Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Martin Gubisch, Roberta Mancini, Stefan Trenz

$20^{\text {th }}$ June 2011

Optimization

Exercises 6

\checkmark Exercise 21

Consider the constrained optimization problem

$$
\max _{(x, y)} f(x, y) \quad \text { subject to } \quad(x, y) \in F
$$

where

$$
f(x, y)=x^{2}+x^{2} y^{2}+9 y^{2}+9, \quad F=\left\{(a, b) \in \mathbb{R}^{2} \mid 2 a^{4}+b^{2} \leq 239\right\} .
$$

1. Show that the problem has a global solution.
2. Draw the set of admissible points (you may use Matlab here).
3. Show that the problem has no inner solution (i.e. no solution in F°) and that boundary solutions cannot be unique.
4. Determine the corresponding Lagrange functional and solve the optimization problem.

Exercise 22

A simple strategy to solve the trust-region auxiliary problem (5.4) in the lecture notes approximatively bases on the deepest descent method, respecting the radius Δ_{k} for which we trust the model: Consider the optimization problems
(1) $\left\{\begin{array}{r}\min _{p \in \mathbb{R}^{n}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), p\right\rangle \\ \text { s.t. }\|p\| \leq \Delta_{k}\end{array}\right.$,
(2) $\left\{\begin{array}{c}\min _{0 \leq t \leq 1} m_{k}\left(x_{k}+t p_{k}\right) \\ \text { s.t. }\left\|t p_{k}\right\| \leq \Delta_{k}\end{array}\right.$
where the vector p_{k} in (2) is the solution of (1). With the solution t_{k} of (2) we define the Cauchy point x^{CP} by

$$
x_{k}^{\mathrm{CP}}:=x_{k}+t_{k} p_{k} .
$$

1. Assume that x_{k} is no stationary point of f. Find the solution p_{k}^{*} to the minimization problem (1) - using the Lagrange multiplier method, for example.
2. Show that the solution t_{k}^{*} of (2) is given by

$$
t_{k}^{*}= \begin{cases}1 & \text { if }\left\langle\nabla f\left(x_{k}\right), H_{k} \nabla f\left(x_{k}\right)\right\rangle \leq 0 \\ \min \left(1, \frac{\left\|\nabla f\left(x_{k}\right)\right\|^{3}}{\Delta_{k}\left\langle\nabla f\left(x_{k}\right), \nabla^{2} f\left(x_{k}\right) \nabla f\left(x_{k}\right)\right\rangle}\right) & \text { else }\end{cases}
$$

Exercise 23

Another method to solve the trust-region auxiliary problem (5.4) in the lecture notes is the dogleg strategy. Hereby, in each iteration step, the following optimization problem is solved instead of (5.4):

$$
\text { (3) }\left\{\begin{array}{r}
\min _{0 \leq t \leq 2} m_{k}\left(x_{k}(t)\right) \\
\text { s.t. }\left\|x_{k}-x_{k}(t)\right\| \leq \Delta_{k}
\end{array}\right.
$$

with the piecewise linear path

$$
x_{k}(t)= \begin{cases}x_{k}+t\left(x_{k}^{\mathrm{CP}}-x_{k}\right) & \text { for } 0 \leq t \leq 1 \\ x_{k}^{\mathrm{CP}}+(t-1)\left(x_{k}^{\mathrm{N}}-x_{k}^{\mathrm{CP}}\right) & \text { for } 1 \leq t \leq 2\end{cases}
$$

where x_{k}^{CP} denotes the normalized Cauchy point

$$
x_{k}^{\mathrm{CP}}=x_{k}-\frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\left\langle\nabla f\left(x_{k}\right), H \nabla f\left(x_{k}\right)\right\rangle} \nabla f\left(x_{k}\right)
$$

and $x_{k}^{\mathrm{N}}:=x_{k}-H_{k}^{-1} \nabla f\left(x_{k}\right)$ is the Newton step.
Hereby, we assume that the approximation of the Hessian matrix H_{k} is positive definite (which implies $\left\langle x_{k}^{\mathrm{N}}-x_{k}^{\mathrm{CP}}, x_{k}^{\mathrm{CP}}-x_{k}\right\rangle>0$; this can be used in the following without proof).

1. Show that the distance function $\left\|x_{k}-x_{k}(t)\right\|$ increases strictly monotonically in t and that the function of model values $m_{k}\left(x_{k}(t)\right)$ decreases strictly monotonically in t.
2. Why are these two abilities helpful by solving the problem (3)?
3. Design a (pseudo-code) algorithm to solve (3).

Deadline: Monday, $27^{\text {th }}$ June, 8:30 am

