Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Martin Gubisch, Roberta Mancini, Stefan Trenz

$25^{\text {th }}$ April 2011

Optimization
 Exercises 2

\checkmark Exercise 5

Consider the quadratic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
f(x)=\frac{1}{2} x^{\top} Q x+c^{\top} x+\gamma \tag{1}
\end{equation*}
$$

where $Q \in \mathcal{S}_{n}, c \in \mathbb{R}^{n}, \gamma \in \mathbb{R}$, with \mathcal{S}_{n} the vector space of $n \times n$ symmetric matrices.
Show that Bemerkung 2.9 (cf. the scriptum of Prof. Volkwein) holds, i.e.,
(a) f is convex $\Leftrightarrow Q$ is positive semidefinite,
(b) f is strictly convex $\Leftrightarrow f$ is uniformly convex $\Leftrightarrow Q$ is positive definite.

Exercise 6

Consider the function in equation (1) with $Q \in \mathcal{S}_{n}$ symmetric and positive definite. Let $x^{k} \in \mathbb{R}^{n}$ arbitrary and $d^{k} \in \mathbb{R}^{n}$ be a descent direction of f in x^{k}.

Find the exact step-length t^{k} in direction d^{k} such that the decreasing of f is maximal.

Exercise 7

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function, $\left(x^{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}^{n}$ a sequence generated by the general descent method (Algorithmus 3.4).
Show that if x^{*} and $x^{* *}$ are two accumulation points of the sequence $\left(x^{k}\right)_{k \in \mathbb{N}}$, then $f\left(x^{*}\right)=f\left(x^{* *}\right)$ holds.

Exercise 8

Consider the general descent method (Algotithmus 3.4) for the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=x^{2}
$$

with starting point $x^{0}:=1$ and the direction d^{k} and step-size t^{k} :
(a) $d_{k}:=-1, t_{k}:=\left(\frac{1}{2}\right)^{k+2}$ with $k \in \mathbb{N}_{0}$,
(b) $d_{k}:=(-1)^{k+1}, t_{k}:=1+\frac{3}{2^{k+2}}$ with $k \in \mathbb{N}_{0}$.

Verify that these choices of the parameters for $k \in \mathbb{N}_{0}$ lead to a decreasing of the function f. In order to do that, present the sequence x^{k} generated by the Algorithmus 3.4 using induction with respect to k. Determine in each case $\lim _{k \rightarrow \infty} f\left(x^{k}\right)$ and compare them to the minimum of $f(x)$. Comment on the error!

Deadline: Monday, $2^{\text {nd }}$ May, 8:30 am

