Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Martin Gubisch, Roberta Mancini, Stefan Trenz

$9^{\text {th }}$ May 2011

Optimization
 Exercises 3

\checkmark Exercise 9

(1) Consider the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad\left(x_{1}, x_{2}\right) \mapsto f\left(x_{1}, x_{2}\right):=\left(x_{1}+x_{2}^{2}\right)^{2}
$$

in the point $x_{0}=(1,0)$.
Show that $d:=(-1,1)$ is a direction of descent and find all minimal points of the problem

$$
\min _{\alpha>0} f\left(x_{0}+\alpha d\right) .
$$

(2) Consider the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad\left(x_{1}, x_{2}\right) \mapsto f\left(x_{1}, x_{2}\right):=3 x_{1}^{4}-4 x_{1}^{2} x_{2}+x_{2}^{2}
$$

Prove that $x_{0}:=(0,0)$ is a stationary point of f. Show that f, restricted on any line through x_{0}, has a strict local minimum in x_{0}. Is x_{0} a local minimizer of f ?

Let \mathcal{H} denote a \mathbb{K}-Hilbert space with scalar product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ where $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$.
\checkmark Exercise 10
(1) Let $b \in \mathcal{H}$ and $A \in \mathcal{L}_{b}(\mathcal{H}, \mathcal{H})$, the space of all linear, continuous maps on \mathcal{H}.

Show that $x_{0} \in \mathcal{H}$ is a minimal point of

$$
\varphi: \mathcal{H} \rightarrow \mathbb{R}, \quad x \mapsto \varphi(x):=\|A x-b\|_{\mathcal{H}}
$$

if and only if the Gaussian normal equation holds:

$$
A^{*} A x_{0}=A^{*} b .
$$

Hereby, A^{*} denotes the adjoint operator to A, i.e. the following implicitely given operator $A \in \mathcal{L}_{b}(\mathcal{H}, \mathcal{H}):$

$$
\forall x, y \in \mathcal{H}:\langle A x, y\rangle_{\mathcal{H}}=\left\langle x, A^{*} y\right\rangle_{\mathcal{H}} .
$$

(2) Use this characterization to solve the following linear regression problem:

Find parameters $x_{1}, x_{2} \in \mathbb{R}$ such that the corresponding regression line

$$
\gamma_{x}: \mathbb{R} \rightarrow \mathbb{R}, \quad t \mapsto \gamma_{x}(t):=x_{1}+x_{2} t
$$

approximates the measuring points

t_{i}	1975	1980	1985	1990	1995
γ_{i}	30	35	38	42	44

optimally, i.e.

$$
\left(x_{1}, x_{2}\right)=\underset{\left(y_{1}, y_{2}\right)}{\arg \min } \sum_{i=1}^{5}\left(\gamma_{i}-\gamma_{y}\left(t_{i}\right)\right)^{2} .
$$

Exercise 11

Let $x \in \mathcal{H}$ and F a convex, nonempty, closed subset of \mathcal{H}.
Show that there is a unique $y \in \mathcal{H}$ such that

$$
\|x-y\|_{\mathcal{H}}=\operatorname{dist}(x, F) .
$$

Hereby, dist denotes the distance function $\operatorname{dist}\left(y_{0}, Y\right):=\inf _{y \in Y}\left\|y_{0}-y\right\|_{\mathcal{H}}$.

Exercise 12

Let F a nonempty, closed, convex subset of \mathcal{H} and $x_{0} \in \mathcal{H}$.
Show that for all $x \in \mathcal{H}$ the following holds:

$$
\left\|x_{0}-x\right\|_{\mathcal{H}}=\operatorname{dist}\left(x_{0}, F\right) \quad \Longleftrightarrow \quad \forall y \in F: \operatorname{Re}\left\langle x_{0}-x, y-x\right\rangle_{\mathcal{H}} \leq 0
$$

Deadline: Monday, $16^{\text {th }}$ May, 8:30 am

