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Program 1 (6 Points)

Given the linear heat equation

ẏ(x, t) = c∆y(x, t) in Ω × (0, 1],

y(x, t) = 0 on ∂Ω × (0, 1],

y(x, 0) = y0 in Ω,

(1)

where Ω = [0, 1] × [0, 1]. Discretize (1) in space by using the finite difference method
following the results obtained in Exercise 2. For the time discretization utilize the following
method:

• implicit Euler method (IE)

• Crank Nicolson scheme (CN)

• Rannacher smoothing (RS), i.e. four half implicit Euler steps (∆t/2) followed by
regular Crank Nicolson steps.

For simplicity we use equidistant timesteps in time. Structure your code as follows:

main ... main script file where all parameters are set and the solution is plotted.

[A,h,X1,X2] = preparation(n) ... Given the parameter n, number of inner points, this
function return the discretization of the Laplace operator, the discretization size h and
the discretization grid X1 and X2 (including boundary points).

[Y,t] = solve_heat_fdm(c,A,h,tstep,Y0,method) ... Solves the heat equation (1).
The variables are c the diffusion coefficient, tstep the number of time steps, Y0 the vector
of the initial condition on the inner points and method to select a solver (’IE’,’CN’,’RS’).
The return values are a matrix Y with columns containing the initial condition and solution
to (1) in the inner points and time a vector containing the timesteps.

YFDM = add_boundary(Y) ... adds the boundary to the solution Y.

Do not introduce any further functions or variables and follow the syntax exactly and
document your code well. Visualize the solution to your like. To test your code choose
n= 100, tsteps= 100 and the following settings for c and y0:

• c = 0.01 and y0(x) = sin(2πx1) sin(πx2)



• c = 0.05 and y0(x) =

{
1, on (0.25, 0.75) × (0.25, 0.75),
0, otherwise.

• c = 0.5 and y0(x) = 1*(rand(size(x1)) < 0.001)

How does the performance of the three methods differ? What do you observe? Submit your
code as a ZIP or TAR/ZIP archive containing one folder named your_lastname_prog01.


