Fachbereich Mathematik und Statistik
S. Volkwein, O. Lass, S. Trenz, R. Mancini

Übungen zu Numerische Verfahren der restringierten Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/
Sheet 5
Submission: 21.01.2013, 9:45 o'clock
Note: The 3. Program is already available online with submission on Monday, January 28, 9:45 o'clock!

Exercise 13 (Homework)

(2 Points)

Let $\bar{x} \in \mathbb{R}^{n}$ be given, and let x^{*} be the solution of the projection problem

$$
\min \|x-\bar{x}\|^{2} \quad \text { subject to } \quad l \leq x \leq u
$$

For simplicity, assume that $-\infty<l_{i}<u_{i}<\infty$ for all $i=1,2, \ldots, n$. Show that the solution of this problem coincides with the projection formula given by

$$
P(x, l, u)_{i}=\left\{\begin{array}{rll}
l_{i} & \text { if } & x_{i}<l_{i}, \\
x_{i} & \text { if } & x_{i} \in\left[l_{i}, u_{i}\right] \\
u_{i} & \text { if } & x_{i}>u_{i},
\end{array}\right.
$$

that is, show that $x^{*}=P(\bar{x}, l, u)$.

Exercise 14

Write down KKT conditions for the following convex quadratic program with mixed equality and inequality constraints:

$$
\min q(x)=\frac{1}{2} x^{\top} Q x+x^{\top} c \quad \text { subject to } \quad A x \geq b, \quad \bar{A} x=\bar{b},
$$

where Q is symmetric and positive semidefinite. Further, modify the interior point method from the lecture to solve this problem.

Exercise 15

Consider the quadratic optimization problem given by

$$
\min f(x):=\frac{1}{2} x^{\top} Q x+x^{\top} d+c
$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric and positive definite. Let x^{*} be the minimizer of f and define the energy norm as $\|x\|_{Q}:=\left(x^{\top} Q x\right)^{1 / 2}$. Show that the following condition holds:

$$
f(x)=\frac{1}{2}\left\|x-x^{*}\right\|_{Q}^{2}+f\left(x^{*}\right) .
$$

