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Exercise 7 (4 Points)

Let A ∈ RM2×M2 be the matrix obtained by the classical finite difference method for
solving the boundary value problem −∆u = g in Ω = (0, 1)× (0, 1) and u = γ on ∂Ω with
stepsize h = 1

M+1
. Show that the vectors ukl ∈ RM2 ,

(ukl)ij = sin

(
ikπ

M + 1

)
sin

(
jlπ

M + 1

)
, 1 ≤ i, j ≤M

are the eigenvectors of A. What are the corresponding eigenvalues λkl?

Exercise 8 (4 Points)

Consider the problem

−∆v = λv in Ω, (1)
v|∂Ω = 0,

with Ω ⊂ R2 a bounded domain with piecewise smooth boundary ∂Ω.
A solution v ∈ C2(Ω) ∩ C(Ω̄), v 6= 0 is called an eigenfunction to the eigenvalue λ.

a) Show that all eigenvalues λ of (1) are positive.

b) Let v1, v2 be eigenfunctions to the corresponding eigenvalues λ1 and λ2 with λ1 6= λ2.
Show that v1, v2 are orthogonal with respect to the scalar product

〈u,w〉 =

∫
Ω

u(x)w(x)dx.

c) Let Ω = (0, 1)2. Show that the eigenvalues of (1) are given by λkl = π2(k2 + l2).
Compare the corresponding eigenfunctions with those of Exercise 7.

d) Show that the difference between the eigenvalues in Exercise 7 and the corresponding
eigenvalues in Exercise 8 is of the order O(h2).



Exercise 9 (4 Points)

Consider the elliptic differential equation with Neumann condition on the boundary

∆u(x, y) = f(x, y) in Ω (2)
∂u

∂~n
= g(x, y) in Γ = ∂Ω (3)

where Ω is a rectangle domain (0, a)× (0, b). To simplify matters we consider a uniformly
equidistant grid, i.e., we choose grid points (ih, jh) for i = 0, 1, ...,M and j = 0, 1, ..., N
such that Mh = a and Nh = b.

We have to distinguish between four different types of grid points:

• inner points, e.g. •·,I(·,·)

• boundary points, e.g. •·,B(·,·)

• corner points, e.g. •·,C(·,·)

• ghost points1, e.g. ◦g(·,·)

◦ ◦ ◦

◦ •7,C
(0,2) • • ◦

◦g(−1,1) •4,B
(0,1) •5,I

(1,1) • ◦

◦g(−1,0) •1,C
(0,0) •2,B

(1,0) •3,C
(2,0) ◦

◦g(0,−1) ◦g(1,−1) ◦

Fig. 1

The subscript indicates the index pairs (·, ·) of the point, while the superscript contains
the “point number” and the indicator for the “point type”.

1. Formulate difference equations for the problem by using the five-point stencil

∆u(x, y) ≈ u(x− h, y) + u(x+ h, y) + u(x, y − h) + u(x, y + h)− 4u(x, y)

h2

for all grid points (ih, jh), i = 0, 1, ...,M and j = 0, 1, ..., N . Here the ghost points
will be needed! Note the tacit assumption that the right-hand side f is also defined

1Ghost points are no “real” grid points but they appear in the formulation of the finite differences.
Hint : They can be “compensated” by reformulating the information obtained by the finite differences
scheme with respect to the grid points.



on Γ. For this formulation, approximate the Neumann condition ∂u
∂~n

on boundary
points by central differences:

u′(x, y) ≈ u(x+ h, y)− u(x− h, y)

2h
(x-direction) ,

u′(x, y) ≈ u(x, y + h)− u(x, y − h)

2h
(y-direction) .

At the corner points, where ~n is undefined, approximate the “normal derivative” by
the average of the two derivatives along the two outer normals to the sides meeting
at the corner (use also central differences):

•B

◦g ← •C •B
↓
◦g

In the formulation for the boundary points as well as in the formulation for the
corner points the ghost points will appear (see the Hint in the footnote).

2. Formulate explicitly the system matrix for M = N = 2 and g ≡ 0 (see Fig. 1).

3. Assume again g = 0. Show that solutions to the problem can not be unique.
Furthermore, show that this matches with the fact of the non-invertibility of the
discretization matrix.

Merry Christmas and a happy new year!


