℓ(t), uni 〉W = 〈Ayℓ(t) + f(t, yℓ(t)), uni 〉W for i = 1 . . . , ℓ and t ∈ (0, T ],(2.13a)

〈yℓ(0), uni 〉W = 〈y0, uni 〉W for i = 1 . . . , ℓ.(2.13b)

To solve (2.13) we apply the implicit Euler method. By Yj we denote an approximation for yℓ at the time
tj , 1 ≤ j ≤ n. Then, the discrete system for the sequence {Yj}nj=1 in V ℓn = span {un1 , . . . , unℓ } looks like

〈
Yj − Yj−1

∆t
, uni

〉

W

= 〈AYj + f(t, Yj), u
n
i 〉W for i = 1 . . . , ℓ, 2 ≤ j ≤ n,(2.14a)

〈Y1, u
n
i 〉W = 〈y0, uni 〉W for i = 1 . . . , ℓ.(2.14b)

We are interested in estimating
n∑

j=1

αj ‖y(tj) − Yj‖2
W .
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Let us introduce the projection Pℓn : Rm → V ℓn by

(2.15) Pℓn =

ℓ∑

i=1

〈u, uni 〉W uni for u ∈ R
m.

It follows that Pℓn is linear and bounded (and therefore continuous). In particular, ‖Pℓn‖L(Rm) = 1.
We shall make use of the decomposition

y(tj) − Yj = y(tj) − Pℓny(tj) + Pℓny(tj) − Yj = ̺ℓj + ϑℓj ,

where ̺ℓj = y(tj) − Pℓny(tj) and ϑℓj = Pℓny(tj) − Yj . Note that

n∑

j=1

αj

∥
∥
∥y(tj) −

ℓ∑

i=1

〈y(tj), uni 〉W uni

∥
∥
∥

2

W
=

n∑

j=1

αj ‖y(tj) − Pℓny(tj)‖
2

W =
n∑

j=1

αj ‖̺ℓj‖
2

W
.

Since {uni }ℓi=1 is the POD basis of rank ℓ, we have

(2.16)

n∑

j=1

αj ‖̺ℓj‖
2

W
=

m∑

i=ℓ+1

λni .

Next we estimate the terms ϑℓj . Using the notation ∂ϑℓj = (ϑℓj−ϑℓj−1)/∆t for 2 ≤ j ≤ n we obtain by (1.41a)

and (2.14a)

〈∂ϑℓj , ui〉 =

〈

Pℓn
(
y(tj) − y(tj−1)

∆t

)

− Yj − Yj−1

∆t
, uni

〉

W

= 〈ẏ(tj) − (AYj + f(tj , Yj))), u
n
i 〉W

+

〈

Pℓn
(
y(tj) − y(tj−1)

∆t

)

− ẏ(tj), u
n
i

〉

W

= 〈A(y(tj) − Yj) + f(tj, y(tj)) − f(tj , Yj), u
n
i 〉W(2.17)

+

〈

Pℓn
(
y(tj) − y(tj−1)

∆t

)

− y(tj) − y(tj−1)

∆t
, uni

〉

W

+

〈
y(tj) − y(tj−1)

∆t
− ẏ(tj), u

n
i

〉

W

= 〈A(y(tj) − Yj) + f(tj, y(tj)) − f(tj , Yj) + zℓj + wℓj , u
n
i 〉W

for 1 ≤ i ≤ ℓ and 2 ≤ j ≤ n, where

zℓj = Pℓn
(
y(tj) − y(tj−1)

∆t

)

− y(tj) − y(tj−1)

∆t
, wℓj =

y(tj) − y(tj−1)

∆t
− ẏ(tj).

Multiplying (2.17) by 〈ϑℓj , uni 〉W and adding all ℓ equations we arrive at

(2.18) 〈∂ϑℓj , ϑℓj〉 = 〈A(y(tj) − Yj) + f(tj , y(tj)) − f(tj , Yj) + zℓj + wℓj , ϑ
ℓ
j〉W

for j = 2, . . . , n. Note that

2 〈u− ũ, u〉W = 2 ‖u‖2
W − 2 〈ũ, u〉W

= ‖u‖2
W + ‖u‖2

W − 2 〈ũ, u〉W + ‖ũ‖2
W − ‖ũ‖2

W

= ‖u‖2
W − ‖ũ‖2

W + ‖u− ũ‖2
W

for all u, ũ ∈ Rm. Choosing u = ϑℓj and ũ = ϑℓj−1 we infer from (2.18)

(2.19) 2 〈∂ϑℓj , ϑℓj〉 =
1

∆t

(

‖ϑℓj‖
2

W
− ‖ϑℓj−1‖

2

W
+ ‖ϑℓj − ϑℓj−1‖

2

W

)

.
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Inserting (2.19) into (2.18) and using the Cauchy-Schwarz inequality we obtain

‖ϑℓj‖
2

W
≤ ‖ϑℓj−1‖

2

W
+ ∆t ‖A‖

(
‖̺ℓj‖W + ‖ϑℓj‖W

)
‖ϑℓj‖W

+ ∆t
(

‖f(tj , y(tj)) − f(tj, Yj)‖W + ‖zℓj‖W + ‖wℓj‖W
)

‖ϑℓj‖W .

Suppose that f is Lipschitz-continuous with respect to the second argument. Then there exists a constant
Lf ≥ 0 such that

‖f(tj, y(tj)) − f(tj , Yj)‖W ≤ Lf ‖y(tj) − Yj‖W for j = 2, . . . , n.

Hence, by Young’s inequality we find

‖ϑℓj‖
2

W
≤ ‖ϑℓj−1‖

2

W
+ ∆t

(

c1 ‖̺ℓj‖
2

W
+ c2 ‖ϑℓj‖

2

W
+ ‖zℓj‖

2

W
+ ‖wℓj‖

2

W

)

,

where c1 = max{‖A‖, Lf} and c2 = max{3 ‖A‖, 3Lf , 2}. Suppose that

(2.20) 0 < ∆t ≤ 1

2c2

holds. With (2.20) holding we have

0 ≤ 1 − 2c2∆t < 1 − c2∆t and 1 − c2∆t ≥ 1 − 1

2
=

1

2
.

Thus,

(2.21)
1

1 − c2∆t
=

1 − c2∆t+ c2∆t

1 − c2∆t
= 1 +

c2∆t

1 − c2∆t
. ≤ 1 + 2c2∆t

Using (2.21) we infer that

‖ϑℓj‖
2

W
≤ (1 + 2c2∆t)

(

‖ϑℓj−1‖
2

W
+ ∆t

(
‖zℓj‖

2

W
+ ‖wℓj‖

2

W
+ c1 ‖̺ℓj‖

2

W

))

.

Summation on j yields

‖ϑℓj‖
2

W
≤ (1 + 2c2∆t)

j

(

‖ϑℓ0‖
2

W + ∆t

j
∑

k=1

(

‖zℓk‖
2

W + ‖wℓk‖
2

W + c1 ‖̺ℓk‖
2

W

))

.

Note that

(1 + 2c2∆t)
j =

(

1 +
2c2j∆t

j

)j

≤ e2c2j∆t.

Thus,

‖ϑℓj‖
2

W
≤ e2c2j∆t

(

‖ϑℓ0‖
2

W + ∆t

j
∑

k=1

(

‖zℓk‖
2

W + ‖wℓk‖
2

W + c1 ‖̺ℓk‖
2

W

))

.
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We next estimate the term involving wℓk:

∆t

j
∑

k=1

‖wℓk‖
2

W = ∆t

j
∑

k=1

∥
∥
∥
∥

y(tk) − y(tk−1)

∆t
− ẏ(tk)

∥
∥
∥
∥

2

W

=
1

∆t

j
∑

k=1

‖y(tk) − y(tk−1) − ∆tẏ(tk)‖2
W

=
1

∆t

j
∑

k=1

∥
∥
∥
∥

∫ tk

tk−1

(tk−1 − s)ÿ(s) ds

∥
∥
∥
∥

2

W

≤ 1

∆t

j
∑

k=1

∫ tk

tk−1

|tk−1 − s|2 ds

∫ tk

tk−1

‖ÿ(s)‖2
W ds

≤ (∆t)2

3

j
∑

k=1

‖ÿ‖2
L2(tk−1,tk;Rm) =

(∆t)2

3
‖ÿ‖2

L2(0,tj ;Rm).

The term zℓk can be estimated as follows:

‖zℓk‖
2

W =

∥
∥
∥
∥
Pℓn
(y(tk) − y(tk−1)

∆t

)

− y(tk) − y(tk−1)

∆t

∥
∥
∥
∥

2

W

=

∥
∥
∥
∥
Pℓn
(y(tk) − y(tk−1)

∆t

)

− Pℓnẏ(tk) + Pℓnẏ(tk) −
y(tk) − y(tk−1)

∆t

∥
∥
∥
∥

2

W

≤ 2 ‖Pℓn‖
2

L(Rm)

∥
∥
∥
∥

y(tk) − y(tk−1)

∆t
− ẏ(tk)

∥
∥
∥
∥

2

W

+ 2

∥
∥
∥
∥
Pℓnẏ(tk) − ẏ(tk) + ẏ(tk) −

y(tk) − y(tk−1)

∆t

∥
∥
∥
∥

2

W

≤ 2 ‖wℓk‖
2

W + 4 ‖Pℓnẏ(tk) − ẏ(tk)‖
2

W + 4

∥
∥
∥
∥
ẏ(tk) −

y(tk) − y(tk−1)

∆t

∥
∥
∥
∥

2

W

= 4 ‖Pℓnẏ(tk) − ẏ(tk)‖
2

W + 6 ‖wℓk‖
2

W .

Recall that ∆t ≤ 2αk for 1 ≤ k ≤ n. Hence,

∆t

j
∑

k=1

‖zℓk‖
2

W ≤ 8
n∑

k=1

αk ‖Pℓnẏ(tk) − ẏ(tk)‖
2

W + 2(∆t)2 ‖ÿ‖2
L2(0,tj;Rm).

Further, ϑℓ0 = Pℓny0 − Y1 = 0 and 0 ≤ j∆t ≤ T for j = 0, . . . , n− 1. Summarizing

‖ϑℓj‖
2

W
≤ c3

( n∑

k=1

8αk

(

‖Pℓnẏ(tk) − ẏ(tk)‖
2

W + 2c1 ‖̺ℓk‖
2

W

)

+
7

3
(∆t)2 ‖ÿ‖2

L2(0,tj ;Rm)

)

,

where c3 = e2c2T max{7/3, 2c1, 8} is independent of ℓ and {tj}nj=1. From
∑n

k=1 αk = T and (2.16) we infer

(2.22)

n∑

j=1

αj ‖ϑℓj‖
2

W
≤ c3T

( n∑

j=1

αj

(

‖Pℓnẏ(tj) − ẏ(tj)‖
2

W + ‖̺ℓj‖
2

W

)

+(∆t)2 ‖ÿ‖2
L2(0,T ;Rm)

)

≤ c4

(
m∑

i=ℓ+1

(

λni +

n∑

j=1

αj
∣
∣〈ẏ(tj), uni 〉W

∣
∣
2
)

+ (∆t)2

)

with c4 = c3T max{1, ‖ÿ‖2
L2(0,T ;Rm)}.
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Theorem 2.3. Let y ∈ C([0, T ]; Rm) ∩ C1(0, T ; Rm) be the unique solution to (1.41) satisfying ÿ ∈
L2(0, T ; Rm) and ℓ ∈ {1, . . . ,m} be fixed. Suppose that {uni }ℓi=1 is a POD basis of rank ℓ solving (P̂n,ℓ

W ).
Assume that (2.14) possesses a unique solution {Yj}nj=1. Then there exists a constant C > 0 such that

n∑

j=1

αj ‖y(tj) − Yj‖2
W ≤ C

(

(∆t)2 +
m∑

i=ℓ+1

(

λni +
n∑

j=1

αj
∣
∣〈ẏ(tj), uni 〉W

∣
∣
2
))

provided ∆t is sufficiently small and f is Lipschitz-continuous with respect to the second argument.

Proof. The claim follows directly from (2.16), (2.22), and

n∑

j=1

αj ‖y(tj) − Yj‖2
W ≤ 2

n∑

j=1

αj

(

‖ϑℓj‖
2

W
+ ‖̺ℓj‖

2

W

)

≤ 2c4

(
m∑

i=ℓ+1

(

λni +

n∑

j=1

∣
∣〈ẏ(tj), uni 〉W

∣
∣
2
)

+ (∆t)2

)

+ 2

m∑

i=ℓ+1

λni

provided ∆t is sufficiently small and f is Lipschitz-continuous with respect to the second argument. �

Remark 2.4. Compared to the estimate in Theorem 2.1 we observe the term

(2.23)
n∑

j=1

αj
∣
∣〈ẏ(tj), uni 〉W

∣
∣
2

instead of the term

(2.24)

∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt.

Note that (2.23) is the trapezoidal approximation of (2.24). Furthermore, the error O((∆t)2) appears in the
estimate of Theorem 2.3 due to the Euler method. ♦

Next we address the fact that the eigenvalues {λni }mi=1 and the associated eigenvectors {uni } (i.e., the POD
basis) depend on the chosen time grid {tj}nj=1. We apply the asymptotic theory presented in Section 1.3.
Then, it follows from Theorem 2.14 that there exists a number n̄ ∈ N satisfying

m∑

i=ℓ+1

λni ≤ 2
m∑

i=ℓ+1

λi,

m∑

i=ℓ+1

n∑

j=1

αj
∣
∣〈ẏ(tj), uni 〉W

∣
∣
2 ≤ 2

m∑

i=ℓ+1

∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt

for n ≥ n̄ provided
∑m
i=ℓ+1 λi 6= 0 and

∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt 6= 0 hold. Thus, we infer from Theorems 2.1 and

2.3 the following result.

Theorem 2.5. Let all hypothesis of Theorems 2.14, 2.1 and 2.3 be satisfied. If
∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt 6= 0,

then there exists a constant C > 0 and a number n̄ ∈ N such that
n∑

j=1

αj ‖y(tj) − Yj‖2
W ≤ C

(

(∆t)2 +

m∑

i=ℓ+1

(

λi +

∫ T

0

∣
∣〈ẏ(t), ui〉

∣
∣
2
dt
))

for all n ≥ n̄.
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3. ROM for evolution problems

This section is devoted to error estimates for the Galerkin POD method applied to (1.70) combined with
the backward Euler method for the time integration. For more details and the proofs we refer the reader to
[21, 22, 23].

3.1. Case X = V . Let us choose X = V in the context of Chapter 2, Section 2.4. To study the
backward Euler POD Galerkin method for (1.70), we introduce the Ritz projection Pℓ : V → V ℓ, 1 ≤ ℓ ≤ d,
by

(2.25) a(Pℓϕ, ψ) = a(ϕ, ψ) for all ψ ∈ V ℓ,

where ϕ ∈ V . Since the Hilbert space V is endowed with the inner product (1.68), Pℓ is the orthogonal
projection of V on V ℓ. In particular, this implies that Pℓ has norm one.

The POD Galerkin method for (1.70) is described next. For m ∈ N we introduce the time grid

0 = τ0 < τ1 < . . . < τm = T, δτj = τj − τj−1 for j = 1, . . . ,m,

and set

δτ = min{δτj : 1 ≤ j ≤ m} and ∆τ = max{δτj : 1 ≤ j ≤ m}.
Throughout we assume that ∆τ/δτ is bounded uniformly with respect to m. To relate the two time dis-
cretizations {tj}nj=0 and {τj}mj=0 we set for every τk, 0 ≤ k ≤ m, an associated index k̄ = argmin {|τk − tj | :
0 ≤ j ≤ n} and define σn ∈ {1, . . . , n} as the maximum of the occurrence of the same value tk̄ as k ranges
over 0 ≤ k ≤ m.

The problem consists in finding a sequence {Yk}mk=0 in V ℓ satisfying

(2.26a) 〈Y0, ψ〉H = 〈y0, ψ〉H for all ψ ∈ V ℓ

and

(2.26b) 〈∂τYk, ψ〉H + a(Yk, ψ) + 〈B(Yk) +RYk, ψ〉V ′,V = 〈f(τk), ψ〉H
for all ψ ∈ V ℓ and k = 1, . . . ,m, where we have set

∂τYk =
Yk − Yk−1

δτk
.

For every k = 1, . . . ,m there exists at least one solution Yk of (2.26b). If ∆τ is sufficiently small, the
sequence {Yk}mk=1 is uniquely determined [22].

Our next goal is to present an error estimate for the expression

m∑

k=0

βk ‖Yk − y(τk)‖2
H ,

where y(τk) is the solution of (1.70) at the time instances t = τk, k = 1, . . . ,m, and the positive weights βj
are given by

β0 =
δτ1
2
, βj =

δτj + δτj+1

2
for j = 1, . . . ,m− 1, and βm =

δτm
2
.

We make use of the following assumptions:

(A1) yt ∈ L2(0, T ;V ) and ytt ∈ L2(0, T ;H).
(A2) There exists a normed linear space W continuously embedded in V and a constant ca > 0 such that

y ∈ C([0, T ];W ) and

(2.27) a(ϕ, ψ) ≤ ca ‖ϕ‖H‖ψ‖W for all ϕ ∈ V and ψ ∈ W.

(A3) y ∈ W 2,2(0, T ;V ).
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Example 3.1. For V = H1
0 (Ω), H = L2(Ω), with Ω a bounded domain in Rl and

a(ϕ, ψ) =

∫

Ω

∇ϕ · ∇ψ dx for all ϕ, ψ ∈ H1
0 (Ω),

choosing W = H2(Ω) ∩H1
0 (Ω) implies a(ϕ, ψ) ≤ ‖ϕ‖W ‖ψ‖H for all ϕ ∈ W , ψ ∈ V , and (2.27) holds with

ca = 1. ♦
Remark 3.2. Note that (A2) implies the existence of a constant cP > 0 depending on ℓ and λℓ such

that

(2.28) ‖P ℓ‖L(H) ≤ cP for all 1 ≤ ℓ ≤ d,

see [22]. ⋄
In [22] the following result is proved.

Theorem 3.3. a) Assume that (A1), (A2) hold and that ∆τ is sufficiently small. Then there
exists a constant C depending on T , but independent of the grids {tj}nj=0 and {τj}mj=0, such that

(2.29)

m∑

k=0

βk ‖Yk − y(τk)‖2
H

≤ C

d∑

i=ℓ+1

(∣
∣〈ψi, y0〉V

∣
∣
2

+
σn
δt

( 1

δτ
+ ∆τ

)

λi

)

+ Cσn∆τ∆t ‖yt‖2
L2(0,T ;V )

+ Cσn(1 + c2P )∆τ
(

∆t‖yt‖2
L2(0,T ;H) + (∆τ + ∆t)‖ytt‖2

L2(0,T ;H)

)

.

b) If (A3) is satisfied and ∆τ sufficiently small, then there exists a constant C depending on T , but
independent of the grids {tj}nj=0 and {τj}mj=0, such that

(2.30)

m∑

k=0

βk ‖Yk − y(τk)‖2
H ≤ Cσn∆τ(∆τ + ∆t)‖ytt‖2

L2(0,T ;V )

+ C
( d∑

i=ℓ+1

(∣
∣〈ψi, y0〉V

∣
∣
2

+
σn
δt

( 1

δτ
+ ∆τ

)

λi

)

+ σn∆τ∆t‖yt‖2
L2(0,T ;V )

)

.

Compared to standard finite difference, finite element or spectral element approximation results the
basic POD-Galerkin backward Euler convergence result of Theorem 3.3 has an unusual format. This is due,
in part, to the fact that one can not rely on function space rate of convergence results, which are typically
at the basis for approximation theory of partial differential equations. The terms in the second line of (2.29)
depend (through ψi, λi, d) on the way in which the snapshots are taken, on the number ℓ of basis elements
and on the relative location of the snapshots and the time discretization (through σn).

Remark 3.4. In (2.29) and (2.30) the eigenvalues and eigenfunctions depend on n, i.e., λi = λni and
ψi = ψni . If ℓ satisfies (1.76) and

∑∞
i=ℓ+1 λ

∞
i 6= 0 or

∑∞
i=ℓ+1 |〈ψi, y0〉V |2 6= 0, then by (1.77), (1.78) we have

d∑

i=ℓ+1

(∣
∣〈ψi, y0〉V

∣
∣
2

+
σn
δt

( 1

δτ
+ ∆τ

)

λi

)

≤ 2

∞∑

i=ℓ+1

(∣
∣〈ψ∞

i , y0〉V
∣
∣
2

+
σn
δt

( 1

δτ
+ ∆τ

)

λ∞i

)

for all ∆t ≤ ∆t

and the dependence of the estimates of eigenvalues and eigenfunctions on n in (2.29) and (2.30) is thus
eliminated. ⋄

Let us next derive some corollaries to the proof of Theorem 3.3. At first we consider the case, where the
two grids coincide so that n = m and τj = tj for j = 0, . . . ,m.
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Corollary 3.5. Suppose that the assumptions of Theorem 3.3–a) hold. If the two time discretizations
coincide, then there exists a constant C > 0 depending on T , but independent of the grid {τj}mj=0, such that

(2.31)

m∑

k=0

βk ‖Yk − y(τk)‖2
H ≤ C(1 + c2P )∆τ2 ‖ytt‖2

L2(0,T ;H)

+ C
( d∑

i=ℓ+1

(∣
∣〈ψi, y0〉V

∣
∣
2

+
( 1

δτ2
+ 1
)

λi

)

+ ∆τ2 ‖yt‖L2(0,T ;V )

)

.

Remark 3.6. Again, as in Theorem 3.3 b) compared to a), the factor 1 + c2P can be avoided in (2.31),
if in place of (A1), (A2) we assume (A3) and replace the term ‖ytt‖L2(0,T ;H) by ‖ytt‖L2(0,T ;V ). ♦

Let us briefly reflect on the behavior of the right-hand side of (2.29) and (2.30). First we note that
if the number of POD elements for the Galerkin scheme coincides with the dimension of V then the first
additive term on the right-hand side disappears. Secondly, if the number of snapshots is refined so that

∆t→ 0 then the factor multiplying
∑d

i=ℓ+1 λi blows up. As noted above the term
∑d
i=ℓ+1 λi itself changes

as the snapshots are refined. While computations for many concrete situations show that
∑d

i=ℓ+1 λi is small
compared to ∆τ , the question nevertheless arises whether the term 1/(δτδt) can be avoided in the estimates.
For this purpose we choose

(2.32) V = span {y(t0), . . . , y(tn), ∂ty(t1), . . . , ∂ty(tn)},
where

∂ty(tj) =
y(tj) − y(tj−1)

δtj
for j = 1, . . . , n,

(1.74) must be replaced by

n∑

j=0

αj

∥
∥
∥y(tj) −

ℓ∑

i=1

〈y(tj), ψ̂i〉V ψ̂i
∥
∥
∥

2

V
+

n∑

j=1

αj

∥
∥
∥∂ty(tj) −

ℓ∑

i=1

〈∂ty(tj), ψ̂i〉V ψ̂i
∥
∥
∥

2

V

=

d∑

i=ℓ+1

λ̂i,

where {λ̂i}i∈N, {ψ̂i}i∈N are the eigenvalues and eigenfunctions of R̂n ∈ L(V ) given by

R̂nz =

n∑

j=0

αj
(
〈z, y(tj)〉V y(tj) + 〈z, ∂ty(tj)〉V ∂ty(tj)

)

and satisfying

R̂nψ̂i = λ̂iψ̂i, λ̂1 ≥ . . . ≥ λ̂d(n) > 0 and λi = 0 for i > d(n).

Corollary 3.7. If in addition to the assumptions of Theorem 3.3–a) the snapshots set is taken as in
(2.32), then

m∑

k=0

βk ‖Yk − y(τk)‖2
H

≤ C
d∑

i=ℓ+1

(∣
∣〈ψ̂i, y0〉V

∣
∣
2
+
σn∆τ

δt
λ̂i

)

+ Cσn∆τ∆t ‖yt‖2
L2(0,T ;V )

+ C(1 + c2P )∆τ
(

(∆τ + σn∆t)‖ytt‖2
L2(0,T ;H) + σn∆t‖yt‖2

L2(0,T ;H)

)

,

where C has the same properties as in Theorem 3.3.

If we suppose that

(2.33) ∆t = O(δτ) and ∆τ = O(δt),
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then there exists a constant c1 > 0 independent of {tj}nj=0 and {τj}mj=0 such that

(2.34) max
(

σn,
σn∆τ

δt

)

≤ c1.

For y ∈W 2,2(0, T ;V ), i.e., (A3) holds, we introduce the operator R̂ ∈ L(V ) corresponding to R by

R̂z =

∫ T

0

〈z, y(t)〉V y(t) + 〈z, yt(t)〉V yt(t) dt for z ∈ V.

Note that R̂ = ŶŶ∗, where Ŷ∗ : V →W 1,2(0, T ; R) is given by

(Ŷ∗z)(t) = 〈z, y(t)〉V .
Let us choose and fix ℓ such that

(2.35) λ̂∞ℓ 6= λ̂∞ℓ+1.

Then, we have the following result, see [22].

Corollary 3.8. Assume that y ∈W 2,2(0, T ;V ) and let the snapshots be chosen as in (2.32). If (2.33)
holds and ℓ satisfies (2.35), then there exists a constant C > 0, independent of ℓ and the grids {tj}nj=0 and

{τj}mj=0, and a ∆t > 0, depending on ℓ, such that

(2.36)

m∑

k=0

βk ‖Yk − y(τk)‖2
H ≤ C

∞∑

i=ℓ+1

(∣
∣〈y0, ψ̂∞

i 〉V
∣
∣
2

+ λ̂∞i

)

+ C
(

∆τ∆t ‖yt‖2
L2(0,T ;V ) + ∆τ(∆τ + ∆t) ‖ytt‖2

L2(0,T ;V )

)

for all ∆t ≤ ∆t.

Remark 3.9. In (2.36) the first term on the right-hand side of the inequality reflects the spatial ap-
proximation error of the Galerkin-POD scheme and the second the approximation error due to the temporal
backward Euler scheme. If the latter is replaced by the Crank-Nicolson method then, assuming ∆τ = ∆t and
appropriate regularity on y, it can be shown with the techniques of this section that an estimate analogous
to (2.36) holds with the first additive term on the right-hand side unchanged and the second one of fourth
order in ∆τ . ♦

3.2. Case X = H. Suppose that the POD basis is constructed with respect to the H-norm. Differently
from the situation, where the POD basis was constructed in V , the right-hand side of the estimate will
involve the stiffness matrix

S = ((Sij)) ∈ R
d×d with Sij = a(ψj , ψi).

Theorem 3.10. Suppose that (A3) holds and that ∆τ is sufficiently small. Then there exists a constant
C > 0 depending on T , but independent of the grids {tj}nj=0 and {τj}mj=0, such that

(2.37)

m∑

k=0

βk ‖Yk − y(τk)‖2
H ≤ C

d∑

i=ℓ+1

‖S‖2

(∣
∣〈ψi, y0〉H

∣
∣
2

+
σn
δt

( 1

δτ
+ ∆τ

)

λi

)

+ Cσn∆τ
(

(∆τ + ∆t)‖ytt‖2
L2(0,T ;V ) + ∆t ‖yt‖2

L2(0,T ;V )

)

.

Remark 3.11. Let us briefly discuss the asymptotic properties of the expression on the right-hand side
of (2.37), which are restricted due to the appearance of δtδτ in the dominator, and the terms σn and ‖S‖2.
As in section 3.1 the factor 1/δτ can be eliminated by adding the set {∂y(tj)}nj=1 to the set of snapshots.
Assuming that ∆t = O(δτ) and ∆τ = O(δt) implies (2.34) and consequently, σn and σn∆τ/δt are uniformly
bounded with respect to refinement of the t- and τ -grids. The factor ‖S‖2, which tends to infinity as m→ ∞
appears to be unavoidable in case the POD basis is computed in H . ♦
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4. ROM for parameter-dependent PDEs

4.1. POD Galerkin scheme. In this section we discuss the ROM for (1.80). Let us fix ℓ ∈ N and
compute the first ℓ POD basis functions ψ1, . . . , ψℓ ∈ V . Then we define the finite dimensional linear space

V ℓ = span
{
ψ1, . . . , ψℓ

}
⊂ V.

Endowed with the topology in V it follows that V ℓ is a Hilbert space. Next we introduce the orthogonal
projection Pℓ of V onto V ℓ:

(2.38) Pℓϕ =

ℓ∑

i=1

〈ϕ, ψi〉V ψi for ϕ ∈ V.

From (2.38) and Pℓψ = ψ for all ψ ∈ V ℓ it follows that

(2.39) 〈Pℓϕ, ψ〉V = 〈ϕ, ψ〉V
for all ϕ ∈ V and all ψ ∈ V ℓ. Since the ψi’s are orthonormal in V , we have ‖Pℓ‖L(V ) = 1, where L(V )
denotes the Banach space of all bounded linear operators from V into itself endowed with the common norm.

The POD Galerkin scheme for (1.80) leads to the following linear problem: for given µ ∈ I determine a
function uℓ ∈ V ℓ such that

(2.40) a(uℓ, ψ;µ) = 〈f, ψ〉V ′,V for all ψ ∈ V ℓ

The proof of the existence of a unique solution uℓ to (2.40) follows by the Lax-Milgram theorem [5].

4.2. POD error estimates. The goal of this section is to present error estimates for the difference
between the solution u = u(µ) to (1.80) and the POD solution uℓ(µ) to (2.40) for µ ∈ I in terms of the sum
∑∞

i=ℓ+1 λi, i.e., in terms of the sum over the eigenvalues corresponding to the not-modelled eigenmodes. Fir
the proofs we refer to [15].

Theorem 4.1. Suppose that (1.79) holds. For µ ∈ I = [µa, µb] we denote by u(µ) and uℓ(µ) the solutions
to (1.80) and (2.40), respectively. Then there exists a constant C > 0 depending on µa, µb, cV such that

(2.41)

∫

I

‖uℓ(µ) − u(µ)‖2

V dµ ≤ C

∞∑

i=ℓ+1

λi.

Remark 4.2. Let us introduce for given ℓ ∈ N the mapping

J̃ : H × . . .×H
︸ ︷︷ ︸

ℓ−times

→ R

by

J̃(ψ1, . . . , ψℓ) =

∫

I

∥
∥
∥u(µ) −

ℓ∑

i=1

〈u(µ), ψi〉Hψi
∥
∥
∥

2

H
dµ.

Analogous to Section 3.1 we can compute the POD basis by solving the minimization problem

(2.42) min J̃(ψ̃1, . . . , ψ̃ℓ) s.t. 〈ψ̃j , ψ̃i〉V = δij for 1 ≤ i, j ≤ ℓ.

It turns out that the constant C in (2.41) depends on the spectral norm of Sℓ, where Sℓ ∈ Rℓ×ℓ denotes the
stiffness matrix with the elements 〈ψi, ψj〉V , 1 ≤ i, j ≤ ℓ. ♦

Suppose that the weak solution to (1.80) is not known for all parameters µ ∈ I, but for the parameter
grid {µi}ni=1 introduced in (1.85). Let ui = u(µi), 1 ≤ i ≤ n, denote the corresponding solutions to (1.79)
for the grid points µi. We define the snapshot set Vn = span {u1, . . . , un} ⊂ V and determine a POD basis
of rank ℓ ≤ n for Vn by solving (2.26).
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Proposition 4.3. Suppose that (1.79) holds and that {µj}nj=1 is a grid in the interval I satisfying

(1.85). For µj, 1 ≤ j ≤ n, we denote by u(µj) and uℓ(µj) the solutions to (1.80) and (2.40), respectively.
Then there exists a constant C > 0 depending on µa, µb, cV , but independent on the grid {µj}nj=1 such that

n∑

j=1

αj ‖uℓ(µj) − u(µj)‖
2

V ≤ C

dn

∑

i=ℓ+1

λni .

Next we suppose that we are given two different grids {µj}nj=1 and {µ̄k}mk=1 in I satisfying

(2.43) µa = µ1 < µ2 < . . . < µn = µb, µa = µ̄1 < µ̄2 < . . . < µ̄m = µb.

We set

δµj = µj − µj−1, j = 2, . . . , n, δµ = min
2≤j≤n

δµj , ∆µ = max
2≤j≤n

δµj ,

δµ̄k = µ̄k − µ̄k−1, k = 2, . . . ,m, δµ̄ = min
2≤k≤m

δµ̄k, ∆µ̄ = max
2≤k≤m

δµ̄k.

Moreover, let

α1 =
δµ2

2
, αj =

δµj + δµj+1

2
for 2 ≤ j ≤ n− 1, αn =

δµn
2
,

β1 =
δµ̄2

2
, βk =

δµ̄k + δµ̄k+1

2
for 2 ≤ k ≤ m− 1, βm =

δµ̄m
2
.

Next we present an error estimate for the term

m∑

k=1

βk‖u(µ̄k) − uℓ(µ̄k)‖
2

V ,

whereas the POD basis of rank ℓ is computed by using the snapshots ensemble {u(µj)}nj=1 depending on the

grid {µj}nj=1. Let µ̄k ∈ I, k ∈ {1, . . . ,m}, be given. Then there exists an index jk ∈ {1, . . . , n− 1} such that

µjk ≤ µ̄k ≤ µjk+1.

Let us define σm ∈ {1, . . . ,m} as the maximum of the occurrence of the same value jk as k ranges over
1 ≤ k ≤ m. Notice that

max
{
|µ̄k − µjk+1|, |µ̄k − µjk |

}
≤ δµjk+1 ≤ ∆µ.

Theorem 4.4. Suppose that (1.79) holds, that {µj}nj=1 and {µ̄k}mk=1 are two grids in the interval I
satisfying (2.43). For µ̄k, 1 ≤ k ≤ m, we denote by u(µ̄k) and uℓ(µ̄k) the solutions to (1.80) and (2.40),
respectively. Then there exists a constant C > 0 depending on µa, µb, cV , but independent on the grids such
that

m∑

k=1

βk ‖uℓ(µ̄k) − u(µ̄k)‖
2

V ≤ C

(
σm∆µ̄

δµ

dn

∑

i=ℓ+1

λni + ∆µ2

)

.

In Theorem 4.4 the eigenvalues {λi}d
n

i=1, the eigenfunctions {ψi}d
n

i=1 and σm depend on the discretization
of I for the snapshots as well as for the numerical integration. We address this dependence next. For a proof
we refer to [15].

Theorem 4.5. Suppose that (1.79) holds, that {µj}nj=1 and {µ̄k}mk=1 are two grids in the interval I
satisfying (2.43). Moreover, for both grids we have ∆µ = O(δµ̄) and ∆µ̄ = O(δµ). For µ̄k, 1 ≤ k ≤ m, we
denote by u(µ̄k) and uℓ(µ̄k) the solutions to (1.80) and (2.40), respectively. If λℓ 6= λℓ+1 holds, then there
exists a constant C > 0 depending on µa, µb, cV , but independent on the grids such that

m∑

k=1

βk ‖uℓ(µ̄k) − u(µ̄k)‖
2

V ≤ C

( ∞∑

i=ℓ+1

λi + ∆µ2

)

.
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4.3. Continuous POD for semi-linear problem. Let us turn to a certain non-linear problem. Sup-
pose that F : V → V ′ is a non-linear, locally Lipschitz-continuous mapping satisfying

(2.44) 〈F (φ) − F (ϕ), φ− ϕ〉V ′,V ≥ 0 for all ϕ, ψ ∈ V,

i.e., F is monotone. Instead of (1.80) we consider

(2.45) a(u, ϕ;µ) + 〈F (u), ϕ〉V ′,V = 〈f, ϕ〉V ′,V for all ϕ ∈ V.

Example 4.6. Let us give an example for a semi-linear problem satisfying (2.44). We consider

(2.46) −∆u+ u3 + µu = g in Ω and
∂u

∂n
+ u = gR on Γ.

A weak solution to (2.46) satisfies u ∈ V and

(2.47)

∫

Ω

∇u · ∇ϕ+
(
u3 + µu

)
ϕdx+

∫

Γ

uϕds =

∫

Ω

gϕdx+

∫

Γ

gRϕds

for all ϕ ∈ V . We utilize the parametrized bilinear form a(· , · ;µ) : V × V → R given by

a(ϕ, φ;µ) =

∫

Ω

∇ϕ · ∇φdx +

∫

Γ

ϕφds+ µ

∫

Ω

ϕφdx = 〈ϕ, φ〉V + µ 〈ϕ, φ〉H
for all ϕ, φ ∈ V , µ ∈ I and the linear and continuous functional f : V → R defined as

〈f, ϕ〉V ′,V =

∫

Ω

gϕdx+

∫

Γ

gRϕds

for all ϕ ∈ V . Moreover, we define the non-linear operator F : V → V ′ by

〈F (φ), ϕ〉V ′,V =

∫

Ω

φ3ϕdx for φ, ϕ ∈ V.

Then, a weak solution to (2.46) satisfies the variational formulation (2.45). Recall that ϕ ∈ V implies
ϕ ∈ L6(Ω). Consequently, F (ϕ) ∈ H ⊂ V ′. Let φ, ϕ ∈ V and χ = φ− ϕ ∈ V . From

〈F (φ) − F (ϕ), χ〉V ′,V = 3

∫ 1

0

∫

Ω

(φ + sχ)2χ2 dxds ≥ 0

it follows that (2.44) holds. Existence of a solution to (2.47) is proved in [7]. Suppose that u, v ∈ V are two
solutions to (2.47). Then we have

a(u− v, ϕ;µ) + 〈F (u) − F (v), ϕ〉V ′,V = 0 for all ϕ ∈ V and µ ∈ I.
Choosing ϕ = u− v, using (1.79) and (2.44) we derive that u = v in V . Thus, (2.47) has a unique solution.♦

Suppose that we have computed a POD basis {ψi}ℓi=1 of rank ℓ by utilizing the solution u(µ) to (2.45)
for all µ ∈ I. The POD Galerkin scheme for (2.46) is as follows: Find uℓ = uℓ(µ), µ ∈ I, such that

(2.48) a(uℓ, ψ;µ) + 〈F (uℓ), ψ〉V ′,V = 〈f, ψ〉V ′,V for all ψ ∈ V ℓ.

In the following theorem an error estimate is presented. The proof is ananlogous to the proof of Theo-
rem 4.1.

Theorem 4.7. Let F : V → V ′ be a locally Lipschitz-continuous mapping satisfying (2.44). Suppose
that for every µ ∈ I = [µa, µb] there exist unique solutions to (2.45) and (2.48) denoted by u(µ) and uℓ(µ),
respectively. Then there exists a constant C > 0 depending on µa, µb, cV and a Lipschitz constant for F
such that

∫

I

‖uℓ(µ) − u(µ)‖2

V dµ ≤ C

∞∑

i=ℓ+1

λi.

Remark 4.8. If the POD basis is computed by the strategy in Section 3.2, POD error estimates can
also be derived combining the techniques in Section 4.2 and the arguments in the proof of Theorem 4.7. ♦



CHAPTER 3

Suboptimal control using POD

Optimal control problems for nonlinear partial differential equations are often hard to tackle numerically
so that the need for developing novel techniques emerges. One such technique is given by reduced order
methods. Recently the application of reduced-order models to optimal control problems for partial differential
equations has received an increasing amount of attention. The reduced-order approach is based on projecting
the dynamical system onto subspaces consisting of basis elements that contain characteristics of the expected
solution. This is in contrast to, e.g., finite element techniques, where the elements of the subspaces are
uncorrelated to the physical properties of the system that they approximate. The reduced basis method as
developed, e.g., in [6, 13, 31, 35] is one such reduced-order method with the basis elements corresponding
to the dynamics of expected control regimes.

In our application we apply POD to derive a Galerkin approximation in the spatial variable, with basis
functions corresponding to the solution of the physical system at pre-specified time instances. This leads to a
drastic reduction of the degrees of freedom and allows for a fast solution of the optimal control problem. This
chapter is organized in the following manner. In Section 1 we recall basic facts from finite-dimensional optimal
control theory necessary for the investigation of PDE constrained optimization problems. In Section 2 we
focus on the choice of the POD ansatz functions in the context of optimal control problems. Finally, in
Section 3 we discuss a-posteriori error estimates that can be used to determine the cardinality of the POD
basis functions in order to guarantee a given tollerance for the difference between the (unknown) optimal
control and its computed suboptimal POD control.

1. The finite-dimensional case

Before we investigate PDE-constrained optimization problems we start with optimization problems in
finite dimensions. This emphasizes the optimization aspects, whereas in PDE-constrained optimization we
also have to deal with functional analysis and PDE theory. The presentation follows parts of the book [40].

Suppose that J : Rn × Rm → R is a given cost functional. Then we consider the minimization problem

(3.1) minJ(y, u) s.t. (y, u) ∈ R
n × Uad with Ay = Bu,

where Uad is a non-empty subset of Rm and A ∈ Rn×n, B ∈ Rn×m hold. We suppose that A is non-singular
and define the admissible set

F(3.1) =
{
(y, u) ∈ R

n × R
m
∣
∣Ay = Bu and u ∈ Uad

}
.

Then, each pair (y, u) ∈ F(3.1) satisfies y = A−1Bu. Hence, for any u ∈ Uad there exists a unique y ∈ Rn so
that (y, u) ∈ F(3.1) holds. For that reason we call u the control and y the associated (unique) state. Let us
introduce the matrix S = A−1Bu ∈ Rn×m. Then, for any control u ∈ Uad the associated state is given by
y = Su. Moreover, we define the so-called reduced cost functional Ĵ : Rm → R as

Ĵ(u) = J(Su, u) for u ∈ R
m.

Now, (3.1) can be equivalently expressed ny

(3.2) min Ĵ(u) s.t. u ∈ Uad.

Definition 1.1. A vector u∗ ∈ Uad is called an optimal control for (3.2) if Ĵ(u∗) ≤ Ĵ(u) holds for all
u ∈ Uad. The associated optimal state is y∗ = Su∗.

55
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Now we can give sufficient conditions so that (3.1) possesses at least one optimal control.

Theorem 1.2. If Ĵ is continuous, Uad non-empty, bounded, closed and A be invertible, there exists at
least one optimal control u∗ solving (3.2).

An optimal solution to (3.2) can be characterized by optimality conditions.

Theorem 1.3. If Ĵ is continuously differentiable and u∗ an optimal control for (3.2) (or (3.1)), then

(3.3) Ĵ ′(u∗)(u− u∗) ≥ 0 for all u ∈ Uad,

where Ĵ ′(u∗)h denotes the directional derivative of Ĵ at u∗ in direction h ∈ Rm.

Note that (3.3) is a first-order necessary optimality condition for (3.2). Moreover,

Ĵ(u∗)h = ∇yJ(Su∗, u∗)T (Sh) + ∇uJ(Su∗, u∗)Th

= ∇yJ(Su∗, u∗)T (A−1Bu∗) + ∇uJ(Su∗, u∗)Th

=
(
BTA−T∇yJ(Su∗, u∗) + ∇uJ(Su∗, u∗)

)T
h.

Therefore, (3.3) is equivalent with

(3.4) 〈BTA−T∇yJ(Su∗, u∗) + ∇uJ(Su∗, u∗), u− u∗〉
Rm ≥ 0 for all u ∈ Uad.

To avoid the numerical realization of A−T we introduce the adjoint state

p∗ = −A−T∇yJ(Su∗, u∗)

i.e., p∗ solves the linear system

(3.5) AT p∗ = −∇yJ(Su∗, u∗)

that is called the adjoint equation. Then,

Ĵ ′(u∗) = ∇uJ(Su∗, u∗) −BT p∗

Inserting p∗ into (3.4) we find

〈∇uJ(Su∗, u∗) −BT p∗, u− u∗〉
Rm ≥ 0 for all u ∈ Uad.

Summarizing we obtain

Ay∗ = Bu∗, u∗ ∈ Uad(3.6a)

AT p∗ = −∇yJ(Su∗, u∗),(3.6b)

〈∇uJ(Su∗, u∗) −BT p∗, u− u∗〉
Rm ≥ 0 for all u ∈ Uad(3.6c)

If Uad = Rm holds, we have instead of (3.6c)

∇uJ(Su∗, u∗) −BT p∗ = 0.

A different approach in deriving optimality conditions is based on the Lagrange functional L : Rn ×
Rm × Rn → R defined by

L(y, u, p) = J(y, u) +
(
Ay −Bu

)T
p for y, p ∈ R

n and u ∈ R
m.

We find that (3.6a) and (3.6b) are equivalent with

∇pL(y∗, u∗, p∗) = 0 and ∇yL(y∗, u∗, p∗) = 0,

respetively. Furthermore, (3.6b) can be written equivalently as

〈∇uL(y∗, u∗, p∗), u− u∗〉
Rm ≥ 0 for all u ∈ Uad.

Consequently, the adjoint equation can be derived from the partial derivative of the Lagrangian with respect
to y. Therefore, its solution p∗ is also called the Lagrange multiplier associated with the optimal solution
pair (y∗, u∗).
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Note that (y∗, u∗) is a solution to the first-order necessary optimality conditions for the minimization
problem

minL(y, u, p∗) s.t. y ∈ R
n, u ∈ Uad.

A specific situation is the admissible set

Uad =
{
u ∈ R

m
∣
∣ ua ≤ u ≤ ub

}

where ‘≤’ is interpreted componentwise, i.e, ua,i ≤ ui ≤ ub,i for 1 ≤ i ≤ m, and ua ≤ ub holds. Then, (3.6c)
implies

〈∇uJ(Su∗, u∗) −BT p∗, u∗〉
Rm ≤ 〈∇uJ(Su∗, u∗) −BT p∗, u〉

Rm for all u ∈ Uad

Thus, u∗ solves

min
u∈Uad

〈∇uJ(Su∗, u∗) −BT p∗, u〉
Rm .

Since u ∈ Uad holds, the components ui, 1 ≤ i ≤ m, of u are not coupled. Thus, u can be computed
componentwise by solving

min
ua,i≤ui≤ub,i

(
∇uJ(Su∗, u∗) −BT p∗

)

i
ui, 1 ≤ i ≤ m.

We obtain

(3.7) u∗i =

{

ub,i if
(
∇uJ(Su∗, u∗) −BT p∗

)

i
< 0,

ua,i if
(
∇uJ(Su∗, u∗) −BT p∗

)

i
> 0

In case of
(
∇uJ(Su∗, u∗)−BT p∗

)

i
= 0 we do not get any information from the variational inequatlity (3.6c).

Define

(3.8) µa =
[
BT p+ ∇uJ(ȳ, ū))

]

+
and µb =

[
BT p+ ∇uJ(ȳ, ū))

]

−

where [s]+ = max(s, 0) stands for the positive part function and [s]− = −min(s, 0) denotes for the negative
part function. From (3.7) we derive the conditions

(3.9) µa ≥ 0, ua − ū ≤ 0,
(
ua − ū

)T
µa = 0, µb ≥ 0, ū− ub ≤ 0,

(
ū− ub

)T
µb = 0.

The system (3.9) is called the complementarity system. Utilizing (3.8) we find µa − µb = ∇uJ(ȳ, ū) +BT p,
i.e.,

(3.10) ∇uJ(ȳ, ū) +BT p+ µb − µa = 0.

Next we extend the Lagrange function by

L(y, u, p, µa, µb) = J(y, u) +
(
Ay −Bu

)T
p+

(
ua − u

)T
µa +

(
u− ub

)T
µb.

Then, (3.10) can be written as

∇uL(ȳ, ū, p, µa, µb) = 0.

Moreover, the equation

∇yL(ȳ, ū, p, µa, µb) = 0

is equivalent to the adjoint equation (since ∇yL ≡ ∇yL). The vectors µa and µb are the Lagrange multipliers
for the inequality constraints ua − u ≤ 0 and u − ub ≤ 0. The first-order necessary optimality conditions
(Karush-Kuhn-Tucker conditions) are given as follows:







∇yL(ȳ, ū, p, µa, µb) = 0,

∇uL(ȳ, ū, p, µa, µb) = 0,

Aȳ = Bū, ū ∈ Uad,

µa ≥ 0, µb ≥ 0, (ua − u)Tµa = 0, (u− ub)
Tµb = 0.
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2. Proper orthogonal decomposition for optimality systems

The POD method is based on a Galerkin type discretization with basis elements created from the
dynamical system itself. In the context of optimal control this approach may suffer from the fact that the
basis elements are computed from a reference trajectory containing features which are quite different from
those of the optimally controlled trajectory. A method is proposed which avoids this problem of unmodelled
dynamics in the proper orthogonal decomposition approach to optimal control. It is referred to as optimality
system proper orthogonal decomposition (OS-POD). For more details we refer the reader to [24].

2.1. The augmented optimal control problem. The dynamical system under consider is of the
form

(3.11a)
d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) + 〈N (y(t)), ϕ〉V ∗,V =

m∑

k=1

uk(t) 〈bk, ϕ〉H

for allmost all t ∈ (0, T ] and

(3.11b) 〈y(0), ϕ〉H = 〈y0, ϕ〉H for all ϕ ∈ V,

with the following specifications holding throughout

• T > 0, V and H are separable real Hilbert spaces, with V dense and compact in H , and V ⊂ H =
H∗ ⊂ V ∗ a Gelfand triple,

• a : V ×V → R is a symmetric bilinear form satisfying a(ϕ,ϕ) ≥ α ‖ϕ‖2
V for some α > 0 independent

of ϕ,
• N : V → V ∗ is a twice continuously Fréchet-differentiable operator,
• the control shape functions bk are chosen in H with control intensities u ∈ L2(0, T ; Rm),
• y0 ∈ V .

We associate with a the isomorphism A : V → V ∗, which can alternatively be considered as linear unbounded
selfadjoint operator in H with domain D(A) = {ϕ ∈ V : Aϕ ∈ H}. Defining B : Rm → H by B(υ) =
∑m

k=1 υk bk we can express (3.11) in operator form as

(3.12)







d

dt
y(t) + Ay(t) + N (y(t)) = B(u(t)) for t ∈ (0, T ],

y(0) = y0.

Further assumptions are necessary for the nonlinearity N . We choose conditions which are satisfied for
nonlinearities of Navier-Stokes type, see [39, Chapter III], for example.

(H1)







For every u ∈ L2(Rm) there exists a unique solution

y = y(u) ∈ L2(D(A)) ∩H1(V ) and moreover

there exists a continuous function c1 : R → R such that

‖y(u)‖L2(D(A))∩H1(V ) ≤ c1
(
‖u‖L2(Rm)

)
for all u ∈ L2(Rm).

Here and throughout we shall abbreviateL2(0, T ;Y ) by L2(Y ), and analogously forH1(0, T ;Y ) andC([0, T ];Y ).
We further require the assumptions

(H2)







there exist real constants c2 and c3 such that

−〈N (ψ), ψ〉V ∗,V ≤ α
2 ‖ψ‖2

V + c2 ‖ψ‖2
H + c3 for all ψ ∈ V and

N maps bounded sets in V to bounded sets in V ∗,

and

(H3) D(A) embeds compactly into V.
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For the Navier-Stokes nonlinearity, (H2) is satisfied with c2 = c3 = 0. We consider an optimal control
problem of tracking type. Different cost functionals could be treated quite analogously.

(3.13)







min J(y, u) = min
β

2

∫ T

0

‖y(t) − z(t)‖2
H dt+

1

2

∫ T

0

u(t)TRu(t) dt

subject to u ∈ L2(Rm) and (3.11),

where β > 0, z ∈ L2(H), and R ∈ R
m×m is positive definite and symmetric. To denote the reduced cost

functional we write Ĵ(u) = J(y(u), u), with y(u) the solution to (3.11) for given u. With (H1) holding it is
standard to argue existence of a solution (y∗, u∗) = (y(u∗), u∗) to (3.13).

2.2. The POD approximation. Next we introduce a POD-Galerkin model for (3.13). To define the
POD reduction with basis {ψi}ℓi=1 let

X = H or X = V

and for y ∈ L2(X) let R : X → X be given by

Rψ =

∫ T

0

〈y(t), ψ〉X y(t) dt for ψ ∈ X.

Clearly R is a bounded, nonnegative, selfadjoint operator which can be expressed as

R = YY∗,

where Y : L2(R) → X is defined by

Yv =

∫ T

0

υ(t) y(t, ·) dt for v ∈ L2(R),

and the adjoint Y∗ : X → L2(R) is given by

Y∗ψ = 〈y(t, ·), ψ(·)〉X for ψ ∈ X.

We shall also utilize the operator K : L2(R) → L2(R) defined by

K = Y∗Y
or explicitly

(Kv)(t) =

∫ T

0

〈y(t, ·), y(s, ·)〉X v(s) ds for v ∈ L2(R).

For x ∈ L2(X) it follows that the operator K is compact. Moreover, except for possibly 0, K and R possess
the same eigenvalues which are positive with identical multiplicities and ψ is eigenvector of R if and only if
Y∗ψ = 〈y(t, ·), ψ〉X is an eigenvector of K.

We shall utilize POD bases {ψi(y)}ℓi=1 with respect to X = H or X = V satisfying λ1 ≥ λ2 ≥ . . . ≥
λℓ > 0, and

R(y)ψi =

∫ T

0

〈y(t, ·), ψi〉X y(t) dt = λiψi for i = 1, . . . , ℓ,(3.14a)

〈ψi, ψj〉X = δij for i, j = 1, . . . , ℓ.(3.14b)

The POD-subspaces are denoted by

V ℓ = span {ψ1, . . . , ψℓ}.
Note that V ℓ depends on y. In this paper the POD-subspaces are generated by trajectories y which arise as
controlled trajectories of (3.11). We shall require the following condition

(H4) min{λℓ(R(y)) | y solves (3.11) with u ∈ L2(Rm)} > 0.

Note that ψi ∈ V also for X = H . This follows from (3.14a) using that y ∈ L2(V ). Moreover, ψi ∈ D(A)
for y ∈ L2(D(A)).
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To obtain the POD-Galerkin approximation to (3.11) we make the ansatz

yℓ(t) =
ℓ∑

j=1

xj(t)ψj ,

replace y by yℓ in (3.11), take inner products in H with respect to {ψi}ℓi=1 and obtain the system of ordinary
differential equations in Rℓ

{

E(ψ) ẋ(t) +A(ψ)x(t) + N(x(t), ψ) = B(ψ)u(t) for t ∈ (0, T ]

E(ψ)x(0) = x0(ψ).

Here E : Xℓ ×Xℓ → Rℓ×ℓ with Xℓ =
⊗ℓ

i=1X is defined by

Eij(ϕ, φ) = 〈ϕi, φj〉H and E(ϕ) = E(ϕ,ϕ),

A : Xℓ ×Xℓ → Rℓ×ℓ is defined by

Aij(ϕ, φ) = a(ϕi, φj) and A(ϕ) = A(ϕ,ϕ),

B : Xℓ → Rℓ×m and x0 : Xℓ → Rℓ are given by

Bij(ϕ) = 〈ϕi, bj〉H , x0,i(ϕ) = 〈y0, ϕi〉H ,
and the nonlinearity N : Rℓ ×Xℓ ×Xℓ → Rℓ by

Ni(x, ψ, ϕ) =

〈

N
( ℓ∑

j=1

xj ψj

)

, ϕi

〉

V ∗,V

with N(x, ϕ) = N(x, ϕ, ϕ).

Discretizing the cost function in the same manner we obtain

Jℓ(x, ψ, u) =
β

2

∫ T

0

(
x(t)T (E(ψ)x(t) − 2zℓ(t, ψ)) + ‖z(t)‖2

H

)
dt

+
1

2

∫ T

0

uT (t)Ru(t) dt,

where zℓ : (0, T ) ×Xℓ → Rℓ is given by

zℓ(t, ϕ)i = 〈z(t), ϕi〉H ,
and Jℓ : L2(Rℓ) ×Xℓ × L2(Rm) → R+.

We are now prepared to specify the POD-Galerkin reduced optimal control problem augmented with
the POD-generation criteria:

(3.15)







min Jℓ(x, ψ, u) over (x, ψ, u) ∈ L2(Rℓ) ×Xℓ × L2(Rm),

subject to

E(ψ) ẋ(t) +A(ψ)x(t) + N(x(t), ψ) = B(ψ)u(t) for t ∈ (0, T ],

E(ψ)x(0) = x0(ψ),

d
dt y(t) + Ay(t) + N (y(t)) = B(u(t)) for t ∈ (0, T ],

y(0) = y0,

R(y)ψi = λiψi for i = 1, . . . , ℓ,

〈ψi, ψj〉X = δij for i, j = 1, . . . , ℓ.

If the POD-eigenvalue problem is solved at a reference trajectory y(ū) corresponding to a fixed reference
control ū, this results in the last four equations from (3.15). The remaining optimization is the standard one
in the POD-Galerkin optimal control approach. In [24] te next result is proved.

Theorem 2.1. If (H1)–(H4) is satisfied, then (3.15) admits a (global) solution (x∗, ψ∗, u∗) ∈ W 1,2(Rℓ)×
Xℓ × L2(Rm) with (λ∗, y∗) ∈ Rm × (L2(D(A)) ∩W 1,2(V )) and y∗ = y(u∗).



2. PROPER ORTHOGONAL DECOMPOSITION FOR OPTIMALITY SYSTEMS 61

2.3. The optimality system. Suppose that (x∗, ψ∗, u∗) ∈W 1,2(Rℓ)×Xℓ×L2(Rm) is a local solution
to (3.15). We proceed by deriving an optimality system. For this purpose we assume that the eigenvalues
of R(y∗) with y∗ = y(u∗) are distinct. If this is not the case then in the following results we have to keep
the orthonormality condition on the subspace corresponding to a multiple eigenvalue as explicit constraints.
For λi 6= λj we have 〈ψi, ψj〉X = 0 since R is selfadjoint. Therefore (3.14b) will be replaced by ‖ψ∗

i ‖X = 1
for i = 1, . . . , ℓ.

Henceforth the state and the control variables are considered in the space

Z = H1(Rℓ) ×W (0, T ) ×Xℓ × R
ℓ × L2(Rm),

where W (0, T ) = L2(V ) ∩H1(V ∗) and the generic element of Z is denoted by z = (x, y, ψ, λ, u). We utilize
adjoint variables form the space

Ξ = L2(Rℓ) × R
ℓ × L2(V ) ×H ×Xℓ × R

ℓ

with generic element ξ = (q, q0, p, p0, µ, η). For i = 1, . . . , ℓ we introduce Gi : H1(Rℓ) × Xℓ × L2(Rm) ×
H1(Rℓ) → X ′ by

Gi(x, ψ, u, q) =

∫ T

0

(

xi

( ℓ∑

j=1

xjψj − z
)

+ qi

ℓ∑

j=1

ẋj ψj + ẋj

ℓ∑

j=1

qj ψj

)

dt

+

∫ T

0

(

qi

ℓ∑

j=1

xj Aψj + xi

ℓ∑

j=1

qj Aψj − qi

m∑

k=1

bk uk

)

dt

+

ℓ∑

j=1

(xj(0)ψj qi(0) + xi(0)ψj qj(0)) − y0 qi(0)

+ N
( ℓ∑

k=1

xk ψk

)

qi + xi

ℓ∑

j=1

N ′

( ℓ∑

k=1

xk ψk

)∗

qjψj .

Theorem 2.2. Let (H1)–(H4) hold and let

z = (x, y, ψ, λ, u) ∈W 1,2(Rℓ) ×W 1,2(V ) ×Xℓ × R
m × L2(Rm)

denote a solution to (3.15). Assume that the eigenvalues of R(y) are distinct and that

d

dt
v + Av + N ′(y(t))v − Bũ = w for t ∈ (0, T ] and v(0) = v0

admits a solution (v, ũ) ∈ W (0, T )× L2(Rm) for every (w, v0) ∈ L2(V ∗) ×H. Then there exist (q, p, µ, η) ∈
L2(Rℓ) × L2(V ) ×Xℓ × Rℓ such that the following optimality system holds:

{

−E(ψ) q̇(t) +
(
A(ψ) + NT

x (x(t), ψ)
)
q(t) = −β

(
E(ψ)x(t) − z(t, ψ)

)
,

q(T ) = 0,
(3.16)







−ṗ(t) + Ap(t) + N ′(y(t))∗ p(t)

=
ℓ∑

i=1

〈y(t), µi〉XI−1ψi + 〈y(t), ψi〉XI−1µi,

p(T ) = 0,
{

ηi = − 1
2 〈Gi(x, ψ, u, q), ψi〉X∗,X

µi = −(R− λi I)
−1
[
2 ηi ψi + I Gi(x, ψ, u, q)

]
for i = 1, . . . , ℓ,

Ru(t) = BT (ψ) q(t) + B∗p(t).

The optimality conditions can also be formulated in terms of the operator K. This is helpful if K is of
smaller dimension than R.
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Corollary 2.3. Let z = (x, y, ψ, λ, u) ∈ Z denote a solution of (3.15) and let the assumptions of
Theorem 2.2 hold. Then there exists (q, pK, µK, η) ∈ L2(Rℓ) × L2(V ) × Xℓ × Rℓ satisfying the optimality
system consisting of (3.16) and







−ṗK(t) + ApK(t) + N ′(y(t))∗pK(t)

=

ℓ∑

i=1

∫ T

0

2I−1y(s, ·)µK
i (s) ds ϕi(t)

+
ℓ∑

i=1

∫ T

0

I−1 y(s, ·)ϕi(s) ds µK
i (t)

pK(T ) = 0,
{

ηi = − 1
2 〈Gi(x, ψi, u, q), ψi〉X∗,X

µK
i = −(K− λi I)

−1(K−1 G̃i + 2ηi ϕi),

R u(t) = BT (ψ) q(t) + B∗pK(t),

where
√
λi ψi = Y∗ ψi and G̃i =

√
λi Y∗I Gi(x, ψi, u, q).

3. POD a-posteriori error estimates

The main focus of this section is on an a-posteriori analysis for the method of proper orthogonal de-
composition (POD) applied to optimal control problems governed by parabolic and elliptic PDEs. Based
on a perturbation method it is deduced how far the suboptimal control, computed on the basis of the POD
model, is from the (unknown) exact one. For more details and for the proofs we refer the reader to [41].

3.1. The linear-quadratic parabolic optimal control problem. Let V and H be real, separable
Hilbert spaces and suppose that V is dense in H with compact embedding. By 〈· , ·〉H we denote the
inner product in H . The inner product in V is given by a symmetric bounded, coercive, bilinear form
a : V × V → R:

〈ϕ, ψ〉V = a(ϕ, ψ) for all ϕ, ψ ∈ V

with associated norm ‖ ·‖V =
√

a(· , ·). By identifying H and its dual H ′ it follows that V →֒ H = H ′ →֒ V ′,
each embedding being continuous and dense.

Recall that for T > 0 the space W (0, T )

W (0, T ) =
{
ϕ ∈ L2(0, T ;V ) : ϕt ∈ L2(0, T ;V ′)

}

is a Hilbert space endowed with the common inner product (see, for example, [3, p. 473]). It is well-known
that W (0, T ) is continuously embedded into C([0, T ];H), the space of continuous functions from [0, T ] to H .

Let I be an open and bounded subset of Rd with d ∈ N. By Uad ⊂ L2(I) we define the closed, convex
and bounded subset

Uad =
{
u ∈ L2(I) |ua(s) ≤ u(s) ≤ ub(s) for almost all (f.a.a.) s ∈ I

}

with ua, ub ∈ L2(I) satisfying ua ≤ ub almost everywhere (a.e.) in I. For y0 ∈ H , r ∈ L2(0, T ;V ′) and
u ∈ Uad we consider the linear evolution problem

d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) = 〈(r + Bu)(t), ϕ〉V ′,V f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,(3.17a)

〈y(0), ϕ〉H = 〈y0, ϕ〉H ∀ϕ ∈ V,(3.17b)

where B : L2(I) → L2(0, T ;V ′) is a continuous, linear operator.
It is well-known (see, e.g., [3]) that for every r ∈ L2(0, T ;V ′), u ∈ L2(I) and y0 ∈ H there exists a

unique weak solution y ∈ W (0, T ) satisfying (3.17) and

‖y‖W (0,T ) ≤ C
(
‖u‖L2(I) + ‖y0‖H + ‖r‖L2(0,T ;V ′)

)

with a constant C > 0 independent of y.
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Remark 3.1. Let ŷ0 ∈W (0, T ) be the unique solution to

d

dt
〈ŷ0(t), ϕ〉H + a(ŷ0(t), ϕ) = 〈r(t), ϕ〉V ′,V f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,

〈ŷ0(0), ϕ〉H = 〈y0, ϕ〉H ∀ϕ ∈ V.

Moreover, we introduce the linear and bounded operator S : L2(I) →W (0, T ) as follows: ỹ = Su ∈ W (0, T )
is the unique solution to

d

dt
〈ỹ(t), ϕ〉H + a(ỹ(t), ϕ) = 〈(Bu)(t), ϕ〉V ′,V f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,

〈ỹ(0), ϕ〉H = 0 ∀ϕ ∈ V.

Then, y = ŷ0 + Su is the weak solution to (3.17). ♦

Next we introduce the cost functional J : W (0, T )× L2(I) → R by

J(y, u) =
α1

2
‖Cy − z1‖2

W1
+
α2

2
‖Dy(T ) − z2‖2

W2
+
σ

2
‖u‖2

L2(I),

where W1, W2 are Hilbert spaces, C : L2(0, T ;H) →W1 and D : H →W2 are bounded linear operators, and
(z1, z2) ∈ W1 ×W2 holds. Furthermore, α1, α2 are nonnegative parameters and σ > 0.

The optimal control problem is given by

(3.18) minJ(y, u) s.t. (y, u) ∈ W (0, T )× Uad solves (3.17).

Applying standard arguments (see [28], for instance) one can prove that there exists a unique optimal
solution x̄ = (ȳ, ū) to (3.18).

Suppose that x̄ = (ȳ, ū) is the optimal solution to (3.18) (in the paper, a bar indicates optimality). Then
there exists a unique Lagrange-multiplier p̄ ∈ W (0, T ) satisfying together with x̄ the first-order necessary
optimality conditions, which consist of the state equations (3.17), the adjoint equations in [0, T ]

− d

dt
〈p̄(t), ϕ〉H + a(p̄(t), ϕ) = α1 〈z1 − Cȳ, Cϕ〉W1

f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,(3.19a)

〈p̄(T ), ϕ〉H = α2〈z2 −Dȳ(T ),Dϕ〉W2
∀ϕ ∈ V,(3.19b)

and of the variational inequality

(3.20) 〈σū − B⋆p̄, u− ū〉L2(I) ≥ 0 ∀u ∈ Uad.

Here, the linear and bounded operator B⋆ : L2(0, T ;V ) → L2(I)′ ∼ L2(I) stands for the dual operator of B.
Utilizing the solution operator S (see Remark 3.1) we introduce the so-called reduced cost functional as

Ĵ(u) = J(ŷ0 + Su, u).

Then, we can express (3.18) as the reduced problem

(3.21) min Ĵ(u) s.t. u ∈ Uad.

It follows that Ĵ ′(ū) = σū − B⋆p̄ ∈ L2(I) is the gradient of Ĵ at ū, where p̄ solves the dual sytem (3.19) for
ȳ = ŷ0 + Sū. Moreover, the variational inequality (3.20) is equivalent to

(3.22) ū(s) = P[ua(s),ub(s)]

(
1

σ

(
B⋆p̄

)
(s)

)

f.a.a. s ∈ I,

where P[a,b] : R → [a, b] denotes the projection operator onto the convex interval [a, b] ⊂ R.
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3.2. A-posteriori error analysis. In principle, this section contains the main idea underlying our
a-posteriori error analysis. Suppose that up is an arbitrary control of Uad. Our goal is to estimate the
difference

‖ū− up‖L2(I)

without the knowledge of the optimal solution ū.
If up 6= ū then up does not satisfy the necessary (and by convexity sufficient) optimality conditions (3.20)

respectively (3.22). However, there exists a function ζ ∈ L2(I) such that

(3.23) 〈σup − B⋆pp + ζ, u− up〉L2(I) ≥ 0 ∀u ∈ Uad,

where pp ∈ W (0, T ) solves the adjoint equation associated with up

(3.24)
− d

dt
〈pp(t), ϕ〉H + a(pp(t), ϕ) = α1〈z1 − Cyp, Cϕ〉W1

f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,

〈pp(T ), ϕ〉H = α2〈z2 −Dyp(T ),Dϕ〉W2
∀ϕ ∈ V,

and yp = ŷ + Sup is the state corresponding to up. Therefore, up satisfies the optimality condition of a
perturbed parabolic optimal control problem with “perturbation” ζ. The smaller ζ is, the closer up is to ū.
The computation of ζ is possible on the basis of the known data up, yp, and pp.

Theorem 3.2. Let ū be the optimal solution to (3.18), ȳ the associated optimal state, and p̄ the associated
Lagrange multiplier. Suppose that up ∈ Uad is chosen arbitrarily, yp = ŷ + Sup, and pp is the solution to
(3.24). Then it follows that

‖ū− up‖L2(I) ≤
1

σ
‖ζ‖L2(I),

where ζ is chosen such that (3.23) holds.

The function ζ satisfying (3.23) can be constructed from knowledge of up and the associated adjoint
state pp solving to (3.24).

Proposition 3.3. Suppose that the hypotheses of Theorem 3.2 are satisfied. Define ζ ∈ L2(I) as follows:

(3.25) ζ(s) =







[
(σup − B⋆pp)(s)

]

−
on A− =

{
s ∈ I

∣
∣up(s) = ua(s)

}
,

[
(σup − B⋆pp)(s)

]

+
on A+ =

{
s ∈ I

∣
∣up(s) = ub(s)

}
,

−(σup − B⋆pp)(s) on J = I \
(
A− ∪ A+

)
.

Then, the estimate

(3.26) ‖ū− up‖L2(I) ≤
1

σ
‖ζ‖L2(I)

is satisfied.

We will call (3.26) an a-posteriori error estimate, since, in the next section, we shall apply it to suboptimal
controls up that have already been computed from a POD model. After having computed up, we determine
the associated state yp and adjoint state (Lagrange multiplier) pp. Then we can determine ζ and its L2-norm
and (3.26) gives an upper bound for the distance of up to ū. In this way, the error caused by the POD method
can be estimated a-posteriorily. If the error is too large, then we have to include more POD basis functions
in our Galerkin ansatz. This approach compensates the lack of a-priori error estimates for the POD method.

Next we turn to the POD approximation for (3.18). Let an arbitrary u ∈ L2(I) be chosen such that the
corresponding state variable y = ŷ0 + Su ∈ W (0, T ) belongs to C([0, T ];V ). Then,

(3.27) V = span
{
y(t) | t ∈ [0, T ]

}
⊆ V.

If y0 6= 0 holds, then span {y0} ⊂ V and d = dimV ≥ 1, but V may have infinite dimension. We define a
bounded linear operator Y : L2(0, T ) → V by

Yϕ =

∫ T

0

ϕ(t)y(t) dt for ϕ ∈ L2(0, T ).
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Its Hilbert space adjoint Y⋆ : V → L2(0, T ) satisfying

〈Yϕ, z〉V = 〈ϕ,Y⋆z〉L2(0,T ) for (ϕ, z) ∈ L2(0, T )× V

is given by
(
Y⋆z

)
(t) = 〈z, y(t)〉V for z ∈ V and f.a.a. t ∈ [0, T ].

The bounded linear operator R = YY⋆ : V → V ⊆ V has the form

(3.28) Rz =

∫ T

0

〈z, y(t)〉V y(t) dt for z ∈ V.

Moreover, let K = Y⋆Y : L2(0, T ) → L2(0, T ) be defined by

(
Kϕ
)
(t) =

∫ T

0

〈y(s), y(t)〉V ϕ(s) ds for ϕ ∈ L2(0, T ).

The operator K is linear, bounded, self-adjoint, and compact. This implies that R is compact as well.
Moreover, R is non-negative. From the Hilbert-Schmidt theorem [36, p. 203] it follows that there exists a
complete orthonormal basis {ψi}di=1 for V = range (R) and a sequence {λi}di=1 of real numbers such that

(3.29) Rψi = λiψi for i = 1, . . . , d and λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0.

Remark 3.4. 1) To obtain a complete orthonormal basis in the separable Hilbert space V we
need an orthonormal basis for (range (R))⊥. This can be done by the Gram-Schmidt procedure.
Hence, we suppose in the following that {ψi}∞i=1 is a complete orthonormal basis for V .

2) Analogously to the theory of singular value decompositions for matrices, we find that the linear,
bounded, compact and self-adjoint operator K has the same eigenvalues {λi}i∈N as the operator
R. For all λi > 0 the corresponding eigenfunctions of K are given by

vi(t) =
1√
λi

(
Y∗ψi

)
(t) =

1√
λi

〈ψi, y(t)〉V f.a.a. t ∈ [0, T ] and 1 ≤ i ≤ ℓ.

♦

In the following proposition we formulate properties of the eigenvalues and eigenfunctions of R. There-
fore, for given ℓ ∈ N we introduce the mapping

J : V × . . .× V
︸ ︷︷ ︸

ℓ−times

→ R, J(ψ1, . . . , ψℓ) :=

∫ T

0

∥
∥
∥y(t) −

ℓ∑

i=1

〈y(t), ψi〉V ψi
∥
∥
∥

2

V
dt.

Note that

(3.30) J(ψ1, . . . , ψℓ) =

∫ T

0

∥
∥
∥y(t) − Pℓy(t)

∥
∥
∥

2

V
dt.

Proposition 3.5. Suppose that V is a separable Hilbert space, y ∈ C([0, T ];V ) holds and V is given as in
(3.27). Let the linear operator R : V → V be defined as in (3.28). Then, R is bounded, self-adjoint, compact
and non-negative, and there exists {λi}i∈N and {ψi}i∈N satisfying (3.29). Moreover, for any ℓ ≤ d = dimV

the elements {ψi}ℓi=1 solve the minimization problem

(3.31) min J(ψ̃1, . . . , ψ̃ℓ) s.t. 〈ψ̃j , ψ̃i〉V = δij for 1 ≤ i, j ≤ ℓ

and

J(ψ1, . . . , ψℓ) =

∞∑

i=ℓ+1

λi.
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For a proof we refer to [12, Section 3] and [36, Sections II and VI], for instance.
In real computations, we do not have the whole trajectory y(t) for all t ∈ [0, T ]. For that purpose let

0 = t1 < t2 < . . . < tn = T be a given grid in [0, T ] and let yj = y(tj) denote approximations for y at time
instance tj , j = 1, . . . , n. We set Vn = span {y1, . . . , yn} with dn = dimVn ≤ n. Then, for given ℓ ≤ n we
consider the minimization problem

(3.32) min
n∑

j=1

αj

∥
∥
∥yj −

ℓ∑

i=1

〈yj , ψni 〉V ψni
∥
∥
∥

2

V
s.t. 〈ψni , ψnj 〉V = δij for 1 ≤ i, j ≤ ℓ

instead of (3.31). In (3.32) the αj ’s stand for the trapezoidal weights

α1 =
t2 − t1

2
, αj =

tj+1 − tj−1

2
for 2 ≤ j ≤ n− 1, αn =

tn − tn−1

2
.

The solution to (3.32) is given by the solution to the eigenvalue problem

Rnψni =

n∑

j=1

αj 〈yj , ψni 〉V yj = λni ψ
n
i , i = 1, . . . , ℓ,

where Rn : V → Vn ⊂ V is a linear, bounded, compact, self-adjoint and non-negative operator. Thus, there
exists an orthonormal set {ψni }d

n

i=1 of eigenfunctions and corresponding non-negative eigenvalues {λni }d
n

i=1

satisfying

(3.33) Rnψni = λni ψ
n
i , λn1 ≥ λn2 ≥ . . . ≥ λndn > 0.

Let y = ŷ0 + Su be the state associated with some control u ∈ L2(I), and let V be given as in (3.27).
We fix ℓ with ℓ ≤ dimV and compute the first ℓ POD basis functions ψ1, . . . , ψℓ ∈ V by solving either
Rψi = λiψi or Kvi = λvi for i = 1, . . . , ℓ (see Remark 3.4). Then we define the finite dimensional linear
space

V ℓ = span
{
ψ1, . . . , ψℓ

}
⊂ V.

Endowed with the topology in V it follows that V ℓ is a Hilbert space. Let Pℓ denote the orthogonal projection
Pℓ of V onto V ℓ defined by

(3.34) Pℓϕ =

ℓ∑

i=1

〈ϕ, ψi〉V ψi for ϕ ∈ V.

Combining (3.30) and (3.31) we obtain that

J(ψ1, . . . , ψℓ) =

∫ T

0

∥
∥y(t) − Pℓy(t)

∥
∥

2

V
dt =

∥
∥y − Pℓy

∥
∥

2

L2(0,T ;V )
=

∞∑

i=ℓ+1

λi.

The POD Galerkin scheme for the state equation (3.17) leads to the following linear problem: determine

a function yℓ =
∑ℓ
i=1 yi(t)ψi such that

d

dt
〈yℓ(t), ψ〉H + a(yℓ(t), ψ) = 〈(r + Bu)(t), ψ〉V ′,V f.a.a. t ∈ [0, T ], ∀ψ ∈ V ℓ,(3.35a)

〈yℓ(0), ψ〉H = 〈y0, ψ〉H ∀ψ ∈ V ℓ.(3.35b)

For every r ∈ L2(0, T ;V ′), u ∈ L2(I), y0 ∈ H and for every ℓ ∈ N problem (3.35) admits a unique solution
yℓ ∈ H1(0, T ;V ℓ); see [11, Proposition 3.4]. From V ℓ →֒ V it follows that yℓ ∈W (0, T ) holds.

Let ŷℓ0 ∈ H1(0, T ;V ℓ) be the solution to (3.35) for u ≡ 0. Analogously to Remark 3.1 we introduce the
linear operator Sℓ : L2(I) → H1(0, T ;V ℓ) for fixed ℓ: For given u ∈ L2(I) the element ỹℓ = Sℓu solves (3.35)
with r ≡ 0 and y0 ≡ 0. Thus, yℓ is given by yℓ = ŷℓ0 + ỹℓ. It follows from [11, Proposition 3.4] that the
operator Sℓ is bounded independently of ℓ.
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Proposition 3.6. For given r ∈ L2(0, T ;V ′), u ∈ L2(I), and y0 ∈ H we suppose that y = ŷ+Su belongs
to y ∈ C([0, T ];V ). Suppose that, for ℓ ≤ dimV, the elements {ψi}ℓi=1 solve (3.31). Then, there exists a
constant C > 0 such that

‖y − yℓ‖2

W (0,T ) ≤ C

(
∥
∥yℓ(0) − Pℓy0

∥
∥

2

H
+
∥
∥yt − Pℓyt

∥
∥

2

L2(0,T ;V ′)
+

∞∑

i=ℓ+1

λi

)

,

where the linear projector Pℓ : V → V ℓ is given by (3.34) and yℓ = ŷℓ0 + Sℓu denotes the unique solution to
(3.35).

Proposition 3.6 permits to show that the POD approximations yℓ converge to y in the W (0, T )-norm:

Proposition 3.7. For given r ∈ L2(0, T ;V ′), u ∈ L2(I), and y0 ∈ V we suppose that y = ŷ+Su belongs
to y ∈ H1(0, T ;V ). Suppose that, for ℓ ≤ dim V, the elements {ψi}ℓi=1 solve (3.31). Then, it follows that

lim
ℓ→∞

∥
∥y − yℓ

∥
∥
W (0,T )

= 0,

where yℓ = ŷℓ0 + Sℓu denotes the unique solution to (3.35).

Remark 3.8. 1) Due to the continuous embedding of W (0, T ) into the space C([0, T ];H), Propo-
sition 3.7 implies yℓ → y in C([0, T ];H) as ℓ→ ∞. In particular, yℓ(T ) converges to y(T ) in H as
ℓ tends to ∞.

2) Let us mention that the convergence result in Proposition 3.7 is true for any fixed u provided that
the system {ψi}∞i=1 computed from the snapshots associated with u is complete. ♦

We turn to the POD Galerkin scheme for the adjoint system (3.19a). For that purpose let u ∈ L2(I)
be arbitrarily given, {ψ1, . . . , ψℓ} the associated POD basis of rank ℓ, and let yℓ ∈ H1(0, T ;V ℓ) denote the

unique solution to (3.35). Then, pℓ =
∑ℓ
i=1 pi(t)ψi satisfies the linear system

− d

dt
〈pℓ(t), ψ〉H + a(pℓ(t), ψ) = α1〈z1 − Cyℓ, Cψ〉W1

f.a.a. t ∈ [0, T ], ∀ψ ∈ V ℓ,(3.36a)

〈pℓ(T ), ψ〉H = α2〈z2 −Dyℓ(T ),Dψ〉W2
∀ψ ∈ V ℓ.(3.36b)

Proposition 3.9. For given r ∈ L2(0, T ;V ′), u ∈ L2(I), y0 ∈ H suppose that y = ŷ + Su belongs to
H1(0, T ;V ). Suppose that for ℓ ≤ dimV the elements {ψi}ℓi=1 solve (3.31). Let yℓ = ŷℓ0 + Sℓu, p, and pℓ be
the solutions to (3.35), (3.19) and (3.36), respectively. Then there exists a constant C > 0 depending on α1,
α2, C, and D

∥
∥p− pℓ

∥
∥
L2(0,T ;V )

≤ C
(∥
∥p(T )− Pℓp(T )

∥
∥
H

+
∥
∥p− Pℓp‖W (0,T )

)

+ C
(∥
∥y(T ) − yℓ(T )

∥
∥
H

+
∥
∥y − yℓ

∥
∥
L2(0,T ;H)

)

.

where the linear projector Pℓ : V → V ℓ is given by (3.34). If, in addition, y0 ∈ V and p ∈ H1(0, T ;V ) hold,
then lim

ℓ→∞
‖p− pℓ‖L2(0,T ;V ) = 0 holds.

Remark 3.10. Arguing as in Remark 3.8-2) we derive that the convergence result of Proposition 3.9
remains true if the POD basis is computed using an input ũ ∈ L2(I) that differs from u. Of course, the
convergence rate of pℓ to p as ℓ → ∞ depends on the approximation properties of the POD basis for the
adjoint variable p; see [4, 11]. ♦

The Galerkin projection of (3.21) leads to the discretized optimal control problem

(3.37) min Ĵℓ(u) s.t. u ∈ Uad,

where Ĵℓ(u) = J(yℓ(u), u) is the reduced objective function and yℓ(u) denotes the solution to (3.35) associated
with u ∈ Uad . We call (3.37) a reduced-order model for (3.21).
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Problem (3.37) admits a unique optimal solution ūℓ that is interpreted as a suboptimal solution to (3.21).
First-order necessary optimality conditions for (3.37) are given by

〈σūℓ − B⋆p̄ℓ, u− ūℓ〉L2(I) ≥ 0 for all u ∈ Uad,

where, ȳℓ ∈ H1(0, T ;V ℓ) denotes the optimal state solving (3.35) with u = ū and p̄ℓ ∈ H1(0, T ;V ℓ) is the
adjoint state for the POD model.

We proceed similarly as in [11, Section 4]. However, an essential difference is that we derive convergence
results utilizing a POD basis of rank ℓ that is not necessarily related to the optimal control ū as an input
function for the generation of the snapshots.

Proposition 3.11. Suppose that the POD basis of rank ℓ is computed using an arbitrarily chosen
u ∈ L2(I). Let ū and ūℓ be the optimal solutions to (3.21) and (3.37), respectively. Moreover, p̄ ∈ W (0, T )
denotes the adjoint state associated with ū. Then,

‖ū− ūℓ‖L2(I) ≤ c ‖p̄− p̂ℓ‖L2(0,T ;V ),

where p̂ℓ solves

− d

dt
〈p̂ℓ(t), ψ〉H + a(p̂ℓ(t), ψ) = α1〈z1 − Cŷℓ, Cψ〉W1

f.a.a. t ∈ [0, T ], ∀ψ ∈ V ℓ,

〈p̂ℓ(T ), ψ〉H = α2〈z2 −Dŷℓ(T ),Dψ〉W2
∀ψ ∈ V ℓ

and ŷℓ is the solution to

d

dt
〈ŷℓ(t), ψ〉H + a(ŷℓ(t), ψ) = 〈(r + Bū)(t), ψ〉V ′,V f.a.a. t ∈ [0, T ], ∀ψ ∈ V ℓ,

〈ŷℓ(0), ψ〉H = 〈y0, ψ〉H ∀ψ ∈ V ℓ.

Notice that p̂ℓ is the POD-approximate associated with ŷℓ and ŷℓ = ŷℓ0 + Sℓū. Therefore, both ŷℓ and
p̂ℓ are associated with the same optimal control ū so that we can apply Proposition 3.6 and Proposition 3.9
to estimate the difference ȳ − ŷℓ and p̄− p̂ℓ, respectively. In contrast to this, ȳℓ = ŷℓ0 + Sℓūℓ corresponds to
the suboptimal control ūℓ, which we estimate in the next theorem.

Theorem 3.12. Suppose that the POD basis of rank ℓ is computed using an arbitrarily chosen u ∈ L2(I).
Let ū and ūℓ be the optimal solutions to (3.21) and (3.37), respectively. Moreover, let ȳ and p̄ denote the
optimal state and adjoint, respectively, associated with ū. Then there exists a constant C > 0 not depending
on ℓ such that

(3.38)

∥
∥ū− ūℓ

∥
∥
L2(I)

≤ C

(
∥
∥ȳ − Pℓȳ

∥
∥
W (0,T )

+
∥
∥ȳℓ(0) − Pℓy0

∥
∥
H

+
∥
∥p̄− Pℓp̄

∥
∥
W (0,T )

)

,

where the linear projector Pℓ : V → V ℓ is given in (3.34).
If, in addition, y◦ ∈ V and ȳ, p̄ ∈ H1(0, T ;V ) hold and {ψi}∞i=1 is a complete orthonormal basis for V ,

then

lim
ℓ→∞

∥
∥ū− ūℓ

∥
∥
L2(I)

= 0.

Remark 3.13. Let us consider the following idealized situation [11]: Let ū be the optimal solution to
(3.21). Moreover, let ȳ, p̄ ∈ H1(0, T ;V ) denote the optimal state and adjoint state, respectively, associated
with ū and let y0 ∈ V . Then we consider the minimization problem

min
ψ1,...,ψℓ

‖ȳ − Pℓȳ‖2

H1(0,T ;V ) + ‖p̄− Pℓp̄‖2

H1(0,T ;V ) s.t. 〈ψi, ψj〉V = δij , 1 ≤ i, j ≤ ℓ.

Its solution {ψ̄i}ℓi=1 of rank ℓ satisfies the eigenvalue problem

R̄ψ̄i = λ̄iψ̄i, 1 ≤ i ≤ ℓ,
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where the linear, bounded, non-negative and self-adjoint operator R̄ is defined as

R̄z =

∫ T

0

〈ȳ(t), z〉V y(t) + 〈ȳt(t), z〉V ȳt(t) + 〈p̄(t), z〉V p̄(t) + 〈p̄t(t), z〉V p̄t(t) dt

for z ∈ V . Then, (3.38) can be replaced by

∥
∥ū− ūℓ

∥
∥

2

L2(I)
≤ C̄

(
∥
∥ȳℓ(0) − Pℓy0

∥
∥

2

H
+

∞∑

i=ℓ+1

λ̄i

)

with a constant C̄ > 0. Now we can estimate the decay of the norms ‖ȳ−Pℓȳ‖W (0,T ) and ‖p̄−Pℓp̄‖W (0,T ) in

(3.38) in terms of the eigenvalues λ̄i and obtain an error estimate with respect to the remainder
∑∞

i=ℓ+1 λ̄i.

In contrast to this, the decay of the eigenvalues λi can only be used to bound ‖ȳ−Pℓȳ‖L2(0,T ;V ) from above,

but not the expression ‖ȳt − Pℓȳt‖L2(0,T ;V ′) + ‖p̄− Pℓp̄‖W (0,T ). ♦

Now we complete the discussion of the a-posteriori estimate by combining Theorem 3.12 and Proposi-
tion 3.3. The proposition permits to estimate ‖ū− ūℓ‖ by the norm of an appropriate ζ, while Theorem 3.12
will be used to show that ζ tends to zero as ℓ→ ∞, since it ensures convergence of ūℓ to the optimal solution
ū of (3.21).

For any ℓ let ūℓ ∈ Uad be the optimal solution to (3.37). This optimal ūℓ is taken as a suboptimal up
for (3.21), i.e. in Proposition 3.3 we take up := ūℓ.

Theorem 3.14. 1) Let ℓ ≤ d be arbitrarily given and ūℓ ∈ Uad be the optimal solution to (3.37).
Denote by ỹ = ỹ(ūℓ) = ŷ0 + Sūℓ the solution to (3.17) with u = ūℓ and let p̃ = p̃(ūℓ) solve the
associated adjoint equation

(3.39)
− d

dt
〈p̃(t), ϕ〉H + a(p̃(t), ϕ) = α1 〈z1 − Cỹ, Cϕ〉W1

f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,

〈p̃(T ), ϕ〉H = α2〈z2 −Dỹ(T ),Dϕ〉W2
∀ϕ ∈ V.

Define, according to (3.25), the function ζℓ ∈ L2(I) by

(3.40) ζℓ(s) =







[
(σūℓ − B⋆p̃(ūℓ))(s)

]

−
on Aℓ

− =
{
s ∈ I

∣
∣ ūℓ(s) = ua(s)

}
,

[
(σūℓ − B⋆p̃(ūℓ))(s)

]

+
on Aℓ

+ =
{
s ∈ I

∣
∣ ūℓ(s) = ub(s)

}
,

−(σūℓ − B⋆p̃ℓ(ūℓ))(s) on Jℓ = I \ (Aℓ
− ∪ Aℓ

+).

Then

‖ū− ūℓ‖L2(I) ≤
1

σ
‖ζℓ‖L2(I).

2) If all hypotheses of Proposition 3.9 and Theorem 3.12 are satisfied, in particular {ψi}∞i=1 is a com-
plete orthonormal basis for V , then the sequences {ūℓ}ℓ∈N and {B⋆p̂ℓ}ℓ∈N converge to ū respectively
B⋆p̄ in L2(I) as ℓ→ ∞ and

‖ζℓ‖L2(I) → 0.

Remark 3.15. 1) Notice that ỹ and p̃ must be taken as the solutions to the (full) state and
adjoint equation, respectively, not of their POD-approximations.

2) Part 2) of Theorem 3.14 shows that ‖ζℓ‖L2(I) can be expected smaller than any ε > 0 provided
that ℓ is taken sufficiently large. Motivated by this result, we set up the Algorithm 1. ♦

Remark 3.16. In the numerical realization of Algorithm 1, Step 6 requires the solution of the state as
well as of the adjoint equation by, e.g., a finite element or finite differerence scheme. ♦
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Algorithm 1 POD reduced-order method with a-posteriori estimator.

1: Choose an input u ∈ Uad, an initial number ℓ for POD ansatz functions, a maximal number ℓmax > ℓ of
POD ansatz functions, and a stopping tolerance ε > 0; compute y = ŷ0 + Su.

2: Determine a POD basis of rank ℓ utilizing the state y = ŷ0 + Su and derive the reduced-order model
(3.37).

3: repeat
4: Establish the discretized optimal control problem (3.37).
5: Calculate the optimal solution ūℓ of (3.37).
6: Evaluate ỹ(ūℓ) = ŷ0 + Sūℓ and compute the solution p̃(ūℓ) to (3.39) as well as ζℓ from (3.40).
7: if ‖ζℓ‖L2(I) < ε or ℓ = ℓmax then

8: Return ℓ and suboptimal control ūℓ and STOP.
9: else

10: Set ℓ = ℓ+ 1.
11: end if
12: until ℓ > ℓmax



CHAPTER 4

Further topics

1. Parameter identification

1.1. Galerkin proper orthogonal decomposition methods for parameter dependent elliptic
systems. In [16] estimates for Galerkin POD methods for linear elliptic, parameter-dependent systems are
proved. The resulting error bounds depend on the number of POD basis functions and on the parameter
grid that is used to generate the snapshots and to compute the POD basis. The error estimates also holds
for semi-linear elliptic problems with monotone nonlinearity. Numerical examples are included.

1.2. Impedance identification. The acoustical impedance of a component or trim part is one of its
most important characteristics. The trim and its absorption behavior contributes significantly to the comfort
inside the car. Therefore, correct impedance values are needed when acoustical simulations of car interior
noise are carried out.

A generally used methodology to determine the acoustical impedance is to use cut-out round samples of
the material in question and measure the acoustic characteristic in the impedance tube. As a result values
for the normal impedance and absorption coefficients can be obtained for this material. Disadvantages
of this method are that the measurement considers normal acoustic waves, only, that some materials are
inappropriate for the impedance tube and that the effects of the shape of the whole part have to be neglected.
Therefore efforts have been made to develop methods for impedance mearurements of entire trim parts, such
as carpets, dashboards or seats.

In [44] we formulate the identification problem as an optimal control problem, where the cost functional
contains a regularization term as well as a least-squares term for the difference of the mearurements and the
sound pressure p computed by solving the Helmholtz equation. In contrast to [10] we identify the admittance
A ∈ C instead of the impedance Z = 1/A. Due to the the term Ap in the Robin boundary conditions for
the Helmholtz equation (normal impedance boundary) the obtained optimal control problem has a bilinear
structure, whereas in [10] the non-linearity is of the form p/Z. If the admittance A has been estimated,
then Z = 1/A is an estimate for the impedance. The optimal control problem is solved by a globalized
quasi-Newton method with BFGS update of the Hessian [34]. Furthermore, a discretization based on proper
orthogonal decomposition (POD) is utilized for the solution of the Helmholtz equation. POD is a powerful
technique for model reduction of nonlinear systems.

Let us mention that in [10] a standard finite element discretization for the Helmholtz equation is applied.
Alternatively, the wave based technique (WBT) is used in [9]. A-posteriori analysis in utilized in [41] to
determine the number of POD ansatz functions in the POD Galerkin projection for an optimal control
problem governed by the Helmholtz equation.

1.3. Estimation of regularization parameters in elliptic optimal control problems. In [17]
parameter estimation problems for a non-linear elliptic problem are considered. Using a Tikhonov regular-
ization techniques the identification problems are formulated in terms of optimal control problems which are
solved numerically by an augmented Lagrangian method combined with a globalized sequential quadratic
programming algorithm. For the discretization of the partial differential equations a Galerkin scheme based
on proper orthogonal decomposition (POD) is utilized, which leads to a fast optimization solver. This method
is utilized in a bilevel optimization problem to determine the parameters for the Tikhonov regularization.
Numerical examples illustrate the efficiency of the proposed approach.

71
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1.4. Estimation of diffusion coefficients in a scalar Ginzburg-Landau equation. In [18] work
POD is applied to estimate scalar parameters in a scalar non-linear Ginzburg-Landau equation. The pa-
rameter estimation is formulated in terms of an optimal control problem that is solved by an augmented
Lagrangian method combined with a sequential quadratic programming algorithm. A numerical example
illustrates the efficiency of the proposed solution method.

2. Feedback strategies

2.1. Reduced order output feedback control design for PDE systems. The design of an optimal
(output feedback) reduced order control (ROC) law for a dynamic control system is an important example
of a difficult and in general non–convex (nonlinear) optimal control problem. In [27] we present a novel
numerical strategy to the solution of the ROC design problem if the control system is described by partial
differential equations (PDE). The discretization of the ROC problem with PDE constraints leads to a large
scale (non–convex) nonlinear semidefinite program (NSDP). For reducing the size of the high dimensional
control system, first, we apply a POD method to the discretized PDE. The POD approach leads to a low
dimensional model of the control system. Thereafter, we solve the corresponding small–sized NSDP by a fully
iterative interior point constraint trust region (IPCTR) algorithm. IPCTR is designed to take advantage of
the special structure of the NSDP. Finally, the solution is a ROC for the low dimensional approximation of
the control system. In our numerical examples we demonstrate that the reduced order controller computed
from the small scaled problem can be used to control the large scale approximation of the PDE system.

2.2. HJB-POD based feedback design for the optimal control of evolution problems. The
numerical realization of closed loop control for distributed parameter systems is still a significant challenge
and in fact infeasible unless specific structural techniques are employed. In [25] we propose the combination
of model reduction techniques based on POD with the numerical treatment of the Hamilton-Jacobi-Bellman
(HJB) equation for infinite horizon optimal control problems by a modification of an algorithm originated by
Gonzales-Rofman and further developed by Falcone-Ferretti. The feasibility of the proposed methodology
is demonstrated numerically by means of optimal boundary feedback-control for the Burgers equation with
noise in the initial condition and in the forcing function.
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