ÜBUNGEN ZU Numerik gewöhnlicher Differentialgleichungen

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 5 Submission: 17.06.2010, 10:00 o'clock, IN CLASS

Exercise 13 (Homework)

(4 Points)

Consider the method

$$y_{n+1} = y_{n-1} + 2hf(t_n, y_n) \tag{1}$$

and apply it on the initial value problem

 $y' = -2y + 1, \quad y(0) = 1.$

Using the theory of the difference equations, analyze the behavior of the sequence $\{y_n\}$ as $n \to \infty$.

Exercise 14

Solve the difference equation

$$y_{n+1} = \frac{5}{2}y_n + y_{n-1}, \quad y_0 = y_1 = 1,$$

in terms of the roots of its characteristic equation. Discuss the behavior of the sequence $\{y_n\}$ as $n \to \infty$.

Exercise 15

Verify that method (1) of Exercise 13 is second-order accurate.

Program 4

Implement the two functions

[y,t] = odesolveABM3(fun,y0,t,h) and [y,t] = odesolveAB4(fun,y0,t,h)

for solving ordinary differential equations and systems of ordinary differential equations, where fun is a function handle to a function of the form $my_fun(t,y)$, y0 an initial condition, t = [t0,T] with t0 the initial time and T the end time and h the step size. The return values are the solution y and the time grid t.

• odesolveABM3 is a predictor-corrector method consisting of a *third-order Adams* Bashforth method (predictor) and a *third-order Adams-Moulton method* (corrector) given as

$$y^{j+1,0} = y^{j} + \frac{h}{12} \left(23f(t_{j}, y^{j}) - 16f(t_{j-1}, y^{j-1}) + 5f(t_{j-2}, y^{j-2}) \right)$$

$$y^{j+1,1} = y^{j} + \frac{h}{24} \left(9f(t_{j+1}, y^{j+1,0}) + 19f(t_{j}, y^{j}) - 5f(t_{j-1}, y^{j-1}) + f(t_{j-2}, y^{j-2}) \right)$$

$$y^{j+1} := y^{j+1,1}.$$

• odesolveAB4 is a fourth-order Adams Bashforth method given as

$$y^{j+1} = y^j + \frac{h}{24} \left(55f(t_j, y^j) - 59f(t_{j-1}, y^{j-1}) + 37f(t_{j-2}, y^{j-2}) - 9f(t_{j-3}, y^{j-3}) \right).$$

The initial values y^1, y^2 and y^3 should be computed with a fourth-order Runge-Kutta method. Apply the two solvers to the initial value problem

$$y'(t) = \lambda y(t) - (\lambda + 1)e^{-t}, \quad t \in [0, 2], \quad y(0) = 1,$$

with a constant $\lambda < 0$. The solution to this problem is given by $y(t) = e^{-t}$ (independent of λ). Fill out Table 1 with $|y_h(2) - e^{-2}| = |y^{2/h} - e^{-2}|$, generate some plots and interpret the obtained results. What can you say about the order of consistency when looking at the numerical results.

	$\lambda = -2, y^{2/h} - e^{-2} $		$\lambda = -20, y^{2/h} - e^{-2} $	
h	odesolveAB4	odesolveABM3	odesolveAB4	odesolveABM3
2^{-3}				
2^{-4}				
2^{-5}				
2^{-6}				
2^{-7}				

Table 1: Numerical solution $y^{2/h}$ compared with exact solution e^{-2} .

Note that the functions odesolveABM3 and odesolveAB4 should not open any figure. The code should be well documented and a function description/usage should be accessible by the help command.