Übungen zu Numerik gewöhnlicher Differentialgleichungen

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 5 Submission: 17.06.2010, 10:00 o'clock, IN CLASS

Exercise 13 (Homework)

Consider the method

$$
\begin{equation*}
y_{n+1}=y_{n-1}+2 h f\left(t_{n}, y_{n}\right) \tag{1}
\end{equation*}
$$

and apply it on the initial value problem

$$
y^{\prime}=-2 y+1, \quad y(0)=1
$$

Using the theory of the difference equations, analyze the behavior of the sequence $\left\{y_{n}\right\}$ as $n \rightarrow \infty$.

Exercise 14

Solve the difference equation

$$
y_{n+1}=\frac{5}{2} y_{n}+y_{n-1}, \quad y_{0}=y_{1}=1
$$

in terms of the roots of its characteristic equation. Discuss the behavior of the sequence $\left\{y_{n}\right\}$ as $n \rightarrow \infty$.

Exercise 15

Verify that method (1) of Exercise 13 is second-order accurate.

Implement the two functions

$$
[y, t]=\text { odesolveABM3(fun, } \mathrm{y} 0, \mathrm{t}, \mathrm{~h}) \text { and }[\mathrm{y}, \mathrm{t}]=\text { odesolveAB4 (fun }, \mathrm{y} 0, \mathrm{t}, \mathrm{~h})
$$

for solving ordinary differential equations and systems of ordinary differential equations, where fun is a function handle to a function of the form my_fun(t, y), y0 an initial condition, $\mathrm{t}=[\mathrm{t} 0, \mathrm{~T}]$ with t 0 the initial time and T the end time and h the step size. The return values are the solution y and the time grid t.

- odesolveABM3 is a predictor-corrector method consisting of a third-order Adams Bashforth method (predictor) and a third-order Adams-Moulton method (corrector) given as

$$
\begin{aligned}
y^{j+1,0} & =y^{j}+\frac{h}{12}\left(23 f\left(t_{j}, y^{j}\right)-16 f\left(t_{j-1}, y^{j-1}\right)+5 f\left(t_{j-2}, y^{j-2}\right)\right) \\
y^{j+1,1} & =y^{j}+\frac{h}{24}\left(9 f\left(t_{j+1}, y^{j+1,0}\right)+19 f\left(t_{j}, y^{j}\right)-5 f\left(t_{j-1}, y^{j-1}\right)+f\left(t_{j-2}, y^{j-2}\right)\right) \\
y^{j+1} & :=y^{j+1,1}
\end{aligned}
$$

- odesolveAB4 is a fourth-order Adams Bashforth method given as

$$
y^{j+1}=y^{j}+\frac{h}{24}\left(55 f\left(t_{j}, y^{j}\right)-59 f\left(t_{j-1}, y^{j-1}\right)+37 f\left(t_{j-2}, y^{j-2}\right)-9 f\left(t_{j-3}, y^{j-3}\right)\right)
$$

The inital values y^{1}, y^{2} and y^{3} should be computed with a fourth-order Runge-Kutta method. Apply the two solvers to the initial value problem

$$
y^{\prime}(t)=\lambda y(t)-(\lambda+1) e^{-t}, \quad t \in[0,2], \quad y(0)=1
$$

with a constant $\lambda<0$. The solution to this problem is given by $y(t)=e^{-t}$ (independent of λ). Fill out Table 1 with $\left|y_{h}(2)-e^{-2}\right|=\left|y^{2 / h}-e^{-2}\right|$, generate some plots and interpret the obtained results. What can you say about the order of consistency when looking at the numerical results.

	$\lambda=-2,\left\|y^{2 / h}-e^{-2}\right\|$		$\lambda=-20,\left\|y^{2 / h}-e^{-2}\right\|$	
h	odesolveAB4	odesolveABM3	odesolveAB4	odesolveABM3
2^{-3}				
2^{-4}				
2^{-5}				
2^{-6}				
2^{-7}				

Table 1: Numerical solution $y^{2 / h}$ compared with exact solution e^{-2}.

Note that the functions odesolveABM3 and odesolveAB4 should not open any figure. The code should be well documented and a function description/usage should be accessible by the help command.

