Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Martin Gubisch, Roberta Mancini, Stefan Trenz

$6^{\text {th }}$ June 2011

Optimization

Exercises 5

\checkmark Exercise 17

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ a four times differentiable, approximative function - which means that the function values $f(x)$ are not known exactly, but with some error tolerance $\epsilon_{\text {tol }}$:

$$
f_{\text {known }}(x)=f_{\text {exact }}(x)+\epsilon_{\text {tol }}(x) \quad \text { where }\left|\epsilon_{\text {tol }}(x)\right| \leq \epsilon \text { for some known } \epsilon>0 .
$$

Determine the derivative of f numerically by central differences and prove that the error ϵ_{H} arising in the numerical approximation of the second derivative of f is of order $\epsilon_{H}=\mathrm{O}\left(\epsilon^{\frac{4}{9}}\right)$.

Exercise 18

Let $f \in \mathcal{C}^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)$. Verify the formula

$$
\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} f(x)=\frac{f\left(x+\epsilon e_{i}+\epsilon e_{j}\right)-f\left(x+\epsilon e_{i}\right)-f\left(x+\epsilon e_{j}\right)+f(x)}{\epsilon^{2}}+\mathrm{O}(\epsilon)
$$

for the approximation of the Hessian matrix by evaluations of f.

Exercise 19

The angle η_{k} between the search direction d_{k} and the steepest descent direction $-\nabla f\left(x_{k}\right)$ is defined by

$$
\begin{equation*}
\cos \eta_{k}:=\frac{-\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle}{\left\|\nabla f\left(x_{k}\right)\right\|_{2}\left\|d_{k}\right\|_{2}} . \tag{*}
\end{equation*}
$$

Consider now the Newton-like method

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k} \quad \text { with } \quad d_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)
$$

where $B_{k} \in \mathbb{R}^{n \times n}$ are symmetric, positive definite matrices with uniformly bounded condition numbers, i.e.

$$
\operatorname{cond}_{2}\left(B_{k}\right)=\left\|B_{k}\right\|_{2}\left\|B_{k}^{-1}\right\|_{2} \leq M \quad \text { for all } k \geq 0
$$

Show that

$$
\cos \eta_{k} \geq \frac{1}{M}
$$

Hint: First prove that $\|B x\|_{2} \geq \frac{\|x\|_{2}}{\left\|B^{-1}\right\|_{2}}$ for any non-singular matrix B, then use (*) to prove the claim.

Exercise 20

Let the function ϕ be given by

$$
\phi(\alpha)=f\left(x_{k}+\alpha d_{k}\right)
$$

where d_{k} is a descent direction, i.e., $\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle<0$.
Derive that the quadratic function interpolating $\phi(0), \phi^{\prime}(0)$ and $\phi\left(\alpha_{0}\right)$ is given by

$$
\phi_{q}(\alpha)=\left(\frac{\phi\left(\alpha_{0}\right)-\phi(0)-\phi^{\prime}(0) \alpha_{0}}{\alpha_{0}^{2}}\right) \alpha^{2}+\phi^{\prime}(0) \alpha+\phi(0)
$$

by making the ansatz

$$
\phi_{q}(\alpha)=a_{0}+a_{1} \alpha+a_{2} \alpha^{2}
$$

and using the interpolaters to calculate the coefficients a_{0}, a_{1}, a_{2} of ϕ_{q}.
Assume now that the sufficient decrease condition

$$
f\left(x_{k}+\alpha d_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle
$$

is not satisfied at α_{0}.
Show that ϕ_{q} has positive curvature and that the minimizer α^{*} of ϕ_{q} satisfies

$$
\alpha^{*}<\frac{\alpha_{0}}{2\left(1-c_{1}\right)} .
$$

Remark: Since c_{1} is chosen to be quite small in practise, this indicates that α^{*} cannot be much greater than $\frac{\alpha_{0}}{2}$ (and may be smaller), which gives us an idea of the new step length.

Deadline: Monday, $13^{\text {th }}$ June, 8:30 am

