ÜBUNGEN ZU Theorie und Numerik partieller Differentialgleichungen

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 3 Submission: 10.01.2011, 10:30 o'clock, Box 18

Exercise 7

Let $A \in \mathbb{R}^{M^2 \times M^2}$ be the matrix obtained by the classical finite difference method for solving the boundary value problem $-\Delta u = g$ in $\Omega = (0, 1) \times (0, 1)$ and $u = \gamma$ on $\partial \Omega$ with stepsize $h = \frac{1}{M+1}$. Show that the vectors $u^{kl} \in \mathbb{R}^{M^2}$,

$$(u^{kl})_{ij} = \sin\left(\frac{ik\pi}{M+1}\right)\sin\left(\frac{jl\pi}{M+1}\right), \quad 1 \le i, j \le M$$

are the eigenvectors of A. What are the corresponding eigenvalues λ_{kl} ?

Exercise 8

Consider the problem

$$\begin{aligned} -\Delta v &= \lambda v \text{ in } \Omega, \\ v|_{\partial\Omega} &= 0, \end{aligned}$$
(1)

with $\Omega \subset \mathbb{R}^2$ a bounded domain with piecewise smooth boundary $\partial \Omega$.

A solution $v \in C^2(\Omega) \cap C(\overline{\Omega}), v \neq 0$ is called an eigenfunction to the eigenvalue λ .

- a) Show that all eigenvalues λ of (1) are positive.
- b) Let v_1, v_2 be eigenfunctions to the corresponding eigenvalues λ_1 and λ_2 with $\lambda_1 \neq \lambda_2$. Show that v_1, v_2 are orthogonal with respect to the scalar product

$$\langle u, w \rangle = \int_{\Omega} u(x)w(x)dx.$$

- c) Let $\Omega = (0,1)^2$. Show that the eigenvalues of (1) are given by $\lambda_{kl} = \pi^2 (k^2 + l^2)$. Compare the corresponding eigenfunctions with those of Exercise 7.
- d) Show that the difference between the eigenvalues in Exercise 7 and the corresponding eigenvalues in Exercise 8 is of the order $O(h^2)$.

```
(4 \text{ Points})
```

(4 Points)

Exercise 9

Consider the elliptic differential equation with Neumann condition on the boundary

$$\Delta u(x,y) = f(x,y) \quad \text{in } \Omega \tag{2}$$

$$\frac{\partial u}{\partial \vec{n}} = g(x, y) \quad \text{in } \Gamma = \partial \Omega$$
 (3)

where Ω is a rectangle domain $(0, a) \times (0, b)$. To simplify matters we consider a uniformly equidistant grid, i.e., we choose grid points (ih, jh) for i = 0, 1, ..., M and j = 0, 1, ..., N such that Mh = a and Nh = b.

We have to distinguish between four different types of grid points:

- inner points, e.g. $\bullet_{(\cdot,\cdot)}^{\cdot,I}$
- boundary points, e.g. $\bullet_{(\cdot,\cdot)}^{\cdot,B}$
- corner points, e.g. $\bullet_{(\cdot,\cdot)}^{\cdot,C}$
- ghost points¹, e.g. $\circ_{(\cdot,\cdot)}^{g}$

The subscript indicates the index pairs (\cdot, \cdot) of the point, while the superscript contains the "point number" and the indicator for the "point type".

1. Formulate difference equations for the problem by using the **five-point stencil**

$$\Delta u(x,y) \approx \frac{u(x-h,y) + u(x+h,y) + u(x,y-h) + u(x,y+h) - 4u(x,y)}{h^2}$$

for all grid points (ih, jh), i = 0, 1, ..., M and j = 0, 1, ..., N. Here the ghost points will be needed! Note the tacit assumption that the right-hand side f is also defined

¹Ghost points are no "real" grid points but they appear in the formulation of the finite differences. *Hint*: They can be "compensated" by reformulating the information obtained by the finite differences scheme with respect to the grid points.

on Γ . For this formulation, approximate the Neumann condition $\frac{\partial u}{\partial \vec{n}}$ on boundary points by central differences:

$$\begin{aligned} u'(x,y) &\approx \frac{u(x+h,y)-u(x-h,y)}{2h} \quad (x\text{-direction})\,, \\ u'(x,y) &\approx \frac{u(x,y+h)-u(x,y-h)}{2h} \quad (y\text{-direction})\,. \end{aligned}$$

At the corner points, where \vec{n} is undefined, approximate the "normal derivative" by the average of the two derivatives along the two outer normals to the sides meeting at the corner (use also central differences):

$$\begin{array}{cccc}
\bullet^B \\
\circ^g & \leftarrow & \bullet^C & \bullet^B \\
\downarrow \\
\circ^g
\end{array}$$

In the formulation for the boundary points as well as in the formulation for the corner points the ghost points will appear (see the *Hint* in the footnote).

- 2. Formulate explicitly the system matrix for M = N = 2 and $g \equiv 0$ (see Fig. 1).
- 3. Assume again g = 0. Show that solutions to the problem can not be unique. Furthermore, show that this matches with the fact of the non-invertibility of the discretization matrix.

Merry Christmas and a happy new year!