Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Martin Gubisch, Roberta Mancini, Stefan Trenz

23rd May 2011

Optimization
 Programming 2

Implement the Gradient Projection Algorithm.
The gradient projection algorithm is a modified version of the steepest descent algorithm in which only solutions that lie in a closed bounded domain Ω are valid. The main idea is to project what was the update in the steepest descent method on the domain Ω, i.e. $x_{k+1}=P\left(x_{k}+t d_{k}\right)$, where t is the step length calculated using a step size strategy. As in the steepest descent method, we consider $d_{k}=-\nabla f\left(x_{k}\right) /\left\|\nabla f\left(x_{k}\right)\right\|$.

Defining as in Exercise 14 (b)

$$
x(t)=P(x+t d),
$$

we use the following termination condition for the line search (see Exercise 15)

$$
\begin{equation*}
f(x(t))-f(x) \leq-\frac{\alpha}{t}\|x-x(t)\|^{2} . \tag{1}
\end{equation*}
$$

The pseudo-code of the gradient projection algorithm looks like

```
while the termination criteria are not fulfilled
    find stepsize t using the line search strategy
    set x = x(t)
end
```

The termination criteria are

```
||x-x(1)|| < epsilon or
||grad(f)(x)|| < epsilon or
number iterations > MAX number of iterations
```

Implement this method using the following steps.
Part 1: Generate a file projection.m and implement the function

```
function x = projection(x0, a, b)
```

with the current point x 0 , lower bound a and upper bound b . The function should return the projected point x according to the projection

$$
P: \mathbb{R}^{2} \rightarrow \Omega:=\left\{x \in \mathbb{R}^{2} \mid a_{1} \leq x_{1} \leq b_{1}, a_{2} \leq x_{2} \leq b_{2}\right\}
$$

(cf. Exercise 14 (b) with $L=a$ and $R=b$).
Test your program by calculating $P\left(x_{0}\right)$ for a rectangular domain defined by the lower bound (lower left corner) $a=[-1 ;-1]$, the upper bound (upper right corner) $b=[1 ; 1]$, a direction $\mathrm{d}=[1.5 ; 1.5]$, step sizes $\mathrm{t}=0$ and $\mathrm{t}=1$ and the following points $x_{0}=y+t * d \in \mathbb{R}^{2}$:

Points $y:$	Projections for $t=0$	Projections for $t=1$
$[-2 ;-2]$	$(-1,-1)$	$(-0.5,-0.5)$
$[-1 ;-1]$	$(-1,-1)$	$(0.5,0.5)$
$[-0.5 ; 0.5]$	$(-0.5,0.5)$	$(1,1)$
$[2 ; 0.5]$	$(1,0.5)$	$(1,1)$
$[1 ;-0.5]$	$(1,-0.5)$	$(1,1)$

Table 1: Testing points and their projections with respect to t
Part 2: Implement the gradient projection algorithm with direction $d_{k}:=-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}$. Modify therefore the Armijo step size strategy according to the projection rule (1) and save it to a file modarmijo.m containing the function

```
function t = modarmijo(fhandle, x0, d, t0, alpha, beta, a, b)
```

with initial point $\mathrm{x0}$, descent direction d , initial step size t 0 , alpha and beta for the Armijo rule and a and b for the projection rule.

Generate a file gradproj.m for the function

```
function X = gradproj(fhandle, x0, epsilon, N, t0, alpha, beta, a, b)
```

with initial point $\mathbf{x 0}$, parameter epsilon for the termination condition $\left\|\nabla f\left(x_{k}\right)\right\|<\epsilon$ and the additional termination condition $\|x-x(1)\| \leq \epsilon, \mathrm{N}$ for the maximal number of iteration steps, parameters t0, alpha and beta for the Armijo rule and a and b for the projection rule. Modify therefore the gradient method gradmethod.m from program 1.

The program should return a matrix $\mathrm{X}=[\mathrm{x} 0 ; \mathrm{x} 1 ; \mathrm{x} 2 ; \ldots$] containing the whole iterations.

Test your program by using the Rosenbrock function from program 1 with the following parameters and write your observations in the written report:
epsilon=1.0e-2, $\mathrm{N}=1.0 \mathrm{e} 4, \mathrm{t} 0=1$, alpha=1.0e-2, beta=0.5 and
a) $x 0=[1 ;-0,5], a=[-1 ;-1]$ and $b=[2 ; 2]$
b) $x 0=[-1 ;-0,5], a=[-2 ;-2]$ and $b=[2 ; 0]$

Deadline: Tuesday, 31st May, 10:00 am

