Übungen zu Numerische Verfahren der restringierten Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 6

Submission: 04.02.2013, 9:45 o'clock

Exercise 16 (Homework)

Given the problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{2}}-x_{1}-x_{2} \quad \text { s.t. } \quad g(x):=-x \leq 0, e(x):=x_{1}^{2}+x_{2}^{2}-1=0 . \tag{1}
\end{equation*}
$$

a) Sketch the admissible set and the cost function $f(x)$. (Use contour lines for the cost function.)
b) Determine the solution of (1) and the corresponding Lagrange multipiers.
c) Let $x^{k}=(-1 / 2,-1 / 2)^{\top}$ be given. Sketch the constraints of the SQP subproblem and show that the corresponding admissible set is empty.

Exercise 17

Prove the following statement:
Let f and e be twice continuously differentiable and let $\left(x^{*}, \lambda^{*}\right)$ be such that
a) $\nabla e_{1}\left(x^{*}\right), \ldots, \nabla e_{m}\left(x^{*}\right)$ are linearly independent
b) $s^{\top} \nabla_{x x} L\left(x^{*}, \lambda^{*}\right) s>0$ holds for all $s \in \mathbb{R}^{n} \backslash\{0\}$ with $A\left(x^{*}\right) s=0$.

Then $F^{\prime}\left(x^{*}, \lambda^{*}\right)$ is regular, where

$$
F^{\prime}(x, \lambda)=\left(\begin{array}{cc}
\nabla_{x x}^{2} L(x, \lambda) & A^{\top}(x) \\
A(x) & 0
\end{array}\right) .
$$

Exercise 18

Given the problem

$$
\begin{equation*}
\min f(x) \quad \text { s.t. } \quad e(x)=0, \tag{2}
\end{equation*}
$$

where f and e are C^{2} functions. The augmented Lagrange function for (2) is defined as

$$
L_{\alpha}(x, \lambda):=f(x)+\lambda^{\top} e(x)+\frac{\alpha}{2}\|e(x)\|^{2}
$$

with $\alpha \geq 0$. Consider the example $f(x)=-x_{1} x_{2}^{2}$ and $e(x)=x_{1}^{2}+x_{2}^{2}-1$. Determine the KKT pairs $\left(x^{*}, \lambda^{*}\right)$ that satisfy the second order sufficient optimality condition. Further show that for sufficiently large α,

$$
\nabla L_{\alpha}(x, \lambda)=0 \quad \text { and } \quad \nabla_{x x} L_{\alpha}(x, \lambda) \quad \text { positive definite }
$$

holds.

