Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Stefan Volkwein Martin Gubisch, Roberta Mancini, Stefan Trenz

 $20^{\rm th}$ June 2011

Optimization Exercises 6

✓ Exercise 21

Consider the constrained optimization problem

 $\max_{(x,y)} f(x,y) \qquad \text{subject to} \qquad (x,y) \in F$

where

$$f(x,y) = x^{2} + x^{2}y^{2} + 9y^{2} + 9, \qquad F = \{(a,b) \in \mathbb{R}^{2} \mid 2a^{4} + b^{2} \le 239\}.$$

- 1. Show that the problem has a global solution.
- 2. Draw the set of admissible points (you may use MATLAB here).
- 3. Show that the problem has no inner solution (i.e. no solution in F°) and that boundary solutions cannot be unique.
- 4. Determine the corresponding Lagrange functional and solve the optimization problem.

Exercise 22

A simple strategy to solve the trust-region auxiliary problem (5.4) in the lecture notes approximatively bases on the deepest descent method, respecting the radius Δ_k for which we trust the model: Consider the optimization problems

(1)
$$\begin{cases} \min_{p \in \mathbb{R}^n} f(x_k) + \langle \nabla f(x_k), p \rangle \\ \text{s.t. } \|p\| \le \Delta_k \end{cases}, \qquad (2) \quad \begin{cases} \min_{0 \le t \le 1} m_k(x_k + tp_k) \\ \text{s.t. } \|tp_k\| \le \Delta_k \end{cases}$$

where the vector p_k in (2) is the solution of (1). With the solution t_k of (2) we define the Cauchy point x^{CP} by

$$x_k^{\rm CP} := x_k + t_k p_k.$$

(5 Points)

- 1. Assume that x_k is no stationary point of f. Find the solution p_k^* to the minimization problem (1) using the Lagrange multiplier method, for example.
- 2. Show that the solution t_k^* of (2) is given by

$$t_k^* = \begin{cases} 1 & \text{if } \langle \nabla f(x_k), H_k \nabla f(x_k) \rangle \leq 0 \\ \min\left(1, \frac{\|\nabla f(x_k)\|^3}{\Delta_k \langle \nabla f(x_k), \nabla^2 f(x_k) \nabla f(x_k) \rangle}\right) & \text{else} \end{cases}$$

Exercise 23

Another method to solve the trust-region auxiliary problem (5.4) in the lecture notes is the **dogleg strategy**. Hereby, in each iteration step, the following optimization problem is solved instead of (5.4):

(3)
$$\begin{cases} \min_{0 \le t \le 2} m_k(x_k(t)) \\ \text{s.t. } \|x_k - x_k(t)\| \le \Delta_k \end{cases}$$

with the piecewise linear path

$$x_k(t) = \begin{cases} x_k + t \left(x_k^{\text{CP}} - x_k \right) & \text{for } 0 \le t \le 1 \\ x_k^{\text{CP}} + (t-1)(x_k^{\text{N}} - x_k^{\text{CP}}) & \text{for } 1 \le t \le 2 \end{cases}$$

where x_k^{CP} denotes the normalized Cauchy point

$$x_k^{\rm CP} = x_k - \frac{||\nabla f(x_k)||^2}{\langle \nabla f(x_k), H \nabla f(x_k) \rangle} \nabla f(x_k)$$

and $x_k^{\mathrm{N}} := x_k - H_k^{-1} \nabla f(x_k)$ is the Newton step.

Hereby, we assume that the approximation of the Hessian matrix H_k is positive definite (which implies $\langle x_k^{\text{N}} - x_k^{\text{CP}}, x_k^{\text{CP}} - x_k \rangle > 0$; this can be used in the following without proof).

- 1. Show that the distance function $||x_k x_k(t)||$ increases strictly monotonically in t and that the function of model values $m_k(x_k(t))$ decreases strictly monotonically in t.
- 2. Why are these two abilities helpful by solving the problem (3)?
- 3. Design a (pseudo-code) algorithm to solve (3).

Deadline: Monday, 27th June, 8:30 am