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Abstract. This lecture is an introduction to the theory of optimal control

problems governed by elliptic partial differential equations. The main focus is
on existence results for optimal controls as well as on optimality conditions.

Linear-quadratic and semilinear problems are considered. It is basically based

on the books [2, 3].

1. Optimal control in finite dimension

Some basic concepts in optimal control theory can be illustrated very well in the
context of finite-dimensional optimization. In particular, we do not have to deal
with partial differential equations and several aspects from functional analysis.

1.1. Finite-dimensional optimal control problem. Let us consider the mini-
mization problem

(1.1) min J(y, u) subject to (s.t.) Ay = Bu and u ∈ Uad
where J : Rn × Rm → R denotes the cost functional, A ∈ Rn×n, B ∈ Rn×m and
∅ 6= Uad ⊂ Rm is the set of admissible controls.

We look for vectors y ∈ Rn and u ∈ Rm which solve (1.1).

Example 1.1. Often the cost functional is quadratic, e.g.,

J(y, u) = |y − yd|2 + λ|u|2,

where | · | stands for the Euclidean norm and yd ∈ Rn, λ ≥ 0 hold. ♦

Problem (1.1) has the form of an optimization problem. Now we assume that A
is an invertible matrix. Then we have

(1.2) y = A−1Bu.

In this case there exists a unique vector y ∈ Rn for any u ∈ Rm. Hence, y is
a dependent variable. We call u the control and y the state. In this way, (1.1)
becomes a finite-dimensional optimal control problem.

We define the matrix S ∈ Rm×n by S = A−1B. Then, S is the solution matrix
of our control system: y = Su. Utilizing the matrix S we introduce the so-called
reduced cost functional

Ĵ(u) = J(Su, u).
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This leads to the reduced problem

(1.3) min Ĵ(u) s.t. u ∈ Uad.

In (1.3) the state variable is eliminated.

1.2. Existence of optimal controls.

Definition 1.2. The vector u∗ ∈ Uad is called an optimal control for (1.1) provided

Ĵ(u∗) ≤ Ĵ(u) for all u ∈ Uad.

The vector y∗ = Su∗ is the associated optimal state.

Theorem 1.3. Suppose that J is continuous on Rn × Uad, that Uad is nonempty,
bounded, closed and that A is invertible. Then, there exists at least one optimal
control for (1.1).

Proof. Since the cost functional J is continuous on Rn × Uad, the reduced cost
Ĵ is continuous on Uad. Furthermore, Uad ⊂ Rm is bounded and closed. This
implies that Uad is compact. Due to the theorem of Weierstrass Ĵ has a minimum
u∗ ∈ Uad 6= ∅, i.e., Ĵ(u∗) = minu∈Uad

Ĵ(u). �

In the context of partial differential equations the proof for the existence of
optimal controls is more complicated. The reason for this fact is that bounded and
closed sets in infinite-dimensional function spaces need not to be compact.

1.3. First-order necessary optimality conditions. To compute solutions to
optimal control problems we make use of optimality conditions. For that purpose
we study first-order conditions for optimality.

We use the following notation for a function Ĵ : Rm → R:

Di =
∂

∂xi
, Dx =

∂

∂x
, Dxx =

∂2

∂x2
(partial derivatives),

Ĵ ′(x) = (D1Ĵ(x), . . . , DmĴ(x)) ∈ R1×m (derivative),

∇Ĵ(x) = Ĵ ′(x)> (gradient).

For functions J : Rn × Rm → R we denote by DyJ(y, u) ∈ R1×n the derivative
with respect to y ∈ Rn, i.e., DyJ(y, u) = (Dy1J(y, u), . . . , DynJ(y, u)). The vector
∇yJ(y, u) = DyJ(y, u)> ∈ Rn×1 is the gradient of J with respect to y. Analogously,
DuJ(y, u) and ∇uJ(y, u) are defined.
The Euclidean inner product is denoted by

〈u, v〉Rm = u · v =

m∑
i=1

uivi for u = (u1, . . . , um)>, v = (v1, . . . , vm)>.

For the directional derivative in direction h ∈ Rm we have

Ĵ ′(u)h = 〈∇Ĵ(u), h〉Rm = ∇Ĵ(u) · h.

Throughout we assume that all partial derivatives of J exist and are continuous.
From the chain rule it follows that Ĵ(u) = J(Su, u) is continuously differentiable.
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Example 1.4. Let us consider the cost functional

Ĵ(u) =
1

2
|Su− yd|2 +

λ

2
|u|2,

see Example 1.1. We obtain

∇Ĵ(u) = S>(Su− yd) + λu,

Ĵ ′(u) = (S>(Su− yd) + λu)>,

Ĵ ′(u)h = 〈S>(Su− yd) + λu, h〉Rm

at u ∈ Rm and for h ∈ Rm. ♦

Theorem 1.5. Suppose that u∗ is an optimal control for (1.1), Uad is convex and

Ĵ is differentiable. Then the variational inequality

(1.4) Ĵ ′(u∗)(u− u∗) ≥ 0 for all u ∈ Uad
holds.

It follows from Theorem 1.5 that at u∗ the cost functional Ĵ can not decrease
in any feasible direction. The proof follows from a more general result (see [3,
pag. 63]).
From the chain rule we derive

(1.5)

Ĵ ′(u∗)h = DyJ(Su∗, u∗)Sh+DuJ(Su∗, u∗)h

= 〈∇yJ(y∗, u∗), A−1Bh〉Rn + 〈∇uJ(y∗, u∗), h〉Rm

= 〈B>A−>∇yJ(y∗, u∗) +∇uJ(y∗, u∗), h〉Rm ,

where (A>)−1 = (A−1)> := A−> holds. Thus, we derive from (1.4)

(1.6) 〈B>A−>∇yJ(y∗, u∗) +∇uJ(y∗, u∗), u− u∗〉Rm ≥ 0

for all u ∈ Uad. In the following subsection we will introduce the so-called adjoint
or dual variable. Then, we can express (1.6) in a simpler way.

1.4. Adjoint variable and reduced gradient. In a numerical realization the
computation of A−1 is avoided. The same holds for the matrix A−>. Thus, we
replace the term A−>∇yJ(y∗, u∗) by p∗ := −A−>∇yJ(y∗, u∗), which is equivalent
with

(1.7) A>p∗ = −∇yJ(y∗, u∗).

Definition 1.6. Equation (1.7) is called the adjoint or dual equation. Its solution
p∗ is the adjoint or dual variable associated with (y∗, u∗).

Example 1.7. For the quadratic cost functional J(y, u) = 1
2 |y−yd|

2 + 1
2λ|u|

2 with
y, yd ∈ Rm and λ ≥ 0 we derive the adjoint equation

A>p∗ = yd − y∗.

Here we have used ∇yJ(y, u) = y − yd. ♦

The introduction of the dual variable yields two advantages:

1) We obtain an expression for (1.6) without the matrix A−>.
2) The expression (1.6) can be written in a more readable form.
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Utilizing y∗ = Su∗ in (1.5) we find that

∇Ĵ(u∗) = −B>p∗ +∇uJ(y∗, u∗).

The vector ∇Ĵ(u∗) is called the reduced gradient. The directional derivative of the

reduced cost functional Ĵ at an arbitrary u ∈ Uad in direction h is given by

Ĵ ′(u)h = 〈−B>p+∇uJ(y, u), h〉Rm ,

where y = Su and p = −A>∇yJ(y, u) hold. From Theorem 1.5 and (1.6) we derive
directly the following theorem.

Theorem 1.8. Suppose that A is invertible, u∗ is an optimal control for (1.1),
y∗ = Su∗ the associated optimal state and J is differentiable. Then, there exists a
unique dual variable p∗ satisfying (1.7). Moreover, the variational inequality

(1.8) 〈−B>p∗ +∇uJ(y∗, u∗), u− u∗〉Rm ≥ 0 for all u ∈ Uad
holds true.

We have derived an optimality system for the unknown variables y∗, u∗ and p∗:

(1.9)

Ay∗ = Bu∗, u∗ ∈ Uad
A>p∗ = −∇yJ(y∗, u∗)

〈−B>p∗ +∇uJ(y∗, u∗), v − u∗〉Rm ≥ 0 for all v ∈ Uad.
Every solution (y∗, u∗) to (1.1) must satisfy, together with the dual variable p∗, the
necessary conditions (1.9).

If Uad = Rm holds, then the term u−u∗ can attain any value h ∈ Rm. Therefore,
the variational inequality (1.8) implies the equation

−B>p∗ +∇uJ(y∗, u∗) = 0.

Example 1.9. We consider the cost functional

J(y, u) =
1

2
|Cy − yd|2 +

λ

2
|u|2

with C ∈ Rn×n, y, yd ∈ Rn, λ ≥ 0 and u ∈ Rm. Then,

∇yJ(y, u) = C>(Cy − yd), ∇uJ(y, u) = λu.

Thus, we obtain the optimality system

Ay∗ = Bu∗, u∗ ∈ Uad
A>p∗ = C>(yd − Cy∗)

〈−B>p∗ + λu∗, v − u∗〉Rm ≥ 0 for all v ∈ Uad
If Uad = Rm holds, we find −B>p∗ + λu∗ = 0. For λ > 0 we have

(1.10) u∗ =
1

λ
B>p∗.

Inserting (1.10) into the state equation, we obtain a linear system in the state and
dual variables:

Ay∗ =
1

λ
BB>p∗

A>p∗ = C>(yd − Cy∗).
If (y∗, p∗) is computed, u∗ is given by (1.10). ♦
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1.5. The Lagrange function. The optimality condition can be expressed by
utilizing the Lagrange function.

Definition 1.10. The function L : R2n+m → R defined by

L(y, u, p) = J(y, u) + 〈Ay −Bu, p〉Rn , (y, u, p) ∈ Rn × Rm × Rn,

is called the Lagrange function for (1.1).

It follows that the second and third conditions of (1.9) can be expressed as

∇yL(y∗, u∗, p∗) = 0

〈∇uL(y∗, u∗, p∗), u− u∗〉Rm ≥ 0 for all u ∈ Uad.

Remark 1.11. The adjoint equation (1.7) is equivalent to ∇yL(y∗, u∗, p∗) = 0.
Thus, (1.7) can be derived from the derivative of the Lagrange functional with
respect to the state variable y. Analogously, the variational inequality follows from
the gradient ∇uL(y∗, u∗, p∗). ♦

It follows from Remark 1.11 that (y∗, u∗) satisfies the necessary optimality con-
ditions of the minimization problem

(1.11) minL(y, u, p∗) s.t. (y, u) ∈ Rn × Uad.

Notice that (1.11) has no equality constraints (in contrast to (1.1)). In most appli-
cations p∗ is not known a-priori. Thus, (y∗, u∗) can not be computed from (1.11).

1.6. Discussion of the variational inequality. In many applications the set of
admissible controls has the form

(1.12) Uad = {u ∈ Rm |ua ≤ u ≤ ub},

where ua ≤ ub are given vectors in Rm and “≤” means less or equal in each
component: ua,i ≤ ui ≤ ub,i for i = 1, . . . ,m. From (1.8) it follows that

〈−B>p∗ +∇uJ(y∗, u∗), u∗〉Rm ≤ 〈−B>p∗ +∇uJ(y∗, u∗), u〉Rm

for all u ∈ Uad. This implies that u∗ solves the minimization problem

min
u∈Uad

〈−B>p∗ +∇uJ(y∗, u∗), u〉Rm = min
u∈Uad

m∑
i=1

(−B>p∗ +∇uJ(y∗, u∗))iui.

If Uad is of the form (1.12), then the minimization of a component ui is independent
of uj , i 6= j:

(−B>p∗ +∇uJ(y∗, u∗))iu
∗
i = min

ua,i≤ui≤ub,i

(−B>p∗ +∇uJ(y∗, u∗))iui,

1 ≤ i ≤ m. Thus,

(1.13) u∗i =

{
ub,i if (−B>p∗ +∇uJ(y∗, u∗))i < 0

ua,i if (−B>p∗ +∇uJ(y∗, u∗))i > 0.

If (−B>p∗ +∇uJ(y∗, u∗))i = 0 holds, we have no information from the variational
inequality. In many cases we can use the equation (−B>p∗ +∇uJ(y∗, u∗))i = 0 to
obtain an explicit equation for one of the components of u∗.
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1.7. The Karush–Kuhn–Tucker system. Define the vectors

(1.14)
µa := (−B>p∗ +∇uJ(y∗, u∗))+

µb := (−B>p∗ +∇uJ(y∗, u∗))−.

where µa,i = (−B>p∗+∇uJ(y∗, u∗))i if the right-hand side is positive and µa,i = 0
otherwise. Analogously, µb,i = |(−B>p∗ +∇uJ(y∗, u∗))i| if the right-hand side is
negative and µb,i = 0 otherwise. Utilizing (1.13) we have

µa ≥ 0, ua − u∗ ≤ 0, 〈ua − u∗, µa〉Rm = 0

µb ≥ 0, u∗ − ub ≤ 0, 〈u∗ − ub, µb〉Rm = 0

These conditions are called complementarity conditions. The inequalities are clear.
We prove 〈ua−u∗, µa〉Rm = 0. Suppose that ua,i < u∗i holds. Due to (1.13) we have
(−B>p∗ +∇uJ(y∗, u∗))i ≤ 0. Thus, µa,i = 0 which gives (ua,i − u∗i )µa,i = 0. Now
we assume µa,i > 0. Using (1.14) we derive (−B>p∗+∇uJ(y∗, u∗))i > 0. It follows
from (1.13) that ua,i = u∗i holds. Again, we have (ua,i − u∗i )µa,i = 0. Summation
over i = 1, . . . ,m yields 〈ua − u∗, µa〉Rm = 0.
Notice that

µa − µb = −B>p∗ +∇uJ(y∗, u∗).

Hence,

(1.15) ∇uJ(y∗, u∗)−B>p∗ + µb − µa = 0.

Let us consider an augmented Lagrange functional

L̃(y, u, p, µa, µb) = J(y, u) + 〈Ay −Bu, p〉Rn + 〈ua − u, µa〉Rm + 〈u− ub, µb〉Rm

Then, (1.15) can be written as

∇uL̃(y∗, u∗, p∗, µa, µb) = 0.

Moreover, the adjoint equation is equivalent with

∇yL̃(y∗, u∗, p∗, µa, µb) = 0.

Here, we have used that ∇yL = ∇yL̃. The vectors µa and µb are the Lagrange
multipliers for the inequality constraints ua − u∗ ≤ 0 and u∗ − ub ≤ 0.

Theorem 1.12. Suppose that u∗ is an optimal control for (1.1), A is invertible
and Uad has the form (1.12). Then, there exist Lagrange multipliers p∗ ∈ Rn and
µa, µb ∈ Rm satisfying

(1.16)

∇yL̃(y∗, u∗, p∗, µa, µb) = 0

∇uL̃(y∗, u∗, p∗, µa, µb) = 0

µa ≥ 0, µb ≥ 0

〈ua − u∗, µa〉Rm = 〈u∗ − ub, µb〉Rm = 0

Ay∗ = Bu∗, ua ≤ u ≤ ub.

The optimality system (1.16) is called the Karush-Kuhn-Tucker (KKT) system.
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2. Existence of optimal controls for linear quadratic optimal control
problems

In this section we present strategies to prove existence of optimal controls for
linear quadratic problems. The cost functional is quadratic and the constraints are
linear elliptic equations together with linear inequality constraints.

Assumption 1. Let Ω ⊂ RN be a bounded domain with Lipschitz-continuous
boundary and suppose that λ ≥ 0, yΩ ∈ L2(Ω), yΓ ∈ L2(Γ), β ∈ L∞(Ω), α ∈ L∞(Γ)
with α(x) ≥ 0 for almost all (f.a.a) x ∈ Γ and ua, ub, va, vb ∈ L2(E) with
ua(x) ≤ ub(x), va(x) ≤ vb(x) f.a.a. x ∈ E. Here, E = Ω or E = Γ.

2.1. Optimal stationary heat source. We consider the problem

(2.1a) min J(y, u) :=
1

2
‖y − yΩ‖2L2(Ω) +

λ

2
‖u‖2L2(Ω)

subject to

−∆y = βu in Ω, y = 0 on Γ,(2.1b)

ua(x) ≤ u(x) ≤ ub(x) f.a.a. x ∈ Ω.(2.1c)

Let us introduce the set of admissible control by

Uad =
{
u ∈ L2(Ω) : ua(x) ≤ u(x) ≤ ub(x) f.a.a. x ∈ Ω

}
.

Note that Uad is non-empty, convex and bounded in L2(Ω).
The following proposition follows from the Lax-Milgram lemma. For a proof we

refer to [3, pag. 33], for instance.

Proposition 2.1. With Assumption 1 holding there exists a unique weak solution
y ∈ H1

0 (Ω) to (2.1b), for every u ∈ L2(Ω), i.e.∫
Ω

∇y · ∇ϕdx =

∫
Ω

βuϕdx for all ϕ ∈ H1
0 (Ω).

Furthermore,

(2.2) ‖y‖H1(Ω) ≤ C ‖u‖L2(Ω)

for a constant C depending on β ∈ L∞(Ω).

Remark 2.2. Let us introduce the linear operator e : H1
0 (Ω)× L2(Ω) → H−1(Ω)

by

〈e(y, u), ϕ〉H−1(Ω),H1
0 (Ω) =

∫
Ω

∇y · ∇ϕ− βuϕdx for ϕ ∈ H1
0 (Ω)

with (y, u) ∈ H1
0 (Ω)× L2(Ω). Then, (2.1) can be expressed equivalently as

min J(x) subject to (s.t.) x = (y, u) ∈ Xad and e(x) = 0 in H−1(Ω)

with Xad = H1
0 (Ω)× Uad. ♦

The unique solution y to (2.1b) is called the state associated with u. We define
the state space

Y = H1
0 (Ω)

and we write y = y(u) to emphasize the dependence on u.

Definition 2.3. An element u∗ ∈ Uad is called optimal control and y∗ = y(u∗) the
associated optimal state provided

J(y∗, u∗) ≤ J(y(u), u) for all u ∈ Uad.
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By Proposition 2.1 the solution operator G : L2(Ω) → H1
0 (Ω), u 7→ y(u) is

well-defined. We call G the control-to-state mapping. Notice that G is linear and
continuous. The continuity follows from (2.2).

Remark 2.4. The space H1(Ω) (and therefore also H1
0 (Ω) ⊂ H1(Ω)) is continu-

ously embedded into L2(Ω). In particular,

‖y‖L2(Ω) ≤ ‖y‖H1(Ω) ≤ C‖u‖L2(Ω)

for y = Gu and u ∈ L2(Ω). Hence, we consider G as a mapping from L2(Ω) to
L2(Ω). More precisely, we define the solution operator

S = EYG : L2(Ω)→ L2(Ω),

where EY : H1(Ω) → L2(Ω) denotes the canonical embedding operator. The
advantage of the operator S is that its adjoint S∗ is also defined on L2(Ω) and we
have

〈Su, ϕ〉L2(Ω) = 〈u, S∗ϕ〉L2(Ω) for all u, ϕ ∈ L2(Ω).

This will be used in Section 3.3. ♦

We introduce the so-called reduced cost functional Ĵ by

Ĵ(u) = J(Su, u) =
1

2
‖Su− yΩ‖2L2(Ω) +

λ

2
‖u‖2L(Ω)2 for all u ∈ Uad.

To prove the existence and uniqueness of an optimal control for (2.1) we make use
of some facts from functional analysis.

Definition 2.5. A subset M of a real Banach space U is called weakly sequentially
closed if un ∈M , un ⇀ u ∈ U (n→∞) imply u ∈M . The set M is called weakly
sequentially compact if every sequence {un}n∈N in M has a weakly convergent
subsequence in U and if M is weakly sequentially closed.

Definition 2.6. A subset C of a real Banach space U is called convex if for all
u, v ∈ C and for all λ ∈ [0, 1] we have

λu+ (1− λ)v ∈ C.
The mapping f : C → R is said to be convex if for all u, v ∈ C and for all λ ∈ [0, 1]
it follows that

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v).

We call f strictly convex if for all u, v ∈ U with u 6= v and for all λ ∈ (0, 1) we
have

f(λu+ (1− λ)v) < λf(u) + (1− λ)f(v).

To prove the existence of optimal controls we will make use of the following
result.

Theorem 2.7. A convex and closed subset of a Banach space is weakly sequentially
closed. If the space is reflexive (e.g. a Hilbert space) and if the subset is also
bounded, then the subset is weakly sequentially compact.

Theorem 2.8. Every convex and continuous functional f defined on a Banach
space U is weakly lower semicontinuous, i.e., for any sequence {un}n∈N in U with
un → u for n→∞ we have

lim inf
n→∞

f(un) ≥ f(u).
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Example 2.9. The norm is weakly lower semicontinuous. From

‖λu+ (1− λ)v‖ ≤ λ ‖u‖+ (1− λ) ‖v‖ for all λ ∈ [0, 1]

it follows that the norm is convex. Moreover, ‖ · ‖ is continuous. Thus, the claim
follows from Theorem 2.8. ♦

Theorem 2.10. Suppose that U and H are given Hilbert spaces with norms ‖ · ‖U
and ‖ · ‖H , respectively. Furthermore, let Uad ⊂ U be non-empty, bounded, closed,
convex and yd ∈ H, λ ≥ 0. The mapping S : U → H is assumed to be a linear and
continuous operator. Then there exists an optimal control u∗ solving

(2.3) min
u∈Uad

Ĵ(u) :=
1

2
‖Su− yd‖2H +

λ

2
‖u‖2U .

If λ > 0 holds or if S is injective, then u∗ is uniquely determined.

Proof. Since Ĵ(u) ≥ 0 holds, the infimum

j = inf
u∈Uad

Ĵ(u)

exists. By assumption, Uad 6= ∅. Thus, there is a minimizing sequence {un}n∈N
satisfying limn→∞ Ĵ(un) = j. The set Uad is bounded and closed (but in general not
compact). From the convexity of Uad and Theorem 2.7, we infer that Uad is weakly
sequentially compact. Thus, there exists a subsequence {unk

}k∈N of {un}n∈N and
an element u∗ ∈ Uad satisfying

unk
⇀ u∗ for k →∞.

Since S is continuous, Ĵ is continuous. From the convexity of Ĵ and Theorem 2.8
we infer

Ĵ(u∗) ≤ lim
k→∞

Ĵ(unk
) = j.

Recall that j is the infimum of all function values Ĵ(u), u ∈ Uad. From u∗ ∈ Uad
we have Ĵ(u∗) ≥ j. Thus, Ĵ(u∗) = j and u∗ is an optimal control for (2.3).

Note that Ĵ ′′(u) = S∗S + λI : U → U is the hessian of Ĵ , where S∗ : H → U is
the Hilbert space adjoint of S : U → H satisfying

〈Su, h〉H = 〈u, S∗h〉U for all (u, h) ∈ U ×H.

Notice that

〈Ĵ ′′(u)v, v〉U = 〈S∗Sv + λv, v〉U = ‖Sv‖2H + λ ‖v‖2H .

If λ > 0 then 〈Ĵ ′′(u)v, v〉 > 0 for all v ∈ U \ {0}. On the other hand we have that
S is injective. Then ‖Sv‖2H > 0 for all v ∈ U \ {0}. Thus, we have in both cases

that Ĵ ′′(u) is a positive operator. This implies that Ĵ is strictly convex and there
exists a unique optimal control. �

Remark 2.11. In the proof of Theorem 2.10 we have only used that Ĵ is continuous
and convex. Therefore, the existence of an optimal control follows for general convex
and continuous cost functionals Ĵ : U → R with a Hilbert space U . ♦

Next we can use Theorem 2.10 to obtain an existence result for the optimal
control problem (2.1).
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Theorem 2.12. Let Assumption 1 be satisfied. Then (2.1) has a local solution
(y∗, u∗) with y∗ = Su∗. For λ > 0 or β(x) 6= 0 f.a.a. x ∈ Ω the optimal solution is
unique.

Proof. In the context of Theorem 2.10 we choose U = H = L2(Ω), yd = yΩ and
S = EYG. The set Uad =

{
u ∈ L2(Ω) : ua ≤ u ≤ ub

}
is bounded, convex and

closed. From Theorem 2.10 we derive the existence of an optimal solution (y∗, u∗),
y∗ = Su∗. For β 6= 0 the operator S is injective: from Su = 0 we have y = 0. This
implies βu = Ay = 0 and, hence, u = 0 follows. �

Remark 2.13. In the proof of Theorem 2.10 the optimal control u∗ is the limit of
the weakly convergent sequence {unk

}k∈N. Since G : L2(Ω)→ H1
0 (Ω) is linear and

continuous, the sequence {ynk
}k∈N, ynk

= Sunk
, converges also weakly (in H1

0 (Ω))
to y∗ = Su∗. ♦

Next we consider the case that ua = −∞ or/and ub = +∞. In this case Uad is
not bounded. Hence, Uad is not weakly sequentially compact.

Theorem 2.14. If λ > 0 holds and Uad is nonempty, convex, closed, problem (2.3)
admits a unique solution.

Proof. By assumption there exists an element u0 ∈ Uad. For u ∈ U with ‖u‖2U >

2λ−1 Ĵ(u0) we have

Ĵ(u) =
1

2
‖Su− yd‖2H +

λ

2
‖u‖2U ≥

λ

2
‖u‖2U > Ĵ(u0).

Thus, the minimization of Ĵ over Uad is equivalent with the minimization of Ĵ over
the bounded, convex and closed set

Uad ∩
{
u ∈ U : ‖u‖2U ≤ 2λ−1Ĵ(u0)

}
.

Now the claim follows as in the proof of Theorem 2.10. �

We directly obtain the next result.

Theorem 2.15. Let ua = −∞ or/and ub = +∞. Moreover, λ > 0 holds. Then,
(2.1) has a unique solution provided Assumption 1 is satisfied.

Next we modify our state equation by changing the boundary conditions. For
given control variable u the state variable is given by

(2.4) −∆y = βu in Ω,
∂y

∂n
= α(ya − y) on Γ.

Here, ya ∈ L2(Γ) is a given temperature and the coefficient α ∈ L∞(Γ) satisfies
α(x) ≥ 0 f.a.a. x ∈ Ω and

∫
Γ
α2ds > 0. The analysis for the state equation (2.4) is

similar to the one for (2.1b). We recall the following theorem, which ensures unique
solvability of (2.4).

Theorem 2.16. Suppose that Ω ⊂ Rn is a bounded domain with Lipschitz contin-
uous boundary. For given coefficients c0 ∈ L∞(Ω) and α ∈ L∞(Γ) with c0(λ) ≥ 0
f.a.a. x ∈ Ω and α(x) ≥ 0 f.a.a. x ∈ Γ let y be given by

(2.5) −∆y + c0y = f in Ω,
∂y

∂n
+ αy = g on Γ.
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Suppose that ∫
Ω

c0(x) dx+

∫
Γ

α(x)2 ds(x) > 0.

Then, (2.5) has a unique solution y ∈ H1(Ω) for any f ∈ L2(Ω) and g ∈ L2(Γ).
Moreover, there exists a constant C > 0 (independent of f and g) so that

‖y‖H1(Ω) ≤ C
(
‖f‖L2(Ω) + ‖g‖L2(Γ)

)
holds.

A proof of Theorem 2.16 is given in [3, p. 36]
In contrast to the Dirichlet problem, we choose Y = H1(Ω). Theorem 2.16

ensures for any u ∈ L2(Γ) and ya ∈ L2(Γ) that exists a unique solution y ∈ Y .
Then, each solution to (2.4) can be expressed as

y = y(u) + y0,

where y(u) solves (2.4) for the pair (u, ya = 0) and y0 solves (2.4) for the pair
(u = 0, ya). The operator G : u → y(u) is linear and continuous from L2(Ω) to
H1(Ω). We consider G as a mapping from L2(Ω) to L2(Ω):

S = EYG, S : L2(Ω)→ L2(Ω).

Then, the state variable y is given as y = Su + y0. The optimal control problem
can be expressed as

(2.6) min
u∈Uad

Ĵ(u) :=
1

2
‖Su− (yΩ − y0)‖2L2(Ω) +

λ

2
‖u‖2L2(Ω).

From Theorems 2.10 and 2.14 the existence of an optimal control follows. If λ > 0
or β 6= 0 in Ω hold, the optimal control is unique.

2.2. Optimal stationary boundary temperature. We consider the boundary
control problem

(2.7a) minJ(y, u) :=
1

2
‖y − yΩ‖2L2(Ω) +

λ

2
‖u‖2L2(Γ)

subject to

(2.7b) −∆y = 0 in Ω,
∂y

∂n
= α(u− y) on Γ,

and

(2.7c) ua(x) ≤ u(x) ≤ ub(x) f.a.a. x ∈ Γ.

For the existence of a unique solution to the elliptic problem (2.7) we suppose

(2.8)

∫
Γ

α(x)2 ds(x) > 0.

The control space is L2(Γ), the state space Y = H1(Ω). We define

Uad =
{
u ∈ L2(Γ) : ua(x) ≤ u(x) ≤ ub(x) f.a.a. x ∈ Γ

}
.

It follows from Theorem 2.16 that (2.7b) has a unique weak solution y = y(u) ∈
H1(Ω) for any u ∈ L2(Γ). The operator G : u→ y(u) is continuous from L2(Γ) to
H1(Ω) ⊂ L2(Ω). We use S = EYG : L2(Γ) → L2(Ω) and obtain the next result
from Theorem 2.10.

Theorem 2.17. Let Assumption 1 and (2.8) be satisfied. Then, (2.7) possesses an
optimal control, which is unique for λ > 0.
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Remark 2.18. With Theorem 2.14 we obtain also an existence result for un-
bounded sets Uad. ♦

3. First-order necessary optimality conditions

Numerical methods for optimal control problem are often based on optimality
conditions, which leads to gradient-type algorithms.

3.1. Differentiability in Banach spaces. In this subsection we recall the no-
tion of Gâteaux and Fréchet derivatives. These derivatives are needed to derive
optimality conditions for PDE constrained optimization problems.

Suppose that U and V are real Banach spaces. U ⊂ U an open subset and
F : U ⊃ U → V a given mapping.

Definition 3.1. Let u ∈ U and h ∈ U . If the limit

δF (u, h) := lim
t↘0

1

t
(F (u+ th)− F (u))

exists in V , we call δF (u, h) the directional derivative of F at u in direction h. If
δF (u, h) exists for all h ∈ U , the mapping h 7→ δF (u, h) is called the first variation
of F at u.

Example 3.2. We consider the mapping f : R2 → R, x = reiϕ 7→ r cosϕ. At
x = 0 we have the first variation

δf(0, h) = lim
t↘0

1

t
(f(th)− f(0)) = lim

t↘0

1

t
(tr cosϕ− 0) = r cosϕ = f(h),

where we have used that h = reiϕ and th = t reiϕ. Thus, f(th) = t r cosϕ and
f(h) = r cosϕ. Notice that h 7→ f(h) = δf(0, h) is a nonlinear mapping. ♦

Definition 3.3. Let u ∈ U . Suppose that there exist the first variation δF (u, h)
and a linear, continuous operator A : U → V satisfying

δF (u, h) = Ah for all h ∈ U.
Then, F is Gâteaux-differentiable at u and A is the Gâteaux derivative of F at u.
We write A = F ′(u).

Remark 3.4. The Gâteaux derivative can be derived from the directional deriva-
tive. If F : U ⊃ U → R is Gâteaux-differentiable at u, then F ′(u) belongs to the
dual space U∗. ♦

Example 3.5. 1) A nonlinear point functional: Let U = U = C([0, 1]) and
f : U → R be given by f(u(·)) = sinu(1). Then, f is well-defined. Suppose
that h ∈ C([0, 1]). We compute the directional derivative of f at u in
direction h. It follows that

lim
t↘0

1

t
(f(u+ th)− f(u)) = lim

t↘0

1

t
(sin(u(1) + th(1))− sinu(1))

=
d

dt
sin(u(1) + th(1))

∣∣∣
t=0

= (cos(u(1) + th(1))h(1))
∣∣
t=0

= cosu(1)h(1).

Thus, δf(u, h) = cosu(1)h(1). The mapping h 7→ δf(u, h) is linear and
continuous in C([0, 1]). Thus, f is Gâteaux-differentiable and f ′(u)h =
cos(u(1))h(1).
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2) Quadratic function in a Hilbert space: Let H be a Hilbert space with inner
product 〈· , ·〉H and induced norm ‖ · ‖H . We set f(u) = ‖u‖2H . Then,

lim
t↘0

1

t
(f(u+ th)− f(u)) = lim

t↘0

1

t

(
‖u+ th‖2H − ‖u‖

2
H

)
= lim
t↘0

1

t

(
2t 〈u, h〉H + t2 ‖h‖2H

)
= 2 〈u, h〉H .

Hence, u 7→ f(u) is Gâteaux-differentiable and f ′(u)h = 〈2u, h〉H . By
Riesz theorem, the dual space H∗ can be identified with H. The Riesz
representation of f ′(u) = 〈2u, ·〉H is 2u ∈ H. Often we write ∇f(u) = 2u ∈
H and call ∇f(u) in this case the gradient of f at u.

3) Application to the Hilbert space L2(Ω): Consider

f(u) = ‖u‖2L2(Ω) =

∫
Ω

u(x)2 dx.

From part 2) we obtain the derivative

f ′(u)h =

∫
Ω

2u(x)h(x) dx

and – by identifying L2(Ω)∗ with L2(Ω) – the gradient (f ′(u))(x) = 2u(x)
f.a.a. x ∈ Ω. ♦

Definition 3.6. Let u ∈ U and F : U ⊃ U → V be given. The mapping F is
called Fréchet differentiable at u ∈ U if there exists an operator A ∈ L(U, V ) and a
mapping r(u, ·) : U → V satisfying

F (u+ h) = F (u) +Ah+ r(u, h) for all h ∈ U with u+ h ∈ U ,
where

‖r(u, h)‖V
‖h‖U

→ 0 for ‖h‖U → 0.

The operator A is said to be the Fréchet derivative of F at u. We write A = F ′(u).

Remark 3.7. To prove Fréchet differentiability, one often considers

‖F (u+ h)− F (u)−Ah‖V
‖h‖U

→ 0 for ‖h‖U → 0

with a candidate A for the derivative. ♦

Example 3.8. 1) Define the mapping f : R2 → R by

f(x, y) =

{
1 if y = x2 and x 6= 0,

0 otherwise.

Then, f is Gâteaux-differentiable in (0, 0), but not continuous. Thus, f is
not Fréchet-differentiable in (0, 0).

2) The mapping f(u) = sinu(1) is Fréchet-differentiable in C([0, 1]).
3) The function f(u) = ‖u‖2H is Fréchet-differentiable in a Hilbert space H.
4) Any linear and continuous operator A is Fréchet-differentiable. From

A(u+ h) = Au+Ah+ 0

we observe that r ≡ 0 holds. In this case, the operator A is the Fréchet
derivative of itself. ♦
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If F is Fréchet-differentiable, then F is Gâteaux-differentiable. Thus, a Fréchet
derivative can be computed utilizing the directional derivative.

Theorem 3.9 (Chain rule). Suppose that U , V , Z are Banach spaces and U ⊂
U, V ⊂ V are open sets. Let F : U → V, G : V → Z be Fréchet-differentiable at
u ∈ U and F (u) ∈ V, respectively. Then E = G ◦ F : U → Z, u 7→ G(F (u)) is
Fréchet-differentiable at u satisfying

E′(u) = G′(F (u))F ′(u).

Example 3.10. Let (U, 〈· , ·〉U ), (H, 〈· , ·〉H) be real Hilbert spaces, z ∈ H be fixed,
S ∈ L(U,H) and

E(u) = ‖Su− z‖2H for u ∈ U.
Then, E(u) = G(F (u)) with G(v) = ‖v‖2H and F (u) = Su − z. From Example
3.5-2) and Example 3.8-4) we find

G′(v)h = 〈2v, h〉H , F ′(u)h = Sh.

Using Theorem 3.9 it follows that

(3.1)
E′(u)h = G′(F (u))F ′(u)h = 〈2F (u), F ′(u)h〉H

= 2 〈Su− z, Sh〉H = 2 〈S∗(Su− z), h〉U
for any h ∈ U . In (3.1) the operator S∗ ∈ L(H,U) is the adjoint operator of S and
will be defined in the next subsection. ♦

3.2. Adjoint operators. If A ∈ Rm×n, then,

〈Au, v〉Rm = 〈u,A>v〉Rn for all u ∈ Rn and v ∈ Rm.

Here, A> is the transpose of A. Analogously, we can define an adjoint operator A∗

for A ∈ L(U, V ) with real Hilbert spaces U , V :

〈Au, v〉V = 〈u,A∗v〉U for all u ∈ U and v ∈ V.

More generally, we can define a dual operator in real Banach spaces U and V . Sup-
pose that A ∈ L(U, V ) and f ∈ V ∗ ∈ {f̃ : V → R | f̃ is linear and continuous} =
L(V,R). We define g : U → R by

g(u) = f(Au).

Since f and A are linear, g is linear. Moreover, we have

|g(u)| ≤ ‖f‖V ∗‖Au‖V ≤ ‖f‖V ∗‖A‖L(U,V )‖u‖U .

Consequently, g is bounded and thus g ∈ U∗. We obtain

‖g‖U∗ = sup
‖u‖U=1

g(u) = sup
‖u‖U=1

f(Au) = sup
‖u‖U=1

〈f,Au〉V ∗,V

= sup
‖u‖U=1

〈A∗f, u〉U∗,U = ‖A∗f‖U∗ ≤ ‖A‖L(U,V )‖f‖V ∗ .

Here, we have used the notation of the duality pairing

f(v) = 〈f, v〉V ∗,V for v ∈ V.

The mapping V ∗ 3 f 7→ g ∈ U∗ is called the adjoint or dual operator associated
with A ∈ L(U, V ). We denote this dual mapping by A∗. Note that

〈A∗f, u〉U∗,U = g(u) = f(Au) = 〈f,Au〉V ∗,V for all u ∈ U.
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Thus, for the dual operator A∗ ∈ L(V ′, U ′) we have

〈f,Au〉V ∗,V = 〈A∗f, u〉U∗,U for all f ∈ V ∗ and u ∈ U.

Concerning the notation we do not distinguish between the dual and the (Hilbert
space) adjoint operator.

3.3. Optimality conditions. In this subsection we derive first-order necessary
optimality conditions.

3.3.1. Quadratic programming in Hilbert spaces. In section 2 we have con-
sidered the quadratic programming problem

(3.2) min
u∈Uad

Ĵ(u) =
1

2
‖Su− yd‖2H +

λ

2
‖u‖2U .

Thus we can apply the following lemma.

Lemma 3.11. Let U be a real Banach space, U ⊂ U be open, C ⊂ U be convex and
Ĵ : U → R a function, which is Gâteaux-differentiable in U . Suppose that u∗ ∈ C
is a solution to

(3.3) min
u∈C

Ĵ(u).

Then the following variational inequality holds

(3.4) Ĵ ′(u∗)(u− u∗) ≥ 0 for all u ∈ C.

If u∗ ∈ C solves (3.4) and Ĵ is convex, then u∗ is a solution to (3.3).

Proof. Let u ∈ C be chosen arbitrarily. We consider the convex linear combination

u(t) = u∗ + t(u− u∗) for any t ∈ [0, 1].

Since C is convex, u(t) ∈ C for all t ∈ [0, 1]. From the optimality of u∗ we infer
that there exists a t∗ ∈ [0, 1]

Ĵ(u(t)) ≥ Ĵ(u∗) for t ∈ [0, t∗].

Thus
1

t

(
Ĵ(u∗ + t(u− u∗))− Ĵ(u∗)

)
≥ 0

for all t ∈ (0, t∗]. Since Ĵ is Gâteaux-differentiable on U , we obtain (3.4) by taking
the limit t→ 0.
Let u ∈ C be arbitrary and u∗ ∈ C a solution to (3.4). Since Ĵ is convex, we have

Ĵ(u)− Ĵ(u∗) ≥ Ĵ ′(u∗)(u− u∗).

By (3.4) we obtain Ĵ(u) ≥ Ĵ(u∗), so that u∗ is a solution to (3.3). �

In Lemma 3.11 a first-order necessary optimality condition is formulated. If Ĵ
is convex, then (3.4) is also a sufficient condition. Next we apply Lemma 3.11 to
(3.2).

Theorem 3.12. Let U,H be real Hilbert spaces, Uad ⊂ U nonempty, convex and
yd ∈ H, λ ≥ 0 be given. Furthermore, assume that S ∈ L(U,H). Then, u∗ ∈ Uad
solves (3.2) if the variational inequality

(3.5) 〈S∗(Su∗ − yd) + λu∗, u− u∗〉U ≥ 0 for all u ∈ Uad
holds.
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Proof. The gradient of Ĵ is given by

∇̂J(u∗) = S∗(Su∗ − yd) + λu∗.

Thus, the claim follows directly from Lemma 3.11. �

The variational inequality (3.5) can be expressed as

〈Su∗ − yd, Su− Su∗〉H + λ 〈u∗, u− u∗〉U ≥ 0 for all u ∈ Uad,

where the use of S∗ is avoided.

3.3.2. Optimal stationary heat source. We consider the problem (compare
Section 2.1)

(3.6a) min J(y, u) :=
1

2
‖y − yΩ‖2L2(Ω) +

λ

2
‖u‖2L2(Ω)

subject to

(3.6b) −∆y = βu in Ω, y = 0 on Γ,

and

(3.6c) ua ≤ u ≤ ub in Ω a.e.,

where “a.e.” stands for “almost everywhere”. We have introduced the solution
operator S : L2(Ω) → L2(Ω). From (3.5) we derive that an optimal solution to
(3.6) satisfies the variational inequality

(3.7) 〈S∗(Su∗ − yΩ) + λu∗, u− u∗〉L2(Ω) ≥ 0 for all u ∈ Uad.

To determine the adjoint operator S∗ we make use of the following lemmas.

Lemma 3.13. Suppose that z, u ∈ L2(Ω), c0, β ∈ L∞(Ω) with c0 ≥ 0 in Ω a.e.
and y, p ∈ H1

0 (Ω) are the weak solutions to

−∆y + c0y = βu in Ω, −∆p+ c0p = z in Ω,

y = 0 on Γ, p = 0 on Γ.

Then,

(3.8)

∫
Ω

zy dx =

∫
Ω

βpudx.

Proof. The weak formulations and p, y ∈ H1
0 (Ω) imply∫

Ω

∇y · ∇p+ c0ypdx =

∫
Ω

βupdx

and ∫
Ω

∇p · ∇y + c0py dx =

∫
Ω

zy dx.

Since the left-hand sides are equal, we obtain (3.8). �

Lemma 3.14. The adjoint operator S∗ : L2(Ω)→ L2(Ω) is given by

S∗z = βp,

where p ∈ H1
0 (Ω) is the weak solution to −∆p = z in Ω and p = 0 on Γ.
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Proof. The adjoint operator S∗ is defined by

〈z, Su〉L2(Ω) = 〈S∗z, u〉L2(Ω) for all z ∈ L2(Ω) and u ∈ L2(Ω).

The claim follows from Lemma 3.13 with c0 = 0 and y = Su:

〈z, Su〉L2(Ω) = 〈z, y〉L2(Ω) = 〈βp, u〉L2(Ω).

The mapping z 7→ βp is linear and continuous from L2(Ω) to L2(Ω) (by the Lax-
Milgram lemma). Since z and u are arbitrarily chosen and S∗ is uniquely deter-
mined, we have S∗z = βp. �

Remark 3.15. The derivation of S∗ is based on Lemma 3.13. However the con-
struction is not obvious. Later we will discuss a technique which is based on a
Lagrangian framework. In this case it is straightforward how the operator S∗ can
be computed. ♦

If S∗ is known, (3.7) can be simplified.

Definition 3.16. The weak solution p ∈ H1
0 (Ω) of the adjoint or dual equation

(3.9) −∆p = yΩ − y∗ in Ω, p = 0 on Γ

with y∗ = Su∗ is called the associated adjoint or dual state.

Recall that yΩ ∈ L2(Ω). Furthermore y∗ ∈ H1
0 (Ω) ↪→ L2(Ω). Thus, yΩ − y∗

belongs to L2(Ω). By Lax-Milgram there exists a unique adjoint state p ∈ H1
0 (Ω)

satisfying (3.9). Choosing z = yΩ − y∗ in Lemma 3.14 we find

S∗(Su∗ − yΩ) = S∗(y∗ − yΩ) = −βp.
Hence, (3.7) implies

〈λu∗ − βp, u− u∗〉L2(Ω) ≥ 0 for all u ∈ Uad.

Using (3.4) we derive the following result.

Theorem 3.17. Suppose that u∗ is an optimal solution to (3.6) and y∗ the as-
sociated optimal state. Then there exists a unique solution p ∈ H1

0 (Ω) to (3.9)
satisfying the variational inequality

(3.10)

∫
Ω

(λu∗(x)− β(x)p(x)) (u(x)− u∗(x)) dx ≥ 0 for all u ∈ Uad.

On the contrary, if u∗ ∈ Uad solves together with y∗ = Su∗ and the solution p to
(3.9) the variational inequality (3.10), then u∗ is an optimal solution to (3.6).

Summarizing, a control u is optimal for (3.6) if and only if u satisfies together
with y and p the following first-order necessary optimality system

(3.11)

−∆y = βu, −∆p = yΩ − y,
y|Γ = 0, p|Γ = 0,

u ∈ Uad,
〈λu− βp, v − u〉L2(Ω) ≥ 0 for all v ∈ Uad.

Next we turn to a pointwise discussion of the optimality conditions. From (3.11)
we derive ∫

Ω

(λu∗ − βp)u∗ dx ≤
∫

Ω

(λu∗ − βp)udx for all u ∈ Uad.
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This implies

(3.12)

∫
Ω

(λu∗ − βp)u∗ dx = min
u∈Uad

∫
Ω

(λu∗ − βp)udx.

If λu∗ − βp is known, (3.12) is a linear programming problem.

Lemma 3.18. The variational inequality (3.10) holds if and only if for almost all
x ∈ Ω we have

(3.13) u∗(x)


= ua(x), if λu∗(x)− β(x)p(x) > 0,

∈ [ua(x), ub(x)], if λu∗(x)− β(x)p(x) = 0,

= ub(x), if λu∗(x)− β(x)p(x) < 0.

The following pointwise variational inequality is equivalent to (3.13):

(3.14) (λu∗(x)−β(x)p(x))(v−u∗(x)) ≥ 0 for all v ∈ [ua(x), ub(x)], f.a.a. x ∈ Ω.

Proof. 1) (3.10) ⇒ (3.13): We suppose that (3.13) does not hold and define
the measurable sets

A+(u∗) = {x ∈ Ω : λu∗(x)− β(x)p(x) > 0},
A−(u∗) = {x ∈ Ω : λu∗(x)− β(x)p(x) < 0},

where u∗ is an arbitrary representant of the equivalence class for u∗. Anal-
ogously, ua and ub stand for arbitrary, but fixed representants. If the claim
follows for the chosen representants, the claim holds also for any chosen
representants. By assumption, (3.13) is not satisfied. Thus, there exists a
set E+ ⊂ A+(u∗) with positive measure and u∗(x) > ua(x) for all x ∈ E+

or a set E− ⊂ A−(u∗) with positive measure and u∗(x) < ub(x) for all
x ∈ E−. Let

u(x) = ua(x) for x ∈ E+ and u(x) = u∗(x) for x ∈ Ω \ E+.

Then, ∫
Ω

(λu∗(x)− β(x)p(x))(u(x)− u∗(x)) dx

=

∫
E+

(λu∗(x)− β(x)p(x))(ua(x)− u∗(x)) dx < 0,

because λu∗ − βp > 0 and ua < u∗ on E+ ⊂ A+(u∗). Since u ∈ Uad
holds, we have a contradiction to (3.10). In the second case we proceed
analogously and define

u = ub on E− and u = u∗ on Ω \ E−.
2) (3.13) ⇒ (3.14): We have u∗ = ua on A+(u∗) a.e. Thus, v − u∗(x) ≥

0 for any real number v ∈ [ua(x), ub(x)] for x ∈ A+(u∗) a.e. Utilizing
λu∗(x)− β(x)p(x) > 0 in A+(u∗) we find

(λu∗(x)− β(x)p(x))(v − u∗(x)) ≥ 0 in A+(u∗) a.e.

Analogously, we derive

(λu∗(x)− β(x)p(x))(v − u∗(x)) ≥ 0 in A−(u∗) a.e.

Clearly, (3.14) holds on Ω \ (A+(u∗) ∪A−(u∗)) a.e.
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3) (3.14) ⇒ (3.10): Let u ∈ Uad be chosen arbitrarily. We have u(x) ∈
[ua(x), ub(x)] f.a.a. x ∈ Ω. Using (3.14) with v := u(x) we have

(λu∗(x)− β(x)p(x))(u(x)− u∗(x)) ≥ 0 f.a.a. x ∈ Ω.

By integrating (3.10) follows immediately.
�

From (3.14) we deduce

(3.15) (λu∗(x)−β(x)p(x))u∗(x) ≤ (λu∗(x)−β(x)p(x))v for all v ∈ [ua(x), ub(x)].

Theorem 3.19. The control u∗ ∈ Uad is optimal for (3.6) if and only if one of the
following conditions holds f.a.a. x ∈ Ω: the weak minimum principle

min
v∈[ua(x),ub(x)]

(λu∗(x)− β(x)p(x))v = (λu∗(x)− β(x)p(x))u∗(x)

or the minimum principle

min
v∈[ua(x),ub(x)]

(
λ

2
v2 − β(x)p(x)v

)
=
λ

2
u∗(x)2 − β(x)p(x)u∗(x),

where p is the dual variable solving (3.9) with y∗ = Su∗.

Proof. The weak minimum principle follows directly from (3.15). We turn to the
minimum principle and consider the (convex) quadratic optimization problem in R:

(3.16) min
v∈[ua(x),ub(x)]

g(v) =
λ

2
v2 − β(x)p(x)v.

The real number v∗ solves (3.16) for any fixed x ∈ Ω if and only if v∗ satisfies the
variational inequality

g′(v∗)(v − v∗) ≥ 0 for all v ∈ [ua(x), ub(x)],

Consequently,

(λv∗ − β(x)p(x))(v − v∗) ≥ 0 for all v ∈ [ua(x), ub(x)].

which holds with v∗ = u∗(x). �

From the choice for the regularization parameter λ we can deduce further con-
sequences.

Case λ = 0. Using (3.13) we find

u∗(x) =

{
ua(x) if β(x)p(x) < 0,

ub(x) if β(x)p(x) > 0.

If β(x)p(x) = 0 holds, we do not get any information for u∗(x). In the case
β(x)p(x) 6= 0 f.a.a. x ∈ Ω we have u∗(x) = ua(x) or u∗(x) = ub(x) f.a.a. x ∈ Ω. In
this case we have a so-called bang-bang control.
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Case λ > 0. We derive from (3.13) that u∗(x) = 1
λβ(x)p(x) holds if λu∗(x) −

β(x)p(x) = 0. This leads to the following theorem.

Theorem 3.20. Let λ > 0. Then u∗ is a solution to (3.6) if and only if

(3.17) u∗(x) = P[ua(x),ub(x)]

(
1

λ
β(x)p(x)

)
f.a.a. x ∈ Ω,

where P[a,b], a < b, is the projection of R on [a, b] given by

P[a,b](u) := min(b,max(a, u)).

Proof. Theorem 3.20 follows directly from Theorem 3.19: the solution to

min
v∈[ua(x),ub(x)]

(
λ

2
v2 − β(x)p(x)v

)
is v = P[ua(x),ub(x)](

1
λβ(x)p(x)), where we have used that

λ

2
v2 − β(x)p(x)v =

λ

2

(
v − 1

λ
β(x)p(x)

)2

+
1

2λ
β(x)2p(x)2

holds. �

Case λ > 0 and Uad = L2(Ω) (no control constraints). From (3.14) or (3.17) it
follows directly

(3.18) u∗ =
1

λ
βp.

Thus, we obtain the following optimality system

−∆y =
1

λ
β2p, −∆p = yΩ − y,

y|Γ = 0, p|Γ = 0

which is a coupled system of two elliptic equations. If p is computed, u∗ is given
by (3.18).

By introducing a Lagrange multiplier the variational inequality (3.10) can be
formulated as an additional equation, compare Section 1.7.

Theorem 3.21. The variational inequality (3.10) is equivalent to the existence of
two functions µa, µb ∈ L2(Ω) satisfying µa, µb ≥ 0 in Ω a.e.,

(3.19) λu∗ − βp+ µb − µa = 0

and the complementarity condition

(3.20) µa(x)(ua(x)− u∗(x)) = µb(x)(u∗(x)− ub(x)) = 0 f.a.a. x ∈ Ω.

Proof. a) First we show that (3.19) and (3.20) follow from (3.10). Analogously
to Section 1.7 we define

(3.21)
µa(x) = (λu∗(x)− β(x)p(x))+ f.a.a. x ∈ Ω,

µb(x) = (λu∗(x)− β(x)p(x))− f.a.a. x ∈ Ω,

where s+ = 1
2 (s + |s|) and s− = 1

2 (|s| − s) for s ∈ R. Then, we have
µa, µb ≥ 0 f.a.a. x ∈ Ω. Moreover,

λu∗(x)− β(x)p(x) = µa − µb,
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which is (3.19). From (3.13) it follows that

(λu∗ − βp)(x) > 0 ⇒ u∗(x) = ua(x),

(λu∗ − βp)(x) < 0 ⇒ u∗(x) = ub(x),

ua(x) < u∗(x) < ub(x) ⇒ (λu∗ − βp)(x) = 0.

Thus, (3.20) holds because one of the factors is zero. For instance, if
µa(x) > 0 is satisfied, then µb(x) = 0. Hence, λu∗(x)−β(x)p(x) = µa(x) >
0. This implies u∗(x)−ua(x) = 0. For almost all x ∈ Ω with u∗(x) > ua(x)
we have (λu∗ − βp)(x) ≤ 0. Due to (3.21) we have µa(x) = 0. Summariz-
ing, µa(x)(ua(x) − u∗(x)) = 0. Analogously, the second identity in (3.20)
follows.

b) Suppose that (3.19)-(3.20) and u∗ ∈ Uad hold. Let u ∈ Uad and x ∈ Ω be
chosen arbitrarily. Then we have three cases.
u∗(x) ∈ (ua(x), ub(x)): Using (3.20) we find µa(x) = µb(x) = 0. By (3.19)
it follows that

(λu∗ − βp)(x) = 0,

so that

(3.22) (λu∗(x)− β(x)p(x))(u(x)− u∗(x)) ≥ 0.

ua(x) = u∗(x): Now u(x) − u∗(x) ≥ 0 for u ∈ Uad. In addition, we have
(3.20), so that µb(x) = 0 holds. Using (3.19) we conclude

λu∗(x)− β(x)p(x) = µa(x) ≥ 0,

which implies (3.22).
ub(x) = u∗(x): Utilizing u(x)−u∗(x) ≤ 0 for u ∈ Uad, (3.19) and (3.20) we
derive (3.22), because µa(x) = 0 and

λu∗(x)− β(x)p(x) = −µb(x) ≤ 0.

Summarizing, by integration, (3.22) implies (3.10).
�

Theorem 3.21 directly leads to the following Karush-Kuhn-Tucker (KKT) System
(compare (3.11))

−∆y = βu, −∆p = yΩ − y,
y|Γ = 0, p|Γ = 0,

λu−βp− µa + µb = 0,

ua ≤u ≤ ub, µa, µb ≥ 0, µa(ua − u) = µb(u− ub) = 0.

Definition 3.22. The functions µa and µb defined by (3.21) are called Lagrange
multipliers associated with the inequality constraints ua ≤ u and u ≤ ub, respec-
tively.

Using the adjoint state p one can express the gradient of the reduced cost func-
tional Ĵ(u) = J(y(u), u).

Lemma 3.23. The gradient of

Ĵ(u) = J(y(u), u) =
1

2
‖y − yΩ‖2L2(Ω) +

λ

2
‖u‖2L2(Ω)
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is given by

∇Ĵ(u) = λu− βp,
where p ∈ H1

0 (Ω) is the weak solution of the adjoint equation

(3.23) ∆p = yΩ − y in Ω, p = 0 on Γ

and y = y(u) is the associated state variable.

Proof. In the proof of Theorem 3.12 we have derived

Ĵ ′(u)h = 〈S∗(Su− yΩ) + λu, h〉L2(Ω) for any h ∈ L2(Ω).

By Lemma 3.14 we have S∗(y − yΩ) = −βp, where p solves (3.23). Thus,

Ĵ ′(u)h = 〈λu− βp, h〉L2(Ω) for any h ∈ L2(Ω).

Utilizing the Riesz theorem, we identify Ĵ ′(u) with ∇Ĵ(u) = λu− βp. �

3.3.3. The formal Lagrange principle. In this section we derive the optimality
conditions by utilizing the Lagrange functional. We treat all Lagrange multipliers
as functions in L2(Ω) without any proof. Therefore, we call this procedure “formal”.
But the main goal of this subsection is to explain the used strategy which can be
also applied to much more complex problems.

We consider the following optimal control problem

(3.24a) minJ(y, u) :=
1

2
‖y − yΩ‖2L2(Ω) +

λ

2
‖u‖2L2(Γ)

subject to

−∆y = 0 in Ω,
∂y

∂n
+ αy = αu on Γ,(3.24b)

ua(x) ≤ u(x) ≤ ub(x) on Γ a.e.(3.24c)

To ensures existence and uniqueness of a solution to (3.24b) we suppose that∫
Γ

α(x)2 dx > 0

holds. We define formally the Lagrange function for (3.24)

L(y, u, p) = J(y, u) +

∫
Ω

−∆y p1 dx+

∫
Γ

(∂y
∂n
− α(u− y)

)
p2 ds,

where p1 : Ω 7→ R and p1 : Γ 7→ R are the Lagrange multipliers associated with
the partial differential equation and the boundary condition, respectively. We set
p = (p1, p2).
The definition of L is not completely clear. From y ∈ H1(Ω) we conclude that ∆y

and ∂y
∂n need not to be functions. Without any further regularity conditions we only

have ∆y ∈ H1(Ω)∗ and ∂y
∂n ∈ H

−1/2(Γ). Thus, the integrals are not well-defined.
Moreover, we have to specify the regularities of p1 and p2.
However, we continue by applying Green’s formula twice

L(y, u, p) = J(y, u)+

∫
Γ

y
∂p1

∂n
−p1

∂y

∂n
ds−

∫
Ω

y∆p1 dx+

∫
Γ

(
∂y

∂n
− α(u− y)

)
p2 ds.

From the Lagrange principle we conclude that (y∗, u∗) together with the Lagrange
multipliers p1, p2 satisfies the first-order necessary optimality conditions for

min
(y,u)
L(y, u, p) s.t. u ∈ Uad.
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Since there are no restrictions for y we have

DyL(y∗, u∗, p)h = 0 for all h ∈ Y = H1(Ω).

Utilizing the box constraints we find that

DuL(y∗, u∗, p)(u− u∗) ≥ 0 for all u ∈ Uad.

Notice that

(3.25)

DyL(y∗, u∗, p)h =

∫
Ω

((y∗ − yΩ)−∆p1)hdx+

∫
Γ

(p2 − p1)
∂h

∂n
ds

+

∫
Γ

(
∂p1

∂n
+ αp2

)
hds = 0 for all h ∈ Y,

where we have used that the derivative of a linear mapping is the linear mapping
itself. We choose specific direction h ∈ Y . More precisely, let h ∈ C∞0 (Ω) ⊂ Y
satisfying h = ∂h

∂n = 0 on Γ. From (3.25) we find∫
Ω

(y∗ − yΩ −∆p1)hdx = 0 for all h ∈ C∞0 (Ω).

Recall that C∞0 (Ω) is dense in L2(Ω). Therefore,

−∆p1 = yΩ − ȳ in Ω.

This is the first adjoint equation. In contrast to the approach in Section 3.3.2 we
derive the adjoint equation utilizing the Lagrange principle. Next we assume that
h ∈ Y satisfies h|Γ = 0. Then,∫

Γ

(p2 − p1)
∂h

∂n
ds = 0 for all h ∈ C∞(Ω) with h|Γ = 0.

Thus, p2 = p1 on Γ a.e. Finally, let h ∈ C∞(Ω) satisfy ∂h
∂n = 0. Then, (3.25) implies

0 =

∫
Γ

(
∂p1

∂n
+ αp2

)
hds =

∫
Γ

(
∂p1

∂n
+ αp1

)
hds.

Consequently,
∂p1

∂n
+ αp1 = 0 on Γ.

Summarizing, p1 and p2 satisfy

(3.26)
−∆p1 = yΩ − y∗ in Ω,

∂p1

∂n
+ αp1 = 0 on Γ,

p1 = p2 on Γ.

Analogously, we find

DuL(y∗, u∗, p)(u− u∗) =

∫
Γ

(λu∗ − αp)(u− u∗) ds ≥ 0.

Now we introduce the Lagrange functional so that all integrals are well-defined.

Definition 3.24. The Lagrange function L : H1(Ω) × L2(Γ) × H1(Ω) → R for
(3.24) is defined by

L(y, u, p) = J(y, u) +

∫
Ω

∇y · ∇p dx+

∫
Γ

α(u− y)p ds.

Notice that
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1) DyL(y∗, u∗, p)h = 0 for all h ∈ H1(Ω) is equivalent with the weak form of
(3.26),

2) DuL(y∗, u∗, p)(u−u∗) ≥ 0 for all u ∈ Uad is equivalent with the variational

inequality Ĵ ′(u∗)(u− u∗) ≥ 0 for all u ∈ Uad.

Remark 3.25. 1) Let us mention that we have ensured the existence of the
Lagrange multiplier p ∈ H1(Ω) by the solvability of the adjoint equation

−∆p = yΩ − y∗ in Ω, ∂p
∂n + αp = 0 on Γ. The existence can also be

guaranteed by the Karush-Kuhn-Tucker theory in Banach spaces.
2) The gradient of the reduced cost functional Ĵ(u) = J(y(u), u) is given by

Ĵ ′(u) = DuL(y(u), u, p(u)).

3) Let us mention that the mappings

τ1 : H2(Ω)→ H3/2(Γ)×H1/2(Γ), h 7→
(
h|Γ,

∂h

∂n

∣∣∣
Γ

)
,

τ2 : H1(Ω)→ H1/2(Γ), h→ h|Γ

are surjective. Therefore, we can choose h satisfying ∂h
∂n |Γ = 0 or h|Γ = 0.♦

We can extend the Lagrange function by including the inequality constraints. In
this case we define

L(y, u, p, µa, µb) = J(y, u) +

∫
Ω

∇y · ∇p dx+

∫
Γ

α(y − u)p ds

+

∫
Ω

µa(ua − u) + µb(u− ub) dx.

4. Existence of optimal controls for semilinear optimal control problems

In this subsection we consider optimal control problems governed by semilinear
elliptic differential equations. An example is given by the following problem

min J(y, u) =
1

2

∫
Ω

|y − yΩ|2 dx+

∫
Ω

u2 dx(4.1a)

s.t. −∆y + y + y3 = u in Ω,
∂y

∂n
= 0 on Γ(4.1b)

ua ≤ u ≤ ub for a.e. x ∈ Ω.(4.1c)

We call the elliptic equation (4.1b) semilinear. It will be shown that the adjoint
equation for (4.1) has the form

(4.2) −∆p+ p+ 3(y∗)2p = yΩ − y∗ in Ω,
∂p

∂n
= 0 on Γ,

where y∗ is an optimal state for (4.1), i.e.,

(4.3) −∆y∗ + y∗ + (y∗)3 = u∗ in Ω,
∂y∗

∂n
= 0 on Γ,

with an optimal control u∗. Moreover, we have

(4.4) u∗ = P[ua(x),ub(x)]

(
1

λ
p(x)

)
as in the linear-quadratic case; see (3.17). Summarizing, the first-order neces-
sary optimality conditions consist in (4.2), (4.3), (4.4) and u∗ ∈ Uad = {v ∈
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L2(Ω) |ua(x) ≤ v(x) ≤ ub(x) in Ω a.e.}. To justify our formal derivation we have to
prove the differentiability of the non-linear mapping y(·) 7→ y(·)3. Here, the choice
of the right function space is not trivial. Moreover, (4.1) is a non-convex optimal
control problem. Although J is convex, the non-linear term in (4.1b) makes the
problem non-convex. Therefore, the first-order necessary optimality conditions are
not sufficient, so that the second-order conditions come into play. As a consequence,
(4.1) may posses several solutions.

4.1. Semilinear elliptic equations. Let us consider the following problem

Ay + c0(x)y + d(x, y) = f in Ω(4.5a)

∂νAy + α(x)y + b(x, y) = g on Γ.(4.5b)

First we discuss existence and uniqueness of solutions to (4.5) in H1(Ω). The proofs
are based on the theory of monotone operators. The basic idea is the following.
Suppose that a : R 7→ R is continuous and strictly monotonously increasing with
limx→±∞ a(x) = ±∞. Then there exists a unique solution y to a(y) = f for any
f ∈ R. This argument can also be applied to more complex equations in Banach
spaces. Suppose that V is a real and separable Banach space, e.g., V = H1(Ω)
or V = H1

0 (Ω). Recall that a Banach space is called separable if there exists a
countable and dense subset V ⊂ V .

Definition 4.1. The operator A : V 7→ V ∗ is called monotone if

〈Ay1 −Ay2, y1 − y2〉V ∗,V ≥ 0 for all y1, y2 ∈ V

holds. Furthermore, A is said to be strictly monotone if

〈Ay1 −Ay2, y1 − y2〉V ∗,V > 0 for all y1, y2 ∈ V with y1 6= y2.

If

〈Ay, y〉V ∗,V
‖y‖V

→∞ for ‖y‖V →∞,

the operator A is called coercive. The operator A is said to be hemicontinuous if
the function

ϕ : [0, 1]→ R, t 7→ (A(y + tv), w)V ∗,V

is continuous for any fixed y, v, w ∈ V . If there exist a constant β0 > 0 with

〈Ay1 −Ay2, y1 − y2〉V ∗,V ≥ β0 ‖y1 − y2‖2V for all y1, y2 ∈ V

then we say that A is strong monotone.

Theorem 4.2. Suppose that V is a separable Hilbert space and A : V 7→ V ∗ a
monotone, coercive, hemicontinuous operator. Then there exists a solution to the
equation Ay = f for every f ∈ V ∗. The set of solutions is bounded, convex and
closed. If A is strictly monotone, then y is uniquely determined. If A is strong
monotone, then A−1 : V ∗ → V is Lipschitz continuous.

A proof of Theorem 4.2 can be found in [4]. We apply Theorem 4.2 to problem
(4.5) with V = H1(Ω). First we introduce a weak solution to (4.5). For that
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purpose we multiply (4.5a) by a test function in H1(Ω) and integrate over Ω. After
applying Green’s formula and using (4.5b) we find

(4.6)

∫
Ω

(A∇y) · ∇ϕ+ c0yϕ+ d(·, y)ϕdx+

∫
Γ

αyϕ+ b(·, y)ϕds(x)

=

∫
Ω

fϕdx+

∫
Γ

gϕds for all ϕ ∈ H1(Ω).

In (4.6) we have the problem that the integrals∫
Ω

d(·, y)ϕdx and

∫
Γ

b(·, y)ϕds(x)

are not well-defined if d and b are unbounded, respectively. For instance, the
functions ey and yk may not be bounded for functions y ∈ H1(Ω). Therefore, we
make use of the following assumptions.

Assumption 2. Let Ω ⊂ RN , N ≥ 2, be a bounded Lipschitz domain with boundary
Γ. We suppose that f is of the form

(fy)(x) = −
N∑

i,j=1

Di(aij(x)Djy(x))

with bounded and measurable coefficients aij satisfying

aij = aji, 1 ≤ i, j ≤ N, and

N∑
i,j=1

aij(x)ξiξj ≥ γ0|ξ|2 for all ξ ∈ RN ,

where γ0 > 0 is a constant. Let c0 ∈ L∞(Ω) and α0 ∈ L∞(Γ) with c0 ≥ 0 in Ω a.e.
and α0 ≥ 0 on Γ a.e., satisfying∫

Ω

c20(x) dx+

∫
Γ

α2(x) ds(x) > 0.

The functions d = d(x, y) : Ω×R 7→ R and b = b(x, y) : Γ×R 7→ R are bounded and
measurable with respect to x for any fixed y and are continuous and monotonously
increasing with respect to y for almost all x. (In particular, d(x, 0) and b(x, 0) are
bounded and measurable).

To handle the problem of unboundedness we also utilize the following assump-
tion.

Assumption 3. For almost all x ∈ Γ or x ∈ Ω we have b(x, 0) = 0 or d(x, 0) = 0,
respectively. Moreover, there exists a constant M > 0 so that

|b(x, y)| ≤M and |d(x, y)| ≤M
for almost all x ∈ Γ or x ∈ Ω and for all y ∈ R.

Let us define the bilinear form

a(y, v) =

∫
Ω

N∑
i,j=1

aijDiy(x)Djv(x) dx+

∫
Ω

c0(x)y(x)v(x) dx+

∫
Γ

α(x)y(x)v(x) ds.

Definition 4.3. With Assumptions 2 and 3 holding, we call y ∈ H1(Ω) a weak
solution to (4.5) provided

a(y, v) +

∫
Ω

d(·, y)v dx+

∫
Γ

b(·, y)v ds(x) =

∫
Ω

fv dx+

∫
Γ

gv ds(x).
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Theorem 4.4. With Assumptions 2 and 3 holding there exists a unique weak solu-
tion to (4.5) for every (f, g) ∈ L2(Ω)×L2(Γ). In particular, there exists a constant
cM > 0 independent of d, b, f and g so that

‖y‖H1(Ω) ≤ cM
(
‖f‖L2(Ω) + ‖g‖L2(Γ)

)
.

Remark 4.5. a) Notice that in (4.1b) we have d(x, y) = y3, which does not
satisfy Assumption 3. In the proof of Theorem 4.4 the boundedness of d is
utilized to prove that d belongs to L2(Ω). From y ∈ H1(Ω) we derive that
y ∈ L6(Ω) for Ω ⊂ R3. Hence, y3 ∈ L2(Ω) holds.

b) Theorem 4.4 remains valid provided f ∈ Lr(Ω) and g ∈ Ls(Γ) with r > N
2

and s > N − 1; compare Theorem 4.6 below. For N ∈ {2, 3} we observe
that both r and s can be smaller than 2. ♦

Following [1] we can prove continuity of the weak solution.

Theorem 4.6. Suppose that Assumptions 2 and 3 hold. Moreover, let r > N/2,
s > N − 1. Then there exists a unique weak solution y ∈ H1(Ω) ∩ L∞(Ω) to (4.5)
for any f ∈ Lr(Ω) and g ∈ Ls(Γ). Furthermore, the following estimate hold

(4.7) ‖y‖L∞(Ω) ≤ c∞
(
‖f‖Lr(Ω) + ‖g‖Ls(Γ)

)
for a constant c∞ > 0, which is independent of d, b, f, g.

Remark 4.7. Let us mention that

‖y‖L∞(Γ) ≤ ‖y‖L∞(Ω)

Thus, estimate (4.7) also holds for ‖y‖L∞(Γ). ♦

The boundedness of d and b is not essential for the previous existence results.
The important property is the monotonicity. In [1], this fact is utilized to prove
the next theorem.

Theorem 4.8. Suppose that Assumption 2 holds, Ω ⊂ RN is a bounded Lipschitz
domain and r > N/2, s > N − 1. In addition, b(x, 0) = 0 and d(x, 0) = 0 for
almost all x ∈ Γ and x ∈ Ω, respectively. Then, (4.5) possesses a unique solution
y ∈ H1(Ω) ∩ L∞(Ω) for any (f, y) ∈ Lr(Ω) × Ls(Γ). Furthermore, there exists a
constant – independent of d, b, f and y – satisfying

(4.8) ‖y‖H1(Ω) + ‖y‖C(Ω) ≤ c∞
(
‖f‖Lr(Ω) + ‖g‖Ls(Γ)

)
Remark 4.9. 1) If the assumptions b(x, 0) = 0 and d(x, 0) = 0 do not hold,

we obtain

‖y‖H1(Ω) + ‖y‖C(Ω) ≤ c∞
(
‖f − d(·, 0)‖Lr(Ω) + ‖g − b(·, 0)‖Ls(Γ)

)
.

2) In [3] weaker assumptions are presented, so that the existence of a unique
solution y ∈ H1(Ω) ∩ C(Ω) to

−∆y + ey = f in Ω,
∂y

∂n
= 0 on Γ

and

−∆y + y3 = f in Ω,
∂y

∂n
= 0 on Γ

follows. ♦
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4.2. Existence of optimal controls. We make use of the following assumption.

Assumption 4. a) Ω ⊂ RN is a bounded Lipschitz domain.
b) The functions d = d(x, y), ϕ = ϕ(x, y) : Ω×R→ R, b = b(x, y) : Γ×R→ R

and ψ = ψ(x, y) : E × R → R, E = Ω or E = Γ, are measurable in x for
all y ∈ R or u ∈ R and two times differentiable with respect to y or u
for almost all x ∈ Ω or x ∈ Γ. Moreover there exist constant R ≥ 0 and
L(M) ≥ 0, such that the following conditions hold

|d(x, 0)|+ |dy(x, 0)|+ |dyy(x, 0)| ≤ R f.a.a. x ∈ Ω,

|ϕ(x, 0)|+ |ϕy(x, 0)|+ |ϕyy(x, 0)| ≤ R f.a.a. x ∈ Ω,

|b(x, 0)|+ |by(x, 0)|+ |byy(x, 0)| ≤ R f.a.a. x ∈ Γ,

|ψ(x, 0)|+ |ψy(x, 0)|+ |ψyy(x, 0)| ≤ R f.a.a. x ∈ E

and

|dyy(x, y1)|+ |dyy(x, y2)| ≤ L(M) |y1 − y2| f.a.a. x ∈ Ω,

|ϕyy(x, y1)|+ |ϕyy(x, y2)| ≤ L(M) |y1 − y2| f.a.a. x ∈ Ω,

|byy(x, y1)|+ |byy(x, y2)| ≤ L(M) |y1 − y2| f.a.a. x ∈ Γ,

|ψyy(x, u1)|+ |ψyy(x, u2)| ≤ L(M) |u1 − u2| f.a.a. x ∈ E,

and for all y1, y2 ∈ [−M,M ] and all u1, u2 ∈ [−M,M ]. Here, L = L(M)
depends on M > 0.

c) For almost all x ∈ Ω or x ∈ Γ and for all y ∈ R we have

dy(x, y) ≥ 0 and by(x, y) ≥ 0.

In addition, there are subsets Ed ⊂ Ω and Eb ⊂ Γ with positive measures
satisfying

dy(x, y) ≥ λd for all (x, y) ∈ Ed × R, by(x, y) ≥ λb for all (x, y) ∈ Eb × R

for positive constants λd and λb.
d) The lower and upper bounds ua, va, ub, vb : E → R belong to L∞(E) for

E = Ω or E = Γ. Moreover, ua(x) ≤ ub(x) and va(x) ≤ vb(x) for almost
all x ∈ E.

Remark 4.10. To prove existence of optimal controls we only need part b) for the
functions ϕ and ψ, but not for the their derivatives. For the first-order optimality
conditions, the conditions for the second-order derivatives are not needed. ♦

Example 4.11. The following functions satisfy Assumption 4:

ϕ(x, y) = a(x)y + β(x)(y − yΩ(x))2 with a, β, yΩ ∈ L∞(Ω),

d(x, y) = c0(x)y + yk if k ∈ N is odd and c0(x) ≥ 0 in Ω, ‖c0‖L∞(Ω) > 0,

d(x, y) = c0(x)y + exp(a(x)y) with 0 ≤ a ∈ L∞(Ω) and c0 as above.

♦

With Assumption 4 holding, we can apply Theorem 4.6. We write

(4.9)
d(x, y) = c0(x)y + (d(x, y)− c0(x)y) = c0(x)y + d̃(x, y)

b(x, y) = α0(x)y + (b(x, y)− α0(x)y) = α0(x)y + b̃(x, y)
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with c0 = χEd
λd and α0 = χEb

λb. Then, d̃ and b̃ satisfy Assumption 2-2). Analo-
gously, we proceed for b and define α = χEb

λb.
Let us consider the problem

(4.10a) min J(y, u) =

∫
Ω

ϕ(x, y(x)) dx+

∫
Ω

ψ(x, u(x)) dx

subject to

−∆y + d(x, y) = u in Ω,(4.10b)

∂y

∂n
= 0 on Γ,(4.10c)

ua(x) ≤u(x) ≤ ub(x) f.a.a. x ∈ Ω.(4.10d)

Since u occurs as a source term on the right-hand side of (4.10b), we call (4.10) a
distributed control problem. We define

Uad = {u ∈ L∞(Ω) : ua ≤ u ≤ ub in Ω a.e.}.

Definition 4.12. We call u∗ ∈ Uad an optimal control for (4.10) if

J(y(u∗), u∗) ≤ J(y(u), u) for all u ∈ Uad.
The function y = y(u∗) is said to be the (associated) optimal state. We say that
u∗ ∈ Uad is a local optimal solution for (4.10) in Lr(Ω), if there exists an ε > 0 so
that

J(y(u∗), u∗) ≤ J(y(u), u) for all u ∈ Uad with ‖u− u∗‖Lr(Ω) ≤ ε.

We define

(4.11a) F (y) =

∫
Ω

ϕ(x, y(x)) dx.

Then the following lemma holds; see [3].

Lemma 4.13. Let Assumption 4 hold. Then F is continuous on L∞(Ω). Moreover,
for all r ∈ (1,∞] we have

‖F (y)− F (z)‖Lr(Ω) ≤ L(M) ‖y − z‖Lr(Ω)

for all y, z ∈ L∞(Ω) satisfying ‖y‖L∞(Ω) ≤ M , ‖z‖L∞(Ω) ≤ M for a constant
M ≥ 0.

Remark 4.14. 1) It follows from Lemma 4.13 that F is Lipschitz-continuous
on the set {y ∈ L2(Ω) : ‖y‖L∞(Ω) ≤M} with an arbitrary M > 0.

2) We set

(4.11b) Q(u) =

∫
Ω

ψ(x, u(x)) dx.

ThenQ is also Lipschitz-continuous on Uad, since Uad is bounded in L∞(Ω).
Moreover, Q is convex on Uad if ψ is convex in u for almost all x ∈ E, i.e.,

(4.12) ψ(x, λu+ (1− λ)v) ≤ λψ(x, u) + (1− λ)ψ(x, v)

holds for almost all x ∈ Ω, for all u, v ∈ R and for all λ ∈ [0, 1]. ♦

Theorem 4.15. We suppose that Assumption 4 holds and ψ satisfies (4.12). Then,
(4.10) possesses at least one optimal control with associated optimal state y∗ =
y(u∗).
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Proof. Using (4.9) we can express (4.10b)-(4.10c) as

−∆y + c0(x)y + d̃(x, y) = u in Ω

∂y

∂n
= 0 on Γ,

compare (4.5). Now we apply Theorem 4.8. It follows that for every u ∈ Uad there
exists a unique y = y(u) ∈ H1(Ω) ∩ C(Ω). Since Uad is bounded in L∞(Ω), Uad is
bounded in Lr(Ω) for r > N/2. We suppose r ≥ 2. Then, we conclude from (4.8)
that there exists a constant M > 0 satisfying

(4.13) ‖y(u)‖C(Ω) ≤M

for all states y(u) with u ∈ Uad. By Assumption 4 the cost functional J is bounded
from below. For example, from Assumption 4 and (4.13) we conclude that∣∣ϕ(x, y(x))

∣∣ ≤ ∣∣ϕ(x, 0)
∣∣+
∣∣ϕ(x, y(x))− ϕ(x, 0)

∣∣ ≤ R+ L(M)M f.a.a. x ∈ Ω.

Since Ω is bounded, we infer that F (y) is bounded. Hence, there exists j ∈ R so
that

j = inf
u∈Uad

J(y(u), u).

Let {(yn, un)}n∈N be a minimizing sequence, i.e., un ∈ Uad, yn = y(un) and
J(yn, un)→ j for n→∞.
Notice that Uad is a subset of Lr(Ω). Then, Uad is nonempty, closed, convex and
bounded in Lr(Ω). Since Lr(Ω) is a Banach space, Uad is weakly sequentially com-
pact. Thus, there exists subsequence {unk

}k∈N that converges weakly to an element
uk ∈ Uad. To simplify the notation we denote this subsequence again by {un}n∈N.

un ⇀ uk as n→∞.

We proof that uk is an optimal control. For that purpose we have to show the
convergence of the associated state sequence {yn}n∈N.
Consider the sequence

zn = d(·, yn(·))− yn.
All states yn are bounded in L∞(Ω) by M . In particular, the states are bounded
in Lr(Ω). Therefore, there is a subsequence {znl

}l∈N which converges weakly to an
element z ∈ Lr(Ω). As above, we suppose that already zn converges weakly to z.
Then,

−∆yn + yn = −d(x, yn) + yn︸ ︷︷ ︸
⇀−z

+ un︸︷︷︸
⇀u∗

=: Rn

where Rn ⇀ −z + u∗. Note that yn solves

−∆yn + yn = Rn in Ω

∂yn
∂n

= 0 on Γ.

The mapping Rn → yn is linear and continuous from L2(Ω) to H1(Ω), in partic-
ular from Lr(Ω) to H1(Ω). Since any linear and continuous mapping is weakly
continuous, the existence of an element y∗ ∈ H1(Ω) follows with

yn ⇀ y∗ as n→∞ in H1(Ω).
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Recall that H1(Ω) is compactly embedded into L2(Ω). Thus, yn → y∗ as n → ∞
in L2(Ω). From (4.13) we derive that |yn(x)| ≤ M for all x ∈ Ω̄. Utilizing similar
arguments as for the proof of Lemma 4.13, we see that

‖d(·, yn)− d(·, y∗)‖L2(Ω) ≤ L(M) ‖yn − y∗‖L2(Ω).

Thus, d(·, yn)→ d(·, y∗) in L2(Ω). Next we prove y∗ = y(u∗).
We have for an arbitrary ϕ ∈ H1(Ω)∫

Ω

∇yn · ∇ϕ+ d(·, yn)ϕdx =

∫
Ω

unϕdx.

From yn ⇀ y∗ in H1(Ω) we derive∫
Ω

∇yn · ∇ϕdx→
∫

Ω

∇y∗ · ∇ϕdx as n→∞.

Utilizing yn → y∗ in L2(Ω) and ‖yn‖L∞(Ω) ≤M we have∫
Ω

d(·, yn)ϕdx→
∫

Ω

d(·, y∗)ϕdx as n→∞.

Finally, un ⇀ u∗ in Lr(Ω) implies that∫
Ω

unϕdx→
∫

Ω

u∗ϕdx as n→∞.

Consequently, y∗ = y(u∗). It remains to prove the optimality of u∗. By Remark
4.14-2) the functional Q is convex and continuous. It follows form Theorem 2.8
that Q is weakly lower semicontinuous:

un ⇀ u∗ ⇒ lim inf
n→∞

Q(un) ≥ Q(u∗).

Therefore,

j = lim
n→∞

J(yn, un) = lim
n→∞

F (yn) + lim
n→∞

Q(un)

= F (y∗) + lim inf
n→∞

Q(un) ≥ F (y∗) +Q(u∗) = J(y∗, u∗),

where we have used that yn → y∗ in L2(Ω). We conclude that u∗ is optimal for
(4.10). �

Remark 4.16. 1) The proof for homogeneous Dirichlet boundary conditions
is analogous.

2) Notice that yn ⇀ y does not imply d(·, yn)→ d(·, y) in general. Nonlinear
mapping need not to be weakly continuous.

3) The assumptions on the boundedness and Lipschitz-continuity for ϕ and ψ
are only required for the functions itself, but not for their derivatives.

4) Due to the nonlinear mapping ϕ, ψ, d and b, problem (4.10) is not convex.
Thus, uniqueness of an optimal control can not be proved without further
assumptions. ♦

Example 4.17. Consider the problem

min Ĵ(u) = −
∫ 1

0

cos(u(x)) dx s.t. 0 ≤ u(x) ≤ 2π, u ∈ L∞(0, 1).

Obviously, the optimal value is −1, choosing u∗(x) = 1. However, every u ∈
L∞(0, 1) attaining either the value 0 or 2π at x ∈ (0, 1) gives the same optimal
value. Thus, there are infinitely many optimal solutions. ♦
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4.3. The control-to-state mapping. We consider the problem

(4.14) −∆y + d(x, y) = u in Ω,
∂y

∂n
= 0 on Γ;

see (4.10b) and (4.10c). Due to Theorem 4.8 and Remark 4.9-1) there exists a
unique state y ∈ Y = H1(Ω)∩C(Ω̄) for every control u ∈ U = Lr(Ω) with r > N/2
(provided Assumption 4 holds). We define by G : U → Y , u 7→ y = G(u) the
associated solution operator.

Theorem 4.18. With Assumption 4 holding, the operator G is Lipschitz-continuous
from Lr(Ω) to Y = H1(Ω) ∩ C(Ω), r > N/2: there exists a constant L > 0 so that

‖y1 − y2‖H1(Ω) + ‖y1 − y2‖C(Ω) ≤ L ‖u1 − u2‖Lr(Ω)

for all ui ∈ Lr(Ω), i = 1, 2 and associated yi = G(ui).

Proof. The continuity follows from Theorem 4.8. Using (4.14) with u1 and u2 we
obtain

−∆(y1 − y2) + d(·, y1)− d(·, y2) = u1 − u2 in Ω,
∂(y1 − y2)

∂n
= 0 on Γ.

Notice that

d(x, y1(x))− d(x, y2(x)) = −
∫ 1

0

d

ds
d(x, y1(x) + s(y2(x)− y1(x))) ds

=

∫ 1

0

dy(x, y1(x) + s(y2(x)− y1(x))) ds (y1(x)− y2(x)).

Since dy ≥ 0 holds, the integral is a non-negative function k0 = k0(x) in L∞(Ω)
(recall that dy, y1 and y2 are continuous). On Ed we have a positive integrand.
Setting y = y1 − y2 and u = u1 − u2 we obtain

−∆y + k0(x)y = u in Ω,
∂y

∂n
= 0 on Γ.

From k0 ≥ 0 in Ω we infer that k0(x)y is monotone increasing in y. Applying
Theorem 4.8 (with c0 = k0, d = 0, f = u, g = b = α = 0) we have

‖y‖H1(Ω) + ‖y‖C(Ω) ≤ L ‖u‖Lr(Ω)

for all u and associated y, in particular for u = u1 − u2 and y = y1 − y2. �

Remark 4.19. For the next results we only need the assumptions on the nonlinear
mappings and their derivatives. ♦

Lemma 4.20. Suppose that ϕ = ϕ(x, y) is measurable in x ∈ Ω for all y ∈ R
and differentiable with respect to y for almost all x ∈ Ω. Furthermore, there exist
constants K and L(M) satisfying

|Dl
yϕ(x, 0)| ≤ K for almost all x ∈ Ω and l = 0, 1

|Dl
yϕ(x, y1)−Dl

yϕ(x, ya)| ≤ L(M)|y1 − y2| for all yi ∈ R with |yi| ≤M, i = 1, 2.

Then, the mapping Φ(y) = ϕ(x, y) is Fréchet differentiable in L∞(Ω). For all
h ∈ L∞(Ω) we have

(Φ′(y)h)(x) = ϕy(x, y(x))h(x) for almost all x ∈ Ω.
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Proof. For arbitrary y, h ∈ L∞(Ω) satisfying ‖y(x)‖ ≤ M and |h(x)| ≤ M for
almost all x ∈ Ω we obtain

ϕ(x, y(x) + h(x))− ϕ(x− y(x)) = ϕy(x, y(x))h(x) + r(y, h)(x),

where

r(y, h)(x) =

∫ 1

0

(
ϕy(x, y(x) + sh(x))− ϕy(x, y(x))

)
ds h(x)

holds. Since ϕy is Lipschitz-continuous and |y(x) + h(x)| ≤ 2M , we have

|r(y, h)(x)| ≤ L(2M)

∫ 1

0

s |h(x)|ds |h(x)|

≤ L(2M)

2
|h(x)|2 ≤ L(2M)

2
‖h‖2L∞(Ω)

for almost all x ∈ Ω. Consequently, ‖r(y, h)‖L∞(Ω) ≤ c‖h‖2L∞(Ω) and

1

‖h‖L∞(Ω)
‖r(y, h)‖L∞(Ω) → 0 if ‖h‖L∞(Ω) → 0.

The multiplication operator h 7→ ϕy(·, y(·))h is linear and continuous in L∞(Ω).
Here we use that

|ϕy(x, y(x))| ≤ |ϕy(x, y(x))− ϕy(x, 0)|+ |ϕy(x, 0)|
≤ L(M)|y(x)|+K ≤ L(M)M +K = C

for almost all x ∈ Ω. �

Using Lemma 4.20 we can prove the differentiability of the control-to-state map-
ping G.

Theorem 4.21. Let Assumption 4 hold and r > N/2. Then, G is Fréchet differ-
entiable from Lr(Ω) to Y = H1(Ω) ∩C(Ω). Its derivative at ū ∈ Lr(Ω) is given by
G′(ū)u = y, where y is the weak solution to

(4.15) −∆y + dy(x, ȳ)y = u in Ω,
∂y

∂n
= 0 on Γ.

Notice that (4.15) is the linearization of (4.14) at ȳ = G(ū).

Proof. We have to prove

G(ū+ u)−G(ū) = Du+ r(ū, u),

where D : Lr(Ω)→ H1(Ω) ∩ C(Ω) is a linear continuous operator and

(4.16)
‖r(ū, u)‖H1(Ω)∩C(Ω)

‖u‖Lr(Ω)
→ 0 for ‖u‖Lr(Ω) → 0,

with ‖r‖H1(Ω)∩C(Ω) = ‖r‖H1(Ω) + ‖r‖C(Ω). In this case, G′(ū) = D.

For ȳ = y(ū) and ỹ = y(ū+ u) we have

−∆ȳ + d(x, ȳ) = ū, −∆ỹ + d(x, ỹ) = ū+ u,

∂ȳ

∂n
= 0,

∂ỹ

∂n
= 0.

Thus,

−∆(ỹ − ȳ) + d(x, ỹ)− d(x, ȳ)︸ ︷︷ ︸
=dy(x,ȳ)(ỹ−ȳ)+rd

= u,
∂(ỹ − ȳ)

∂n
= 0.
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By Lemma 4.20 and Assumption 4, Φ(y) = d(·, y) is Fréchet differentiable from
C(Ω) to L∞(Ω). Therefore,

Φ(ỹ)− Φ(ȳ) = d(·, ỹ(·))− d(·, ȳ(·)) = dy(·, ȳ(·))(ỹ(·)− ȳ(·)) + rd,

where

(4.17)
‖rd‖L∞(Ω)

‖ȳ − ỹ‖C(Ω)

→ 0 for ‖ȳ − ỹ‖C(Ω̄) → 0.

It follows that

ỹ − ȳ = y + yρ,

where y solves (4.15) and yρ is the solution to

(4.18) −∆yρ + dy(·, ȳ)yρ = −rd in Ω,
∂yρ
∂n

= 0 on Γ.

Namely, we have

−∆
(
y + yρ

)
= −dy(·, ȳ)(y + yρ) + u− rd = −dy(·, ȳ)(ỹ − ȳ)− rd + u = −d(·, ỹ) + d(·, ȳ) + u

= −∆
(
ỹ − ȳ

)
.

Recall that dy(x, ȳ) ≥ λd > 0 in Ed ⊂ Ω. Hence, (4.18) is uniquely solvable. From
Theorem 4.18 we conclude that

‖ỹ − ȳ‖H1(Ω) + ‖ỹ − ȳ‖C(Ω) ≤ L‖u‖Lr(Ω).

Moreover, by (4.17)

‖rd‖L∞(Ω)

‖u‖Lr(Ω)
=
‖rd‖L∞(Ω)

‖ỹ − ȳ‖C(Ω)

‖ỹ − ȳ‖C(Ω)

‖u‖Lr(Ω)
≤
‖rd‖L∞(Ω)L‖u‖Lr(Ω)

‖ỹ − ȳ‖C(Ω)‖u‖Lr(Ω)
=
‖rd‖L∞(Ω)

‖ỹ − ȳ‖C(Ω)

,

for ‖ỹ − ȳ‖C(Ω) → 0. Consequently, ‖rd‖L∞(Ω) = o(‖u‖Lr(Ω)). By (4.18) we have

‖yρ‖H1(Ω) + ‖yρ‖C(Ω) = o
(
‖u‖Lr(Ω)

)
.

We denote the linear and continuous mapping u 7→ y by D. Therefore,

G(ū+ u)−G(ū) = ỹ − ȳ = y + yρ = Du+ yρ = Du+ r(ū, u),

where r(ū, u) = yρ satisfies (4.16). �

Remark 4.22. Notice that Theorem 4.21 implies that G is Fréchet-differentiable
from L∞(Ω) to H1(Ω) ∩ C(Ω). ♦

Remark 4.23. In case of boundary control the results are similar. Let us consider

(4.19) −∆y = 0 in Ω,
∂y

∂n
+ b(·, y) = u on Γ.

Using Assumption 4 the mapping G is continuously Fréchet-differentiable from
U = Ls(Γ) to Y = H1(Ω)∩C(Ω) for s > N − 1. The derivative G′ at ū is given by
G′(ū) = y, where y is the weak solution to

−∆y = 0 in Ω,
∂y

∂n
+ by(·, ȳ)y = u on Γ.

and ȳ = G(ū) is the weak solution to (4.19) with u = ū. ♦
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4.4. Necessary optimality conditions. We suppose that u∗ ∈ L∞(Ω) is a local
optimal solution to (4.10), i.e.,

J(y(u∗), u∗) ≤ J(y(u), u) for all u ∈ Uad with ‖u− u∗‖L∞(Ω) ≤ ε.

Let G : L∞(Ω) → H1(Ω) ∩ C(Ω̄) denote the control-to-state mapping. Then we
can introduce the reduced cost functional

Ĵ(u) := J(G(u), u) = F (G(u)) +Q(u),

where the mappings F and G have been defined in (4.11a)-(4.11b). With Assump-

tion 4 holding, Ĵ is Fréchet differentiable in L∞(Ω). Here, we use that F,Q and G
are Fréchet differentiable (see Lemma 4.13 and Theorem 4.21).

If u∗ is optimal, Uad is convex and u ∈ Uad arbitrary, then v = u∗ + λ(u− u∗) ∈
Uad for all sufficiently small λ > 0. Moreover, v lies in an ε-neighborhood of u∗ so
that Ĵ(u∗) ≤ Ĵ(v). Thus,

Ĵ(u∗ + λ(u− u∗)) ≥ Ĵ(u∗) for all 0 < λ ≤ λ0.

Dividing by λ and taking the limit λ > 0 we get

Ĵ ′(u∗)(u− u∗) ≥ 0 for all u ∈ Uad.

The derivative Ĵ ′ can be computed by using the derivative:

Ĵ ′(u∗)h = F ′(G(u))G′(u)h+Q′(u)h = F ′(y∗)v +Q′(u∗)h

=

∫
Ω

ϕy(x, y∗)v dx+

∫
Ω

ψy(x, u∗)hdx,

where v = G′(u∗)h solves the linearized problem

(4.20) −∆v + dy(·, y∗)v = h in Ω,
∂v

∂n
= 0 on Γ

(compare Theorem 4.21). Let us define the adjoint state p ∈ H1(Ω) ∩ C(Ω) as the
(weak) solution to

(4.21) −∆p+ dy(·, y∗)p = −ϕy(·, y∗) in Ω,
∂p

∂n
= 0 on Γ.

Lemma 4.24. Suppose that v is the (weak) solution to (4.20) for an arbitrary given
h ∈ L2(Ω). Moreover, p solves (4.21). Then, we have

−
∫

Ω

ϕ(·, y∗)v dx =

∫
Ω

phdx.

Proof. Since v and p solve (4.20) and (4.21), respectively, we have∫
Ω

∇v · ∇ϕ+ dy(·, y∗)vϕdx =

∫
Ω

hϕdx for all ϕ ∈ H1(Ω),∫
Ω

∇p · ∇ψ + dy(·, y∗)pψ dx = −
∫

Ω

ϕy(·, y∗)ϕdx for all ψ ∈ H1(Ω).

Choosing ϕ = p and ψ = v we obtain the claim. �

Using Lemma 4.24 we derive a formula for the gradient

Ĵ ′(u∗)h =

∫
Ω

(ψu(·, u∗)− p)hdx.

This implies the next result.
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Theorem 4.25. Let Assumption 4 hold. Suppose that u∗ ∈ Uad is a local solution
to (4.10) and y∗ denotes the associated state. Then,

(4.22)

∫
Ω

(ψu(·, u∗)− p)(u− u∗) dx ≥ 0 for all u ∈ Uad,

where p ∈ H1(Ω) ∩ C(Ω) is the solution to (4.21).

Proceeding as in Section 3 we can formulate (4.22) as a minimization principle.

Corollary 4.26. Suppose that Assumption 4 hold, u∗ ∈ Uad is a local solution to
(4.10) and p ∈ H1(Ω) ∩ C(Ω) denotes the solution to (4.21). Then, the solution to

(4.23) min
ua(x)≤v≤ub(x)

(ψu(x, u∗(x))− p(x))v

is given by v = u∗(x) for almost all x ∈ Ω.

If ψ(x, u) = λ
2u

2, λ > 0, holds, then ψ satisfies Assumption 4. Moreover, (4.23)
leads to

min
ua(x)≤v≤ub(x)

(λu∗(x)− p(x))v

for almost all x ∈ Ω. As in Section 3 we obtain

u∗(x) = P[ua(x),ub(x)]

(
1

λ
p(x)

)
(for λ > 0). If ua and ub are continuous, then u∗ is continuous. In fact, p is
continuous and P[ua(x),ub(x)] maps continuous functions to continuous functions.

For ua, ub ∈ H1(Ω) we even have u∗ ∈ H1(Ω) ∩ C(Ω).

Example 4.27. Let us consider

min J(y, u) =
1

2
‖y − yΩ‖2L2(Ω) +

λ

2
‖u‖2L2(Ω)

subject to

−∆y + y + y3 = u in Ω,
∂y

∂n
= 0 on Γ,

− 2 ≤ u ≤ 2 in Ω.

Setting

ϕ(x, y) =
1

2
(y − yΩ(x))2, ψ(x, u) =

λ

2
u2, d(x, y) = y + y3

with yΩ ∈ L∞(Ω), we can verify that Assumption 4 holds. The existence of at least
one solution u∗ follows from Theorem 4.15. The adjoint equation reads

−∆p+ p+ 3(y∗)2p = yΩ − y in Ω,
∂p

∂n
= 0 on Γ.

We derive the variational inequality∫
Ω

(λu∗ − p)(u− u∗) dx ≥ 0 for all u ∈ Uad.

For λ > 0 we obtain

u∗(x) = P[−2,2]

(
1

λ
p(x)

)
∈ H1(Ω) ∩ C(Ω).



OPTIMAL CONTROL OF ELLIPTIC PDES 37

If λ = 0 holds, we have (compare Lemma 3.18)

u∗(x) =

{
−2 if p(x) < 0,

2 if p(x) > 0.

Thus, u∗(x) = 2sign p(x). ♦

Analogously, we obtain first-order optimality conditions for boundary control
problem. We cite a result from [2].

Theorem 4.28. Let Assumption 4 hold. suppose that u∗ is a (local) optimal solu-
tion to

min J(y, u) :=

∫
Ω

ϕ(x, y(x)) dx+

∫
Γ

ψ(x, u(x)) ds(x)

subject to

−∆y + y = 0 in Ω,
∂y

∂n
+ b(·, y) = u on Γ,

u ∈ Uad := {ũ ∈ L∞(Γ) : ua ≤ u ≤ ub on Γ a.e.}

and y∗ = y(u∗) is the associated state. Then,∫
Γ

(ψu(·, u∗)− p)(u− u∗) ds(x) ≥ 0 for all u ∈ Uad

where p ∈ H1(Ω) ∩ C(Ω) is the (weak) solution to

−∆p+ p = −ϕy(·, y∗) in Ω,
∂p

∂n
+ by(·, y∗)p = 0 on Γ.

4.5. Application of the formal Lagrange principle. Let us consider the prob-
lem

(4.24a) min J(y, v, u) =

∫
Ω

ϕ(x, y(x), v(x)) dx+

∫
Γ

ψ(x, y(x), u(x) ds(x)

subject to

−∆y + d(·, y, v) = 0 in Ω,
∂y

∂n
+ b(·, y, u) = 0 on Γ(4.24b)

u ∈ Uad := {ũ ∈ L∞(Γ) : ua ≤ u ≤ ub on Γ a.e.}(4.24c)

v ∈ Vad := {ṽ ∈ L∞(Ω) : va ≤ v ≤ vb in Ω a.e.}.(4.24d)

Notice that problem (4.24) is more general as the problems considered in the pre-
vious sections. We suppose that ϕ, ψ, d, b are measurable in x and differentiable
in y, v, u. Moreover dy and by are non-negative.

We suppose that (4.24) has a local optimal solution pair (v∗, u∗) ∈ Vad × Uad
and y∗ = y(u∗, v∗) is the associated optimal state. To derive first-order necessary
optimality conditions we introduce the Lagrange function by

L(y, v, u, p) = J(y, v, u) +

∫
Ω

∇y · ∇p+ d(·, y, v)p dx+

∫
Γ

b(·, y, u)pds(x).

We expect the existence of a function p ∈ H1(Ω) ∩ C(Ω) satisfying

DyL(y∗, v∗, u∗, p)y = 0 for all y ∈ H1(Ω),

DvL(y∗, v∗, u∗, p)(v − v∗) ≥ 0 for all v ∈ Vad,
DuL(y∗, v∗, u∗, p)(u− u∗) ≥ 0 for all u ∈ Uad.
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We find

DyL(y∗, v∗, u∗, p)y =

∫
Ω

ϕy(·, y∗, v∗)y dx+

∫
Γ

ψy(·, y∗, u∗)y ds(x)

+

∫
Ω

∇y · ∇p+ dy(·, y∗, v∗)p dx+

∫
Γ

by(·, y∗, u∗)y ds(x) = 0

for all y ∈ H1(Ω). This leads to the weak formulation for the solution p to

(4.25)

−∆p+ dy(·, y∗, v∗)p = −ϕy(·, y∗, v∗) in Ω

∂p

∂n
+ by(·, y∗, u∗)p = 0− ψy(·, y∗, u∗) on Γ.

We call (4.25) the adjoint equation, and p is the adjoint state. The solution exists
if by, dy, ϕy, ψy are bounded and measurable, by, dy are non negative and∫

Ω

dy(·, y∗, v∗)2 dx+

∫
Γ

by(·, y∗, u∗)2 ds(x) > 0

holds.
Furthermore, we find the variational inequalities∫

Ω

(ϕv(·, y∗, v∗) + p dv(·, y∗, v∗)) (v − v∗) dx ≥ 0 for all v ∈ Vad,∫
Γ

(ψu(·, y∗, u∗) + p bu(·, y∗, u∗)) (u− u∗) ds(x) ≥ 0 for all u ∈ Uad.

Example 4.29. Let us consider the following problem

min J(y, u, v) =

∫
Ω

y2 + yΩy + λ1v
2 + vΩv dx+

∫
Γ

λ2u
8 ds(x)

subject to

−∆y + y + ey = v in Ω,
∂y

∂n
+ |y|y3 = u4 on Γ,

− 1 ≤ v ≤ 1 in Ω a.e., 0 ≤ u ≤ 1 on Γ a.e.,

where yΩ, vΩ belong to L∞(Ω). The adjoint equation is given by

−∆p+ p+ ey
∗
p = −2y∗ − yΩ in Ω,

∂p

∂n
+ 4(y∗)2|y∗|p = 0 on Γ.

Furthermore, we have the variational inequalities∫
Ω

(2λ1v
∗ + vΩ − p) (v − v∗) dx ≥ 0 for all v ∈ Vad,∫

Γ

(
8λ2(u∗)7 − 4(u∗)3p

)
(u− u∗) ds(x) ≥ 0 for all u ∈ Uad.

♦

4.6. Second-order optimality conditions. First we introduce the notion of the
second Fréchet derivative.

Definition 4.30. Let U, V be Banach spaces, U ⊂ U be an open set and F : U ⊃
U → V be a Fréchet differentiable mapping. If u 7→ F ′(u) is Fréchet differentiable
at u ∈ U , then F is called twice Fréchet differentiable at u. The second derivative
is denoted by (F ′)′(u) := F ′′(u).
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By definition F ′′(u) is a linear and continuous operator from U to Z = L(U, V ),
i.e., F ′′(u) ∈ L(U,L(U, V )). Here we do not need the operator F ′′(u) itself, but its
application in given directions.

For u1 ∈ U we have F ′′(u)u1 ∈ L(U, V ). Hence, (F ′′(u)u1)u2 ∈ V . We make
use of the notation

F ′′(u)(u1, u2) := (F ′′(u)u1)u2.

Notice that for given u the mapping (u1, u2) 7→ F ′′(u)(u1, u2) is a symmetric,
continuous bilinear form. Using Taylor expansion we find for twice differentiable
functions F : U → V :

F (u+ h) = F (u) + F ′(u)h+
1

2
F ′′(u)(h, h) + rF2 (u, h),

where
‖rF2 (u, h)‖V
‖h‖2U

→ 0 for h→ 0.

We call F twice continuously Fréchet differentiable if u 7→ F ′′(u) is a continuous
mapping, i.e.,

‖u− ū‖U → 0 implies ‖F ′′(u)− F ′′(ū)‖L(U,L(U,V )) → 0.

Here,

‖F ′′(u)‖L(U,L(U,V )) = sup
‖u1‖U=1

‖F ′′(u)u1‖L(U,V )

= sup
‖u1‖U=1

(
sup

‖u2‖U=1

‖(F ′′(u)u1)u2‖V

)
,

which can be expressed as

‖F ′′(u)‖L(U,L(U,V )) = sup
‖u2‖U=1,‖u2‖U=1

‖F ′′(u)(u1, u2)‖V .

To compute the bilinear form F ′′(u)(u1, u2) we determine the directional deriva-

tives. Let F̃ (u) = F ′(u)u1. Then, F̃ is a mapping from U to V . We find

F̃ ′(u)u2 =
d

dt
F̃ (u+ tu2)|t=0 =

d

dt
(F ′(u+ tu2)u1) |t=0

= (F ′′(u+ tu2)u1)u2|t=0 = (F ′′(u)u1)u2 = F ′′(u)(u1, u2),

which is the bilinear form. Now we turn to second-order optimality conditions.

Theorem 4.31. Let U be a Banach space, C ⊂ U a convex set and Ĵ : U → R
twice continuously Fréchet differentiable in a neighborhood of u∗ ∈ C. Furthermore,
u∗ satisfies the first-order necessary optimality condition

Ĵ ′(u)(u− u∗) ≥ 0 for all u ∈ C.

Moreover, there exists a δ > 0 so that

(4.26) Ĵ ′′(u∗)(h, h) ≥ δ ‖h‖2U for all h ∈ U.

Then there exist constants ε > 0 and σ > 0 so that

Ĵ(u) ≥ Ĵ(u∗) + σ ‖u− u∗‖2U for all u ∈ C satisfying ‖u− u∗‖U ≤ ε.

Thus, u∗ is a local minimum for Ĵ on C.
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Proof. Notice that the proof is the same as in the finite-dimensional case. Let
F : [0, 1] → R be given by F (s) = Ĵ(u∗ + s(u − u∗)). Then, F (1) = Ĵ(u) and

F (0) = Ĵ(u∗). Using Taylor expansion

(4.27) F (1) = F (0) + F ′(0) +
1

2
F ′′(θ), θ ∈ (0, 1)

we obtain

Ĵ(u) = Ĵ(u∗) + Ĵ ′(u∗)(u− u∗) +
1

2
Ĵ ′′(u∗ + θ(u− u∗))(u− u∗, u− u∗)

≥ Ĵ(u∗) +
1

2
Ĵ ′′(u∗ + θ(u− u∗))(u− u∗, u− u∗)

= Ĵ(u∗) +
1

2
Ĵ ′′(u∗)(u− u∗, u− u∗)

+
1

2

(
Ĵ ′′(u∗ + θ(u− u∗))− Ĵ ′′(u∗)

)
(u− u∗, u− u∗).

Since u 7→ Ĵ ′′(u) is continuous (in a neighborhood of u∗), we conclude from (4.26)

Ĵ(u) ≥ Ĵ(u∗) +
δ

2
‖u− u∗‖2U −

δ

4
‖u− u∗‖2U

provided ‖u− u∗‖U ≤ ε. Thus,

Ĵ(u) ≥ Ĵ(u∗) +
δ

4
‖u− u∗‖2U

which gives the claim for σ = δ/4. �

Theorem 4.31 can be used for optimal control problems governed by semilinear
equations, if the control-to-state mapping G is twice continuously Fréchet differ-
entiable and the control is at most quadratic in the cost functional. An essential
equation is given by

Ĵ ′′(u∗)(h1, h2) = L(y,u),(y,u)(y
∗, u∗, p∗)((y1, h1), (y2, h2)),

where y∗ = G(u∗) and p are the associated state and dual variables and yi, i = 1, 2
solves the linerized state equation for hi, i.e., yi = G′(u∗)hi.
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