THE RELATIVISTIC LOWERING OF THE GROUNDSTATE ENERGY OF HEAVY ATOMS: THE SCOTT CORRECTION

HEINZ SIEDENTOP (MÜNCHEN)

ABSTRACT. We will start with an overview of spectral results for models of relativistic many particle quantum systems in general. In particular we will discuss a Hamilton operator introduced by Brown and Ravenhall (1950) in more detail. Among other properties, we will present a recent result and show that the infimum $E_{\rm BR}(Z)$ of the spectrum of the relativistic Hamiltonian of a neutral atom of charge Z has the asymptotic expansion

 $E_{\rm BR}(Z) = E_{\rm TF}(Z) + (1/2 - s(Z/c))Z^2 + o(Z^2)$

uniformly in $Z/c \in [0, 2/(2/\pi + \pi/2)]$. Here *c* is physically the velocity of light, $E_{\rm TF}(Z) = E_{\rm TF}(1)Z^{7/3}$ is the Thomas-Fermi energy of the atoms, and $s(\kappa) := \kappa^2 {\rm Trace}(-B(\kappa)_- + S(\kappa)_-)$ where $B(\kappa)$ and $S(\kappa)$ are the hydrogenic Brown-Ravenhall (with velocity of light equal to one) and the hydrogenic Schrödinger operator of coupling constant κ , respectively.

This is joint work with Rupert Frank (Princeton) and Simone Warzel (München).