Fachbereich Mathematik und Statistik
S. Volkwein, M. Gubisch, R. Mancini, S. Trenz

Übungen zu Theorie und Numerik partieller Differentialgleichungen

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 1

Deadline: 2011/12/16 at lecture

Note:

- Please write each exercise on a separate sheet!
- Remember to write name, Matrikel-Nummer, sheet number, exercise number and your group on each sheet!

Exercise 1

Let $\Omega \subset \mathbb{R}^{n}, n \in \mathbb{N}$, be a connected and bounded domain with C^{1} boundary $\partial \Omega$. Let $D_{\psi}=\{u \in C(\bar{\Omega}) ; u=\psi$ on $\partial \Omega\}$. We consider the differential operator L :

$$
L: C^{2}(\Omega) \cap D_{0} \longrightarrow C(\Omega) \quad, \quad L u=-\Delta u .
$$

Show:

1. $\langle L u, v\rangle=\langle u, L v\rangle$ for $u, v \in C^{2}(\Omega) \cap D_{0}$,
2. L is positive definite.
3. Consider a square domain, e.g. $\Omega=[a, b]^{2}$. Can the results above be applied in this situation? Give a reference and cite an appropriate theorem.

The scalar product of two function u and v on Ω is defined by

$$
\langle u, v\rangle=\int_{\Omega} u v \mathrm{~d} x .
$$

Exercise 2

Consider the linear problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+b(x) u^{\prime}(x)+c(x) u(x)=f(x) \text { for all } x \in(0,1), \tag{1}\\
u(0)=\alpha, u(1)=\beta
\end{array}\right.
$$

where b, c, f are continuous functions on $[0,1] \subset \mathbb{R}$ with $c>0$ and α, β are real scalars.

1. Discretize (6) using the step size $h=\frac{1}{N}, N \in \mathbb{N}$, and central/symmetric difference approximations for $u^{\prime \prime}(x)$ und $u^{\prime}(x)$. Present the linear system.
2. What are the conditions that the coefficient matrix of the obtained linear system is strictly diagonal dominant? What changes if $u^{\prime}(x)$ is approximated as follows:

$$
u^{\prime}(x) \approx \begin{cases}\frac{u(x+h)-u(x)}{h} & \text { if } b(x)<0 \tag{2}\\ \frac{u(x)-u(x-h)}{h} & \text { if } b(x) \geq 0\end{cases}
$$

3. Name an application where the (strictly) diagonal dominance is important.

Remark: The approximation (5) is called upwind scheme. This kind of discretization is often used in the context of convection dominated equations.
Hint: Recall that a matrix $A=\left(\left(a_{i j}\right)\right) \in \mathbb{R}^{N \times N}$ is strictly row diagonal dominant if

$$
\sum_{j=1, j \neq i}^{N}\left|a_{i j}\right|<\left|a_{i i}\right| \quad \text { for all } i \in\{1, \ldots, N\} .
$$

The matrix A is called row diagonal dominant if

$$
\sum_{j=1, j \neq i}^{N}\left|a_{i j}\right| \leq\left|a_{i i}\right| \quad \text { for all } i \in\{1, \ldots, N\}
$$

holds (see Lecture Notes Numerik I, page 16).

Exercise 3

We consider the following elliptic problem in divergence form:

$$
\begin{equation*}
\left(a(x) v^{\prime}(x)\right)^{\prime}=d(x) \quad \text { for } x \in \Omega=(0,1) \tag{3a}
\end{equation*}
$$

where $a \in C^{1}(\bar{\Omega})$ with $a(x) \geq \underline{a}>0$ for all $x \in \Omega$ and $d \in C(\Omega)$. We state Dirichlet boundary conditions

$$
\begin{equation*}
v(0)=\alpha, \quad v(1)=\beta \tag{3b}
\end{equation*}
$$

with $\alpha, \beta \in \mathbb{R}$.
The goal is to obtain a symmetric coefficient matrix when discritizing (6) by finite differences.

1. Discretize the interval Ω using the equidistant grid $x_{i}=i h, 0 \leq i \leq n+1$, with the mesh size $h=1 /(n+1), n \in \mathbb{N}$. Approximate the outer derivative $(a w)^{\prime}$ at the grid point x_{i} by central difference quotients using the intermediate grid points $x_{i \pm 1 / 2}=x_{i} \pm h / 2, i=1, \ldots, n$. Write $a_{i}=a\left(x_{i}\right), d_{i}=d\left(x_{i}\right)$ for $i=0, \ldots, n+1$ and $a_{i \pm 1 / 2}=a\left(x_{i} \pm h / 2\right)$ for $i=1, \ldots, n$. Use the formula:

$$
f^{\prime}\left(x_{i}\right) \approx \frac{f_{i+\frac{1}{2}}-f_{i-\frac{1}{2}}}{h}
$$

2. Replace w by v^{\prime} now and discretize v^{\prime} in the symmetric difference for $\left(a v^{\prime}\right)^{\prime}$ by central differences. What are the equations that you derive for the approximation of (6)? Compose the coefficient matrix explicitly.
