ÜBUNGEN ZU Theorie und Numerik partieller Differentialgleichungen

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 6 Deadline: 03.02.2012, 10:10 o'clock before the Lecture

Exercise 16 (Mass and stiffness matrices)

- 1. Let y the solution to a 1D elliptic or parabolic problem on $\Omega = (0, 1)$ with Dirichlet boundary conditions y(0) = 0 and y(1) = 1. Compute the mass matrix Φ and the stiffness matrix Ψ for the polynomial basis functions $\phi_i(x) = x^i$, i = 1, ..., n. What disadvantage do you see compared to the ansatz with piecewise linear finite elements?
- 2. Compute the condition numbers of the matrices Ψ and $\frac{1}{k}\Phi + \Psi$ for the polynomial and the piecewise linear ansatz with n = 15 and k = 0.01. Notice that the slope of the hat functions is $h = \frac{1}{n}$ here since a half-hat is needed for the right boundary. What do you observe?
- 3. What tells us the condition number of a matrix?

Hint: The condition number of a symmetric and positive definite matrix S is given by the quotient of the maximal and the minimal eigenvalue. You may use the MATLAB commands eig or eigs, respectively, to compute the eigenvalues of the matrices.

Exercise 17 (The pdetool of MATLAB)

Consider the elliptic problem

$$\begin{aligned} -\Delta u(x,y) &= 0 & (x,y) \in (0,2) \times (-1,1), \\ u(x,y) &= x(2-x) & (x,y) \in (0,2) \times \{-1,1\} \\ u(x,y) &= (y+1)(y-1) & (x,y) \in \{0,2\} \times (-1,1). \end{aligned}$$
(1)

Solve (1) by using the graphical user interface pdetool of the Partial Differential Equation Toolbox in MATLAB.

Follow the steps **Draw**, **Boundary**, **PDE**, **Mesh** and **Solve**. Finally plot the solution.

Hint: A short and good summary on the use of the pdetool can be found in the web by Prof. HEINRICH VOSS with the name *Eine sehr kurze Einführung in die Partial Differential Equation Toolbox von* MATLAB. The hyperlink is

www.tu-harburg.de/rzt/tuinfo/software/numsoft/matlab/pde/pdetool.ps

(4 Points)

(4 Points)

Try to find the correct parameters to generate the symmetric grid

and plot the solution in this case, too.

Remark: Your submission for this exercise shall just include the 3D-plots.

Exercise 18 (A nonlinear problem)

Consider the nonlinear elliptic equation

$$\begin{array}{rcl} -\Delta u &=& f(u) & \text{on } \Omega \\ u &=& 0 & \text{on } \partial \Omega \end{array} \tag{2}$$

(4 Points)

on a (bounded) square $\Omega \subseteq \mathbb{R}^2$ and $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ such that f' is bounded.

Let $x = (x_0, ..., x_{n+1})$ and $y = (y_0, ..., y_{n+1})$ be an equidistant discretization of $\overline{\Omega}$ and A the five-point-stencil discretization matrix for $-\Delta$. Then (2) reads as

$$AU = F(U) \text{ on } \{(x_i, y_j) \mid i = 1, ..., n, \ j = 1, ..., m\}$$
(3)

where $U = (U_{ij}) \in \mathbb{R}^{n^2}$, $U_{ij} \approx u(x_i, y_j)$, and $F(U) = (f(U_{ij})) \in \mathbb{R}^{n^2}$.

- 1. Assume that (3) admits a unique solution $U \in \mathbb{R}^{n^2}$. Define the formal iteration sequence $(U^k)_{k\in\mathbb{N}}$ of the Newton method for some starting guess $U^1 \in \mathbb{R}^{n^2}$. Present the matrices arising in this formulation explicitly.
- 2. Show that there is an $\varepsilon > 0$ such that the iteration sequence is well-defined for all stepsizes $h < \varepsilon$ and all initializations U^1 .
- 3. What convergence rate do you get for $(U^k)_{k\in\mathbb{N}}$ if U^1 is chosen sufficiently close to U?