Übungen zu Numerik gewöhnlicher Differentialgleichungen

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 3 Submission: 20.05.2010, 12:00 o'clock, Box 13

Exercise 7 (Homework)

Consider the following positive-definite matrix

$$
A=\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right) \in \mathbb{R}^{(n-1) \times(n-1)}
$$

Verify that the eigenvalues of A are

$$
\lambda_{k}=4 \sin ^{2}\left(\frac{k \pi}{2 n}\right) \quad k=1, \ldots, n-1
$$

with associated eigenvectors

$$
v_{k}=\left(\sin \left(\frac{k \pi}{n}\right), \sin \left(\frac{2 k \pi}{n}\right), \ldots, \sin \left(\frac{(n-1) k \pi}{n}\right)\right)^{T} \in \mathbb{R}^{n-1}
$$

Exercise 8

Write the heat equation

$$
\frac{\partial T}{\partial t}=\kappa \frac{\partial^{2} T}{\partial x^{2}}, \quad t>0, x \in(0, \ell)
$$

as a system of $(n-1)$ ODEs and show that the obtained linear system is stiff.
Hint: A linear system $y^{\prime}=A y$ with A an $(n-1) \times(n-1)$ matrix is called stiff if

$$
\operatorname{Re}\left(\lambda_{i}\right)<0 \quad \text { and } \quad \max _{i, j} \frac{\left|\lambda_{i}\right|}{\left|\lambda_{j}\right|} \gg 1
$$

for the eigenvalues $\lambda_{i} \in \mathbb{C}, i=1, \ldots, n-1$ of A.

Exercise 9

Formulate the trapezoidal method for the linear system obtained in Exercise 8. How high are the computational costs in each iteration?

Consider the linear system obtained in Exercise 8, i.e.

$$
y^{\prime}=A y
$$

with $\kappa=1, \ell=1$ and the initial condition $y_{0}=\left(\Phi\left(x_{0}\right), \ldots, \Phi\left(x_{n-1}\right)\right)^{T}$ with $\Phi(x)=$ $\sin (\pi x)$. Choose $n=60$ for the numerical experiments.

1. Implement the midpoint rule

$$
\begin{aligned}
& y_{k+\frac{1}{2}}=y_{k}+\frac{h}{2} f\left(t_{k}, y_{k}\right) \\
& y_{k+1}=y_{k}+h f\left(t_{k}+\frac{h}{2}, y_{k+\frac{1}{2}}\right)
\end{aligned}
$$

on the ODE system obtained in Exercise 8. Plot and compare the results obtained with different stepsizes h. What do you observe? How small a stepsize do you have to choose to get good results? Show what happens if h is chosen wrong.

Hint: The midpoint rule is only stable if $\left|h \lambda_{n-1}(A)\right|<2$, where $\lambda_{n-1}(A)$ is the largest eigenvalue of A.
2. Implement the trapezoidal method on the linear system of Exercise 8. Hence, compare the results obtained with different stepsizes h.

