Übungen zu Numerische Verfahren der restringierten Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 4
Submission: 07.01.2013, 9:45 o'clock
Exercise 10 (Homework)
(2 Punkte)
Let A be the matrix in the equality constraint given by $[B \mid N]$, with B invertible. Show that the basis matrices

$$
Y=\left[\begin{array}{c}
B^{-1} \\
0
\end{array}\right] \quad \text { and } \quad Z=\left[\begin{array}{c}
-B^{-1} N \\
I
\end{array}\right]
$$

are linearly independent and that the assumptions for the null space method are satisfied. Furthermore, let $x=\left[\begin{array}{ll}x_{B} & x_{N}\end{array}\right]^{\top}$. Write the optimization problem

$$
\begin{array}{cl}
\min \sin \left(x_{3}+x_{4}\right)+x_{1}^{2}+\frac{1}{3}\left(x_{5}+x_{6}^{4}+x_{2} / 2\right) \\
\text { subject to } & x_{1}+8 x_{3}-6 x_{4}+9 x_{5}+4 x_{6}=6 \\
& 4 x_{2}+3 x_{3}+2 x_{4}-x_{5}+6 x_{6}=-4
\end{array}
$$

in reduced form by using the matrices Y and Z. Show first that $x_{B}=B^{-1} b-B^{-1} N x_{n}$ is satisfied.

Exercise 11

Compute the inverse of the KKT-Matrix (3.1).

Exercise 12

The problem of finding the shortest euclidean distance from a point x_{0} to the hyperplane $\{x \mid A x=b\}$, where A has full row rank, can be formulated as a quadratic program. Write the problem in the form $\left(\mathbf{Q P}_{G l}\right)$, derive the KKT-system (3.2) and determine the solutions x^{*} and λ^{*} explicitly. Further, show that in the special case in which A is a row vector, the shortest distance from x_{0} to the solution set of $A x=b$ is $\left|b-A x_{0}\right| /\|A\|_{2}$.

Merry Christmas and a happy new year!

Buon Natale e felice anno nuovo!

