Übungen zu Numerik gewöhnlicher Differentialgleichungen

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 4
Submission: 04.06.2010, 12:00 o'clock, Box 13

Exercise 10 (Homework)

Show that the update formula of the fourth-order Adams-Bashforth method to solve the problem $y^{\prime}(t)=f(t, y)$ is given by

$$
y_{k+1}=y_{k}+\frac{h}{24}\left(55 f_{k}-59 f_{k-1}+37 f_{k-2}-9 f_{k-3}\right) .
$$

Exercise 11

The general form of an m-order Runge-Kutta method for the solution of the equation $y^{\prime}(t)=f(t, y)$ can be represented with the Butcher's tableau. Show that the Heun and trapezoidal methods can be viewed as Runge-Kutta methods and write down their Butcher's tableaux. What do you observe regarding the structure of the tableaux?

Exercise 12

Consider the following second-order differential equation

$$
\begin{equation*}
y^{\prime \prime}(t)-10 y^{\prime}(t)-11 y(t)=0 \tag{1}
\end{equation*}
$$

with the initial conditions

$$
y(0)=1, \quad y^{\prime}(0)=-1
$$

Show that the solution of this initial value problem is $y(t)=e^{-t}$. Then consider the same equation (1) with initial conditions

$$
y(0)=1+\varepsilon, \quad y^{\prime}(0)=-1
$$

with ε small. Calculate analytically the solution of the perturbed initial value problem and generate a plot of the results for comparison. What are your considerations about its stability? What is the effect of this observation if a numerical method is applied to this initial value problem?

Implement a function

$$
[y, t]=\text { odesolve4(fun, } y 0, t, e p s i l o n)
$$

for solving ordinary differential equations and systems of ordinary differential equations using step size control, where fun is a function handle, y0 an initial condition, $\mathrm{t}=[\mathrm{t} 0, \mathrm{~T}]$ with t 0 the initial time and T the end time and epsilon a tolerance. The return values are the solution y and the time grid t.

As a method for solving the ODE we use the Runge-Kutta method of fourth order. We implement the strategy of computing two steps, one with step size h and one with step size $\frac{h}{2}$. Out of the difference we can compute the error estimate $s(h) \doteq \tilde{\delta}_{j, h}$ and the ratio $q(h)$ which then leads to the decision whether to increase or decrease the step size and to recompute or accept the step. For the implementation the flowchart shown in Figure 1 should be used as a guideline. The fixed parameters should be chosen as follows:

$$
h_{\min }=10^{-4}, \quad h_{\max }=0.5, \quad \alpha_{\min }=0.2, \quad \alpha_{\max }=2, \quad \beta=0.95
$$

The step size should be initialized with $h=h_{\max }$. The obtained solver should then be tested using epsilon $=10^{-4}$ on the following problems:

- $y^{\prime}(t)=-y(t), \quad y(0)=1, \quad t \in[0,5]$
- $y_{1}^{\prime}(t)=\frac{1}{4} y_{1}(t)-\frac{1}{100} y_{1}(t) y_{2}(t), \quad y_{2}^{\prime}(t)=-y_{1}(t)+\frac{1}{100} y_{1}(t) y_{2}(t)$, $y_{1}(0)=80, \quad y_{2}(0)=30, \quad t \in[0,12]$
- $y^{\prime \prime}(t)=8\left(1-y(t)^{2}\right) y^{\prime}(t)-y(t), \quad y(0)=2, \quad y^{\prime}(0)=0, \quad t=[0,30]$

Generate plots of the solution and the step size in each iteration. Note that the function odesolve4 should not open any figure. The code should be well documented and a function description/usage should be accessible by the help command.

Figure 1: Flowchart for an ODE solver using step size control.

