Positivity, Sums of Squares and Positivstellensätze for Noncommutative *-Algebras

Konrad Schmüdgen (Universität Leipzig)

October, 2009

Dedicated to ALEXANDER PRESTEL on the occasion of his retirement

Konrad Schmüdgen (Universität Leipzig) Positivity, Sums of Squares and Positivstellensätze for Noncommutative *-

Contents

- 1. Positivity in the Noncommutative Setting
- 2. Positivstellensätze in the Noncommutative Setting
- 3. Archimedean Quadratic Modules
- 4. Strict Positivstellensätze

Let $p \in \mathbb{R}[x_1, \ldots, x_d]$ be a real polynomial.

< □ > < 同 >

★ Ξ ► < Ξ ►</p>

3

Let
$$p \in \mathbb{R}[x_1, \dots, x_d]$$
 be a real polynomial.
Question:
When is p positive (nonnegative)?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ -

æ.

```
Let p \in \mathbb{R}[x_1, \dots, x_d] be a real polynomial.
Question:
When is p positive (nonnegative)?
```

Answer 1:

p is *positive* if *p* is a sum of squares (of rational functions).

```
Let p \in \mathbb{R}[x_1, \dots, x_d] be a real polynomial.
Question:
When is p positive (nonnegative)?
```

Answer 1:

p is positive if p is a sum of squares (of rational functions).

Answer 2:

p is positive if $p(t_1, \ldots, t_d) \ge 0$ for all $(t_1, \ldots, t_d) \in \mathbb{R}^d$.

```
Let p \in \mathbb{R}[x_1, \dots, x_d] be a real polynomial.
Question:
When is p positive (nonnegative)?
```

Answer 1:

p is positive if p is a sum of squares (of rational functions).

Answer 2:

p is positive if $p(t_1, \ldots, t_d) \ge 0$ for all $(t_1, \ldots, t_d) \in \mathbb{R}^d$.

Question:

How to generalize these concepts to noncommutative algebras?

Let \mathcal{A} be a complex or real unital algebra and let $\mathbb{K} = \mathbb{C}$ resp. $\mathbb{K} = \mathbb{R}$.

Let \mathcal{A} be a complex or real unital algebra and let $\mathbb{K} = \mathbb{C}$ resp. $\mathbb{K} = \mathbb{R}$. Question:

How do to define "positive elements" of A?

Let \mathcal{A} be a complex or real unital algebra and let $\mathbb{K} = \mathbb{C}$ resp. $\mathbb{K} = \mathbb{R}$. Question:

How do to define "positive elements" of A?

Answer:

An algebra involution on \mathcal{A} is needed!

An **involution** of the algebra \mathcal{A} is a mapping $a \to a^*$ of \mathcal{A} into \mathcal{A} such that $(\lambda a + \mu b)^* = \overline{\lambda} a^* + \overline{\mu} b^*$, $(a^*)^* = a$ and $(ab)^* = b^* a^*$ for $a, b \in \mathcal{A}$ and $\lambda, \mu \in \mathbb{K}$.

Let \mathcal{A} be a complex or real unital algebra and let $\mathbb{K} = \mathbb{C}$ resp. $\mathbb{K} = \mathbb{R}$. Question:

How do to define "positive elements" of A?

Answer:

An algebra involution on \mathcal{A} is needed!

An **involution** of the algebra \mathcal{A} is a mapping $a \to a^*$ of \mathcal{A} into \mathcal{A} such that $(\lambda a + \mu b)^* = \overline{\lambda} a^* + \overline{\mu} b^*$, $(a^*)^* = a$ and $(ab)^* = b^* a^*$ for $a, b \in \mathcal{A}$ and $\lambda, \mu \in \mathbb{K}$.

A *-algebra is an algebra equipped with an algebra involution.

Let \mathcal{A} be a complex or real unital algebra and let $\mathbb{K} = \mathbb{C}$ resp. $\mathbb{K} = \mathbb{R}$. Question:

How do to define "positive elements" of A?

Answer:

An algebra involution on \mathcal{A} is needed!

An **involution** of the algebra \mathcal{A} is a mapping $a \to a^*$ of \mathcal{A} into \mathcal{A} such that $(\lambda a + \mu b)^* = \overline{\lambda} a^* + \overline{\mu} b^*$, $(a^*)^* = a$ and $(ab)^* = b^* a^*$ for $a, b \in \mathcal{A}$ and $\lambda, \mu \in \mathbb{K}$.

*-algebra is an algebra equipped with an algebra involution.

In what follows we suppose that A is a unital *-algebra. $\mathcal{A}_h = \{a \in \mathcal{A} : a = a^*\}$ is called the **hermitian part** of \mathcal{A} .

Classical Real Algebraic Geometry:

$$\mathcal{A} = \mathbb{R}[x_1, \dots, x_d], \ p^* := p \text{ or } \\ \mathcal{A} = \mathbb{C}[x_1, \dots, x_d], \ p^* = \overline{p}, \text{ where } \overline{p}(x) = \sum \overline{a_\alpha} x^\alpha \text{ for } p(x) = \sum a_\alpha x^\alpha.$$

Classical Real Algebraic Geometry:

$$\mathcal{A} = \mathbb{R}[x_1, \dots, x_d], \ p^* := p \text{ or } \\ \mathcal{A} = \mathbb{C}[x_1, \dots, x_d], \ p^* = \overline{p}, \text{ where } \overline{p}(x) = \sum \overline{a_\alpha} x^\alpha \text{ for } p(x) = \sum a_\alpha x^\alpha.$$

Positivity of the Involution

All involutions occuring in this talk satisfy the following condition:

If
$$x_1^*x_1 + \cdots + x_k^*x_k = 0$$
 for $x_1, \ldots, x_k \in \mathcal{A}$, then $x_1 = \cdots = x_k = 0$.

Definition: Quadratic Modules

A **pre-quadratic module** of \mathcal{A} is a subset \mathcal{C} of \mathcal{A}_h such that $\mathcal{C} + \mathcal{C} \subseteq \mathcal{C}, \ \mathbb{R}_+ \cdot \mathcal{C} \subseteq \mathcal{C} \text{ and } b^* \mathcal{C} b \in \mathcal{C} \text{ for all } b \in \mathcal{A}.$

Definition: Quadratic Modules

A **pre-quadratic module** of \mathcal{A} is a subset \mathcal{C} of \mathcal{A}_h such that $\mathcal{C} + \mathcal{C} \subseteq \mathcal{C}$, $\mathbb{R}_+ \cdot \mathcal{C} \subseteq \mathcal{C}$ and $b^* \mathcal{C} b \in \mathcal{C}$ for all $b \in \mathcal{A}$.

A quadratic module of \mathcal{A} is a pre-quadratic module \mathcal{C} such that $1 \in \mathcal{C}$.

Definition: Quadratic Modules

A **pre-quadratic module** of \mathcal{A} is a subset \mathcal{C} of \mathcal{A}_h such that $\mathcal{C} + \mathcal{C} \subseteq \mathcal{C}$, $\mathbb{R}_+ \cdot \mathcal{C} \subseteq \mathcal{C}$ and $b^* \mathcal{C} b \in \mathcal{C}$ for all $b \in \mathcal{A}$.

A quadratic module of \mathcal{A} is a pre-quadratic module \mathcal{C} such that $1 \in \mathcal{C}$.

Quadratic modules are important in theory of *-algebras where they have been called *m-admissible wedges*.

Definition: Quadratic Modules

A **pre-quadratic module** of \mathcal{A} is a subset \mathcal{C} of \mathcal{A}_h such that $\mathcal{C} + \mathcal{C} \subseteq \mathcal{C}$, $\mathbb{R}_+ \cdot \mathcal{C} \subseteq \mathcal{C}$ and $b^* \mathcal{C} b \in \mathcal{C}$ for all $b \in \mathcal{A}$.

A quadratic module of \mathcal{A} is a pre-quadratic module \mathcal{C} such that $1 \in \mathcal{C}$.

Quadratic modules are important in theory of *-algebras where they have been called *m*-admissible wedges.

Each quadratic module gives an **ordering** \leq on the real vector space \mathcal{A}_h by defining $a \leq b$ (and likewise $b \geq a$) if and only if $a - b \in \mathcal{C}$.

Algebraic Quadratic Modules

Definition: Pre-Quadratic Module C_X

If \mathcal{X} is a subset of \mathcal{A}_h , then

$$\mathcal{C}_{\mathcal{X}} := \left\{ \sum_{j=1}^{s} \sum_{l=1}^{k} a_{jl}^* x_l a_{jl}; \ a_{jl} \in \mathcal{A}, \ x_l \in \mathcal{X}, \ s, k \in \mathbb{N} \right\}$$

is the **pre-quadratic module** of \mathcal{A} generated by the set \mathcal{X} .

Algebraic Quadratic Modules

Definition: Pre-Quadratic Module C_X

If \mathcal{X} is a subset of \mathcal{A}_h , then

$$\mathcal{C}_{\mathcal{X}} := \left\{ \sum_{j=1}^{s} \sum_{l=1}^{k} a_{jl}^* x_l a_{jl}; \ a_{jl} \in \mathcal{A}, \ x_l \in \mathcal{X}, \ s, k \in \mathbb{N}
ight\}$$

is the **pre-quadratic module** of \mathcal{A} generated by the set \mathcal{X} .

All elements a^*a , where $a \in A$, are called **squares** of A.

The wedge

$$\sum \mathcal{A}^2 := \left\{ \sum_{j=1}^n a_j^* a_j; \;\; a_1, \ldots, a_n \in \mathcal{A}, n \in \mathbb{N}
ight\}$$

of finite sums of squares is the smallest quadratic module of \mathcal{A} .

Let $\mathcal D$ be a $\mathbb K\text{-vector space with scalar product }\langle\cdot,\cdot\rangle.$

Definition: *-Representation

A *- **representation** of \mathcal{A} on \mathcal{D} is an algebra homomorphism π of \mathcal{A} into the algebra of linear operators mapping \mathcal{D} into itself such that $\pi(1)\varphi = \varphi$ and $\langle \pi(a)\varphi,\psi\rangle = \langle \varphi,\pi(a^*)\psi\rangle$ for all $\varphi,\psi \in \mathcal{D}$ and $a \in \mathcal{A}$.

Let \mathcal{D} be a \mathbb{K} -vector space with scalar product $\langle \cdot, \cdot \rangle$.

Definition: *-Representation

A *- **representation** of \mathcal{A} on \mathcal{D} is an algebra homomorphism π of \mathcal{A} into the algebra of linear operators mapping \mathcal{D} into itself such that $\pi(1)\varphi = \varphi$ and $\langle \pi(a)\varphi,\psi\rangle = \langle \varphi,\pi(a^*)\psi\rangle$ for all $\varphi,\psi\in\mathcal{D}$ and $a\in\mathcal{A}$.

We write $\pi(a) \geq 0$ when $\langle \pi(a)\varphi, \varphi \rangle \geq 0$ for all $\varphi \in \mathcal{D}$.

Let \mathcal{D} be a \mathbb{K} -vector space with scalar product $\langle \cdot, \cdot \rangle$.

Definition: *-Representation

A *- **representation** of \mathcal{A} on \mathcal{D} is an algebra homomorphism π of \mathcal{A} into the algebra of linear operators mapping \mathcal{D} into itself such that $\pi(1)\varphi = \varphi$ and $\langle \pi(a)\varphi,\psi\rangle = \langle \varphi,\pi(a^*)\psi\rangle$ for all $\varphi,\psi\in\mathcal{D}$ and $a\in\mathcal{A}$.

We write $\pi(a) \geq 0$ when $\langle \pi(a)\varphi, \varphi \rangle \geq 0$ for all $\varphi \in \mathcal{D}$.

Definition: Quadratic Module $\mathcal{A}(\mathcal{S})_+$

For a family S of *-representations of A, we define a quadratic module

$$\mathcal{A}(\mathcal{S})_+ := \{ a \in \mathcal{A}_h : \pi(a) \ge 0 \text{ for all } \pi \in \mathcal{S} \}.$$

Let $\mathcal D$ be a $\mathbb K\text{-vector space with scalar product }\langle\cdot,\cdot\rangle.$

Definition: *-Representation

A *- representation of \mathcal{A} on \mathcal{D} is an algebra homomorphism π of \mathcal{A} into the algebra of linear operators mapping \mathcal{D} into itself such that $\pi(1)\varphi = \varphi$ and $\langle \pi(a)\varphi,\psi\rangle = \langle \varphi,\pi(a^*)\psi\rangle$ for all $\varphi,\psi\in\mathcal{D}$ and $a\in\mathcal{A}$.

We write $\pi(a) \ge 0$ when $\langle \pi(a)\varphi, \varphi \rangle \ge 0$ for all $\varphi \in \mathcal{D}$.

Definition: Quadratic Module $\mathcal{A}(\mathcal{S})_+$

For a family ${\mathcal S}$ of *-representations of ${\mathcal A},$ we define a $\mbox{ quadratic module }$

$$\mathcal{A}(\mathcal{S})_+ := \{ a \in \mathcal{A}_h : \pi(a) \ge 0 \text{ for all } \pi \in \mathcal{S} \}.$$

If $b \in \mathcal{A}$ and $c \in \mathcal{A}(\mathcal{S})_+$, then $\langle \pi(b^*cb)\varphi, \varphi \rangle = \langle \pi(c)\pi(b)\varphi, \pi(b)\varphi \rangle \ge 0$ for $\pi \in \mathcal{S}$, so that $b^*cb \in \mathcal{A}(\mathcal{S})_+$.

A state of A is a linear functional f on A such that f(1) = 1 and $f(a^*a) \geq 0$ for all $a \in \mathcal{A}$.

A state of A is a linear functional f on A such that f(1) = 1 and $f(a^*a) \geq 0$ for all $a \in \mathcal{A}$. If π is a *-representation of \mathcal{A} and $\varphi \in \mathcal{D}$ is a unit vector, then $f_{\varphi}(\cdot) := \langle \pi(\cdot)\varphi, \varphi \rangle$ is a state of \mathcal{A} .

A state of A is a linear functional f on A such that f(1) = 1 and $f(a^*a) > 0$ for all $a \in A$. If π is a *-representation of A and $\varphi \in D$ is a unit vector, then $f_{\varphi}(\cdot) := \langle \pi(\cdot)\varphi, \varphi \rangle$ is a state of \mathcal{A} .

By the **GNS construction** each state arises in this manner: For each state f there are a *-representation π_f and a unit vector $\varphi \in \mathcal{D}$ such that $\mathcal{D} = \pi_f(\mathcal{A})\varphi_f$ and

$$f(a) = \langle \pi_f(a)\varphi_f, \varphi_f \rangle \text{ for } a \in \mathcal{A}.$$

A state of \mathcal{A} is a linear functional f on \mathcal{A} such that f(1) = 1 and $f(a^*a) \ge 0$ for all $a \in \mathcal{A}$. If π is a *-representation of \mathcal{A} and $\varphi \in \mathcal{D}$ is a unit vector, then $f_{\varphi}(\cdot) := \langle \pi(\cdot)\varphi, \varphi \rangle$ is a state of \mathcal{A} .

By the **GNS construction** each state arises in this manner: For each state f there are a *-representation π_f and a unit vector $\varphi \in \mathcal{D}$ such that $\mathcal{D} = \pi_f(\mathcal{A})\varphi_f$ and

$$f(a) = \langle \pi_f(a)\varphi_f, \varphi_f \rangle \text{ for } a \in \mathcal{A}.$$

Definition: Quadratic Module $\mathcal{A}(\mathcal{F})_+$

Let \mathcal{F} be a set of states on \mathcal{A} such that $f_a(\cdot) = f(a^*a)^{-1}f(a^* \cdot a)$ is in \mathcal{F} for all $f \in \mathcal{F}$ and $a \in \mathcal{A}$ satisfying $f(a^*a) \neq 0$. Then

$$\mathcal{A}(\mathcal{F})_+ := \{ a = a^* \in \mathcal{A} : f(a) \ge 0 \text{ for } f \in \mathcal{F} \}$$

is a quadratic module of \mathcal{A} .

Positivstellensätze

There is an interplay between quadratic modules which are defined in algebraic terms (such as $\sum A^2$ or C_X) and those which are defined by means of *-representations or states (such as $A(S)_+$ or $A(F)_+$) for some distinguished family of *-representations or states.

Positivstellensätze

There is an interplay between quadratic modules which are defined in algebraic terms (such as $\sum A^2$ or C_X) and those which are defined by means of *-representations or states (such as $A(S)_+$ or $A(F)_+$) for some distinguished family of *-representations or states.

This is one of the most interesting challenges for the theory!

Positivstellensätze show how elements of $\mathcal{A}(\mathcal{S})_+$ or $\mathcal{A}(\mathcal{F})_+$ can be representated by means of $\sum \mathcal{A}^2$ or $\mathcal{C}_{\mathcal{X}}$.

Let \mathcal{A} be a complex unital *-algebra. A quadratic module C is called **proper** if $C \neq A_h$. (C is proper if and only if -1 is not in C.)

Let \mathcal{A} be a complex unital *-algebra. A quadratic module C is called **proper** if $C \neq A_h$. (C is proper if and only if -1 is not in C.)

A proper quadratic module C of A is called **maximal** if there is no proper quadratic module \tilde{C} of A such that $C \subseteq \tilde{C}$ and $C \neq \tilde{C}$.

Let \mathcal{A} be a complex unital *-algebra. A quadratic module C is called **proper** if $C \neq A_h$. (C is proper if and only if -1 is not in C.)

A proper quadratic module C of A is called **maximal** if there is no proper quadratic module \tilde{C} of A such that $C \subseteq \tilde{C}$ and $C \neq \tilde{C}$.

If \mathcal{C} is a maximal proper quadratic module of a commutative unital ring A, then $\mathcal{C} \cap (-\mathcal{C})$ is a prime ideal and $\mathcal{C} \cup (-\mathcal{C}) = A$.

Let \mathcal{A} be a complex unital *-algebra. A quadratic module \mathcal{C} is called **proper** if $\mathcal{C} \neq \mathcal{A}_h$. (\mathcal{C} is proper if and only if -1 is not in \mathcal{C} .)

A proper quadratic module \mathcal{C} of \mathcal{A} is called **maximal** if there is no proper quadratic module $\tilde{\mathcal{C}}$ of \mathcal{A} such that $\mathcal{C} \subseteq \tilde{\mathcal{C}}$ and $\mathcal{C} \neq \tilde{\mathcal{C}}$.

If C is a maximal proper quadratic module of a commutative unital ring A, then $C \cap (-C)$ is a prime ideal and $C \cup (-C) = A$.

Theorem: Cimprič

Suppose C is a quadratic module of a complex *-algebra A. Let $C^0 := C \cap (-C)$ and $\mathcal{I}_C := C^0 + iC^0$. (i) \mathcal{I}_C is a two-sided *-ideal of A. (ii) If C is a maximal proper quadratic module, \mathcal{I}_C is a prime ideal and

$$\mathcal{I}_{\mathcal{C}} = \{ a \in \mathcal{A} : axx^*a^* \in \mathcal{C}^0 \text{ for all } x \in \mathcal{A} \}.$$

Role of the Family $\mathcal S$ of Representations

Lemma

Suppose \mathcal{A} has a faithful *-representation and \mathcal{A} is the union of finite dimensional subspaces E_n , $n \in \mathbb{N}$. Assume that for each $n \in \mathbb{N}$ there exists $k_n \in \mathbb{N}$ such that the following is satisfied:

If $a \in \sum A^2$ is in E_n , then we can write a as a finite sum $\sum_j a_j^* a_j$ such that all elements a_j are in E_{k_n} .

Role of the Family $\mathcal S$ of Representations

Lemma

Suppose \mathcal{A} has a faithful *-representation and \mathcal{A} is the union of finite dimensional subspaces E_n , $n \in \mathbb{N}$. Assume that for each $n \in \mathbb{N}$ there exists $k_n \in \mathbb{N}$ such that the following is satisfied:

If $a \in \sum A^2$ is in E_n , then we can write a as a finite sum $\sum_j a_j^* a_j$ such that all elements a_j are in E_{k_n} .

The the cone $\sum A^2$ is closed in A with respect to the finest locally convex topology τ_{st} on A.
Role of the Family $\mathcal S$ of Representations

Lemma

Suppose \mathcal{A} has a faithful *-representation and \mathcal{A} is the union of finite dimensional subspaces E_n , $n \in \mathbb{N}$. Assume that for each $n \in \mathbb{N}$ there exists $k_n \in \mathbb{N}$ such that the following is satisfied:

If $a \in \sum A^2$ is in E_n , then we can write a as a finite sum $\sum_j a_j^* a_j$ such that all elements a_j are in E_{k_n} .

The the cone $\sum A^2$ is closed in A with respect to the finest locally convex topology τ_{st} on A.

In the commutative case this condition means that the quadratic module $\sum \mathcal{A}^2$ is stable.

Role of the Family $\mathcal S$ of Representations

Theorem: K.S. 1979

If \mathcal{A} is the commutative *-algebra $\mathbb{C}[x_1, \ldots, x_d]$, the Weyl algebra $\mathcal{W}(d)$, the enveloping algebra $\mathcal{E}(g)$ or the free *-algebra $\mathbb{C}\langle x_1, \ldots, x_d \rangle$, then the cone $\sum \mathcal{A}^2$ is closed in the finest locally convex topology on \mathcal{A} .

Role of the Family ${\mathcal S}$ of Representations

Theorem: K.S. 1979

If \mathcal{A} is the commutative *-algebra $\mathbb{C}[x_1, \ldots, x_d]$, the Weyl algebra $\mathcal{W}(d)$, the enveloping algebra $\mathcal{E}(g)$ or the free *-algebra $\mathbb{C}\langle x_1, \ldots, x_d \rangle$, then the cone $\sum \mathcal{A}^2$ is closed in the finest locally convex topology on \mathcal{A} .

Corollary:

Let A be one of the *-algebras from the preceding theorem. For any $a \in A_h$ the following are equivalent:

(i):
$$a \in \sum A^2$$
.
(ii): $\pi(a) \ge 0$ for all (irreducible) *-representations π of
iii): $f(a) \ge 0$ for each (pure) state f of A .

.A.

Role of the Family ${\mathcal S}$ of Representations

Theorem: K.S. 1979

If \mathcal{A} is the commutative *-algebra $\mathbb{C}[x_1, \ldots, x_d]$, the Weyl algebra $\mathcal{W}(d)$, the enveloping algebra $\mathcal{E}(g)$ or the free *-algebra $\mathbb{C}\langle x_1, \ldots, x_d \rangle$, then the cone $\sum \mathcal{A}^2$ is closed in the finest locally convex topology on \mathcal{A} .

Corollary:

Let \mathcal{A} be one of the *-algebras from the preceding theorem. For any $a \in \mathcal{A}_h$ the following are equivalent:

(i):
$$a \in \sum A^2$$
.
(ii): $\pi(a) \ge 0$ for all (irreducible) *-representations π of A .

(iii): $f(a) \ge 0$ for each (pure) state f of A.

In case of the free polynomial algebra $\mathcal{A} = \mathbb{C}\langle x_1, \dots, x_d \rangle$ the implication (ii) \rightarrow (i) is usally called *Helton's theorem*.

Example 1: Commutative Polynomial Algebra $\mathbb{R}[x_1, \ldots, x_d]$

 $\mathcal{S} := \{\pi_t : t \in \mathbb{R}\}, \text{ where } \pi_t(p) = p(t), \mathcal{D} = \mathbb{C} \text{ or } \}$

 $\mathcal{S} = \{\pi_{\mu} : \mu \in \mathcal{M}(\mathbb{R}^d)\},\$

where $M(\mathbb{R}^d)$ is the set of positive Borel measure on \mathbb{R}^d which have finite moments and $\pi_{\mu}(p)q = p \cdot q$ for $p, q \in \mathbb{R}[x_1, \dots, x_d] \subseteq L^2(\mathbb{R}^d, \mu)$.

Example 1: Commutative Polynomial Algebra $\mathbb{R}[x_1, \ldots, x_d]$

 $S := \{\pi_t : t \in \mathbb{R}\}, \text{ where } \pi_t(p) = p(t), \mathcal{D} = \mathbb{C} \text{ or } S = \{\pi_\mu : \mu \in M(\mathbb{R}^d)\}, \text{ where } M(\mathbb{R}^d) \text{ is the set of positive Borel measure on } \mathbb{R}^d \text{ which have finite moments and } \pi_\mu(p)q = p \cdot q \text{ for } p, q \in \mathbb{R}[x_1, \dots, x_d] \subseteq L^2(\mathbb{R}^d, \mu).$

Example 2: Weyl Algebra $\mathcal{W} = \mathbb{C}\langle a, a^* | aa^* - a^*a = 1 \rangle = \mathbb{C}\langle p = p^*, q = q^* | pq - qp = -i \rangle$ $\mathcal{S} = \{\pi_0\}$, where π_0 is the **Bargmann-Fock representation** $(\pi_0(a)e_n = n^{1/2}e_{n-1}, \pi_0(a^*)e_n = (n+1)^{1/2}e_{n+1} \text{ on } l^2(\mathbb{N}_0))$ or the **Schrödinger representation** $(\pi_0(q)f = tf(t), \pi_0(p)f = -if'(t) \text{ on } L^2(\mathbb{R})).$

Example 3: Enveloping Algebras $\mathcal{E}(g)$ of a Real Lie Algebra g with Involution $x^* = -x$ for $x \in g$

 $S = \{ dU; U \text{ unitary representation of } G \}$

Example 3: Enveloping Algebras $\mathcal{E}(g)$ of a Real Lie Algebra g with Involution $x^* = -x$ for $x \in g$

 $S = \{ dU; U \text{ unitary representation of } G \}$

Example 4: Free Polynomial Algebra $\mathbb{C}\langle x_1, \ldots, x_d \rangle$ with Involution $x_i^* = x_j$

 ${\mathcal S}$ is the set of all *-representations.

If X_1, \ldots, X_d are arbitrary bounded self-adjoint operators, then there is a *-representation π such that $\pi(x_1) = X_1, \ldots, \pi(x_d) = X_d$.

What about Artin's Theorem in the Noncommutative Case?

Artin's Theorem on the solution of Hilbert's 17th problem:

For each nonnegative polynomial a on \mathbb{R}^d there exists a nonzero polynomial $c \in \mathbb{R}[t]$ such that $c^2 a \in \sum \mathbb{R}[t]^2$.

What about Artin's Theorem in the Noncommutative Case?

Artin's Theorem on the solution of Hilbert's 17th problem:

For each nonnegative polynomial a on \mathbb{R}^d there exists a nonzero polynomial $c \in \mathbb{R}[t]$ such that $c^2 a \in \sum \mathbb{R}[t]^2$.

For a noncommutative *-algebra ${\mathcal A}$ it is natural to generalize the latter to

$$c^*$$
a $c\in\sum \mathcal{A}^2.$

What about Artin's Theorem in the Noncommutative Case?

Artin's Theorem on the solution of Hilbert's 17th problem:

For each nonnegative polynomial a on \mathbb{R}^d there exists a nonzero polynomial $c \in \mathbb{R}[t]$ such that $c^2 a \in \sum \mathbb{R}[t]^2$.

For a noncommutative *-algebra ${\mathcal A}$ it is natural to generalize the latter to

$$c^*$$
a $c\in\sum \mathcal{A}^2.$

One might also think of

$$\sum_k c_k^* a c_k \in \sum \mathcal{A}^2,$$

but it can be shown that such a condition corresponds to a Nichtnegativstellensatz rather than a Positivstellensatz.

In the commutative case the relation $c^2 a \in \sum \mathbb{R}[x]^2$ implies that the polynomial *a* is nonnegative on \mathbb{R}^d .

However, in the noncommutative case such a converse is not true.

In the commutative case the relation $c^2 a \in \sum \mathbb{R}[x]^2$ implies that the polynomial *a* is nonnegative on \mathbb{R}^d .

However, in the noncommutative case such a converse is not true.

Example: Weyl Algebra

Let \mathcal{A} be the Weyl algebra \mathcal{W} and $\mathcal{S}=\{\pi_0\}$. Set $N=a^*a$. Since $aa^*-a^*a=1$, we have $a(N-1)a^*=N^2+a^*a\in\sum\mathcal{A}^2$. But $\pi_0(N-1)$ is not nonnegative, since $\langle \pi_0(N-1)e_0, e_0 \rangle = -1$ for the vacuum vector e_0 .

In the commutative case the relation $c^2 a \in \sum \mathbb{R}[x]^2$ implies that the polynomial *a* is nonnegative on \mathbb{R}^d .

However, in the noncommutative case such a converse is not true.

Example: Weyl Algebra

Let \mathcal{A} be the Weyl algebra \mathcal{W} and $\mathcal{S}=\{\pi_0\}$. Set $N=a^*a$. Since $aa^*-a^*a=1$, we have $a(N-1)a^*=N^2+a^*a\in\sum\mathcal{A}^2$. But $\pi_0(N-1)$ is not nonnegative, since $\langle \pi_0(N-1)e_0, e_0 \rangle = -1$ for the vacuum vector e_0 .

Example: *-Algebra Generated by an Isometry

Let \mathcal{A} be the *-algebra with a single generator a and relation $a^*a = 1$. Then $p_0 := 1 - aa^* \neq 0$ is a projection in \mathcal{A} and $p_0 axa^*p_0 = 0 \in \sum \mathcal{A}^2$ for arbitrary $x \in \mathcal{A}$. But elements of the form axa^* are in general not nonnegative in *-representations of \mathcal{A} .

Problem:

Suppose that $c^*ac \in \sum A^2$.

One needs additional conditions on c to ensure that then $a \in \mathcal{A}(\mathcal{S})_+$.

Problem:

Suppose that $c^*ac \in \sum A^2$.

One needs additional conditions on c to ensure that then $a \in \mathcal{A}(\mathcal{S})_+$.

If the representations are by bounded operators, then it suffices that

ran $\pi(c^*) \subset \ker \pi(a)$.

Version 1: Denominator Free

For any $a = a^* \in \mathcal{A}$ such that $\pi(a) \ge 0$ for all $\pi \in \mathcal{S}$ we have $a \in \sum \mathcal{A}^2$.

Konrad Schmüdgen (Universität Leipzig) Positivity, Sums of Squares and Positivstellensätze for Noncommutative

Version 1: Denominator Free

For any $a = a^* \in \mathcal{A}$ such that $\pi(a) \ge 0$ for all $\pi \in \mathcal{S}$ we have $a \in \sum \mathcal{A}^2$.

Example 1: Fejer-Riesz Theorem:

Let $\mathcal{A} = \mathbb{C}\langle z, z^{-1} | z^* z = z^* z = 1 \rangle$ be the trigonometric polynomials. Let $\mathcal{S} = \{\pi_w(p) = p(w, w^{-1}); w \in \mathbb{T}\}$ or $\mathcal{S} = \{\pi_0(z) = U\}$, where $Ue_n = e_{n+1}$ on $l^2(\mathbb{Z})$ is the bilateratal shift. If $\pi(p) \ge 0$ for all $\pi \in S$, then there is $q \in \mathcal{A}$ such that $p = q^*q$.

Version 1: Denominator Free

For any $a = a^* \in \mathcal{A}$ such that $\pi(a) \ge 0$ for all $\pi \in \mathcal{S}$ we have $a \in \sum \mathcal{A}^2$.

Example 1: Fejer-Riesz Theorem:

Let
$$\mathcal{A} = \mathbb{C}\langle z, z^{-1} | z^* z = z^* z = 1 \rangle$$
 be the trigonometric polynomials.
Let $\mathcal{S} = \{\pi_w(p) = p(w, w^{-1}); w \in \mathbb{T}\}$ or $\mathcal{S} = \{\pi_0(z) = U\}$, where $Ue_n = e_{n+1}$ on $l^2(\mathbb{Z})$ is the bilateratal shift.
If $\pi(p) \ge 0$ for all $\pi \in S$, then there is $q \in \mathcal{A}$ such that $p = q^*q$.

Example 2: Noncommutative Fejer-Riesz Theorem: Savchuk, K. S.

Let $\mathcal{A} = \mathbb{C}\langle s, s^* | ss^* = 1 \rangle$ be the *-algebra generated by an isometry. Let \mathcal{S} be all *-representations of \mathcal{A} or $\mathcal{S} = \{\pi_0\}$, where $\pi_0(s)e_n = e_{n+1}$ on $l^2(\mathbb{N}_0)$ is the unilateral shift. If $\pi(p) \ge 0$ for all $\pi \in \mathcal{S}$, then there is $q \in \mathcal{A}$ such that $p = q^*q$.

Example 3: Curves (C. Scheiderer)

Let $\mathcal{A} = \mathbb{R}[C]$ be the (real) coordinate algebra of an irreducible smooth affine curve C. If C has at least one *nonreal* point at infinity, then version 1 holds. Example: $x^3 + y^3 + 1 = 0$

Example 3: Curves (C. Scheiderer)

Let $\mathcal{A} = \mathbb{R}[C]$ be the (real) coordinate algebra of an irreducible smooth affine curve C. If C has at least one *nonreal* point at infinity, then version 1 holds. Example: $x^3 + y^3 + 1 = 0$

Example: $y^3 = x^2$. Then $y \notin \sum A^2$.

Example 3: Curves (C. Scheiderer)

Let $\mathcal{A} = \mathbb{R}[C]$ be the (real) coordinate algebra of an irreducible smooth affine curve C.

If C has at least one *nonreal* point at infinity, then version 1 holds. Example: $x^3 + y^3 + 1 = 0$

Example: $y^3 = x^2$. Then $y \notin \sum A^2$.

Example 4: Spherical Isometries (Helton/McCullough/Putinar)

 $\mathcal{A} = \mathbb{C}\langle x_1, x_1^*, \dots, x_d, x_d^* | x_1^* x_1 + \dots + x_d^* x_d = 1 \rangle.$ Then version 1 holds.

Example 5: Group Algebra of a Free Group

Let G be a free group and $\mathcal{A} = \mathbb{C}[G]$ be the group algebra with involution $g^* = g^{-1}$, $g \in G$. Then version 1 holds.

Example 5: Group Algebra of a Free Group

Let G be a free group and $\mathcal{A} = \mathbb{C}[G]$ be the group algebra with involution $g^* = g^{-1}$, $g \in G$. Then version 1 holds.

Example 6: Matrices $M_n(\mathbb{C}[x_1])$

Djokovic (1976): Any element $A \in M_n(\mathbb{C}[x_1])_+$ is a square $A = B^*B$, $B \in M_n(\mathbb{C}[x_1])$. That is, version 1 holds.

Version 2: With Denominators

For any $a = a^* \in A$ such that $\pi(a) \ge 0$ for all $\pi \in S$ there exists a $c \in A$ such that c is not a zero divisor and $c^*ac \in \sum A^2$.

Version 2: With Denominators

For any $a = a^* \in A$ such that $\pi(a) \ge 0$ for all $\pi \in S$ there exists a $c \in A$ such that c is not a zero divisor and $c^*ac \in \sum A^2$.

Example 1: Matrices of Poynomials Gondard/Ribenboim (1974), Procesi/Schacher (1976)

$$\mathcal{A} = M_n(\mathbb{R}[x_1, \dots, x_d])$$
 and $\mathcal{S} = \{\pi_t((a_{ij})) = (a_{ij}(t)); t \in \mathbb{R}^d\}.$
Then version 2 holds.

Version 2: With Denominators

For any $a = a^* \in A$ such that $\pi(a) \ge 0$ for all $\pi \in S$ there exists a $c \in A$ such that c is not a zero divisor and $c^*ac \in \sum A^2$.

Example 1: Matrices of Poynomials Gondard/Ribenboim (1974), Procesi/Schacher (1976)

$$\mathcal{A} = M_n(\mathbb{R}[x_1, \dots, x_d])$$
 and $\mathcal{S} = \{\pi_t((a_{ij})) = (a_{ij}(t)); t \in \mathbb{R}^d\}.$
Then version 2 holds.

Theorem: Savchuk, K.S.

Suppose \mathcal{A} has no zero divisors and $\mathcal{A}\setminus\{0\}$ satifies a right Ore condition (e.g. for any $a \in \mathcal{A}$ and $s \in \mathcal{A}\setminus\{0\}$ there are $b \in \mathcal{A}$ and $t \in \mathcal{A}\setminus\{0\}$ such that at = sb). Let \mathcal{A} be a *-algebra of operators on a pre-Hilbert space. Let \mathcal{S} consists only of the identity representation. If \mathcal{A} satisfies version 2, then so $M_n(\mathcal{A})$.

Example 2: Crossed Product Algebra

Let G be a finite group acting as *-automorphims $g \to \alpha_g$ of a unital *-algebra \mathcal{A} . The **crossed-product algebra** $\mathcal{A} \times_{\alpha} G$ is a unital *-algebra: As a vector space it is $\mathcal{A} \otimes \mathbb{C}[G]$, product and involution are given by

$$(a \otimes g)(b \otimes h) = a \alpha_g(b) \otimes gh), (a \otimes g)^* = \alpha_{g^{-1}}(a^*) \otimes g^{-1}, a, b \in \mathcal{A}, g, h \in G$$

Example 2: Crossed Product Algebra

Let G be a finite group acting as *-automorphims $g \to \alpha_g$ of a unital *-algebra \mathcal{A} . The **crossed-product algebra** $\mathcal{A} \times_{\alpha} G$ is a unital *-algebra: As a vector space it is $\mathcal{A} \otimes \mathbb{C}[G]$, product and involution are given by

$$(a \otimes g)(b \otimes h) = a \alpha_g(b) \otimes gh), (a \otimes g)^* = \alpha_{g^{-1}}(a^*) \otimes g^{-1}, a, b \in \mathcal{A}, g, h \in G$$

Suppose that $G = \mathbb{Z}_n$. If \mathcal{A} satisfies version 2, then also $\mathcal{A} \times_{\alpha} \mathbb{Z}_n$.

Example 2: Crossed Product Algebra

Let G be a finite group acting as *-automorphims $g \to \alpha_g$ of a unital *-algebra \mathcal{A} . The **crossed-product algebra** $\mathcal{A} \times_{\alpha} G$ is a unital *-algebra: As a vector space it is $\mathcal{A} \otimes \mathbb{C}[G]$, product and involution are given by

$$(\mathsf{a} \otimes \mathsf{g})(\mathsf{b} \otimes \mathsf{h}) = \mathsf{a} lpha_{\mathsf{g}}(\mathsf{b}) \otimes \mathsf{g} \mathsf{h}), (\mathsf{a} \otimes \mathsf{g})^* = lpha_{\mathsf{g}^{-1}}(\mathsf{a}^*) \otimes \mathsf{g}^{-1}, \ \mathsf{a}, \mathsf{b} \in \mathcal{A}, \mathsf{g}, \mathsf{h} \in \mathcal{G}$$

Suppose that $G = \mathbb{Z}_n$. If \mathcal{A} satisfies version 2, then also $\mathcal{A} \times_{\alpha} \mathbb{Z}_n$.

Idea of proof: Embedd $\mathcal{A} \times_{\alpha} \mathbb{Z}_n$ as a *-subalgebra of $M_n(\mathcal{A})$, construct a conditional expectation to $\mathcal{A} \times_{\alpha} \mathbb{Z}_n$ and apply the preceding theorem. If σ is an *-automorphism of order 3, then $\mathcal{A} \times_{\alpha} \mathbb{Z}_3$ is the set of matrices

$$\left(egin{array}{ccc} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \sigma(\mathbf{c}) & \sigma(\mathbf{a}) & \sigma(\mathbf{b}) \\ \sigma^2(\mathbf{b}) & \sigma^2(\mathbf{c}) & \sigma^2(\mathbf{a}) \end{array}
ight), \ \mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathcal{A}$$

Denominators Sets and Preorderings

A **preorder** C is a quadratic module such that $c_1c_2 \in \mathcal{C}$ for all $c_1, c_2 \in \mathcal{C}$, $c_1c_2 = c_2c_1$.

Denominators Sets and Preorderings

A preorder C is a quadratic module such that $c_1c_2 \in C$ for all $c_1, c_2 \in C$, $c_1c_2 = c_2c_1$. Let C_A be the smallest preorder on A and $a \in A_h$. We form a **denominator set** S_a : (i) $a \in S_a$. (ii) If $b \in S_a$ and $x \in A$, then $x^*bx \in S_a$. (iii) If $c \in C_A$ commutes with $b \in S_a$, then $cb \in S_a$.

Denominators Sets and Preorderings

A preorder C is a quadratic module such that $c_1c_2 \in C$ for all $c_1, c_2 \in C$, $c_1c_2 = c_2c_1$. Let C_A be the smallest preorder on A and $a \in A_h$. We form a **denominator set** S_a : (i) $a \in S_a$. (ii) If $b \in S_a$ and $x \in A$, then $x^*bx \in S_a$. (iii) If $c \in C_A$ commutes with $b \in S_a$, then $cb \in S_a$.

Motivation: Suppose A is a *-algebra of *bounded* operators on a Hilbert space. If *a* is *positive*, then all elements of S_a and C_A are positive as well.

Denominators Sets and Preorderings

A **preorder** C is a quadratic module such that $c_1 c_2 \in \mathcal{C}$ for all $c_1, c_2 \in \mathcal{C}$, $c_1 c_2 = c_2 c_1$. Let \mathcal{C}_A be the smallest preorder on \mathcal{A} and $a \in \mathcal{A}_h$. We form a denominator set S_{3} : (i) $a \in S_a$. (ii) If $b \in S_a$ and $x \in A$, then $x^*bx \in S_a$. (iii) If $c \in C_A$ commutes with $b \in S_a$, then $cb \in S_a$.

Motivation: Suppose \mathcal{A} is a *-algebra of *bounded* operators on a Hilbert space. If a is positive, then all elements of S_a and C_A are positive as well.

Version 3: Most General Denominators and Right Hand Sides

Suppose that $a = a^* \in \mathcal{A}$ such that $\pi(a) > 0$ for all $\pi \in \mathcal{S}$. Then there exist a $s_a \in \mathcal{S}_a$ such that $s_a \in \mathcal{C}_A$.

Example: $x^*(c_1^*c_1 + c_2^*c_2)ax = y_2^*(c_3^*c_3(y_1^*(c_4^*c_4 + c_5^*c_5)y_1))y_2 + \cdots$

Denominators Sets and Preorderings

A **preorder** C is a quadratic module such that $c_1c_2 \in \mathcal{C}$ for all $c_1, c_2 \in \mathcal{C}$, $c_1c_2 = c_2c_1$. Let \mathcal{C}_A be the smallest preorder on \mathcal{A} and $a \in \mathcal{A}_h$. We form a denominator set S_{3} : (i) $a \in S_a$. (ii) If $b \in S_a$ and $x \in A$, then $x^*bx \in S_a$. (iii) If $c \in C_A$ commutes with $b \in S_a$, then $cb \in S_a$.

Motivation: Suppose \mathcal{A} is a *-algebra of *bounded* operators on a Hilbert space. If a is positive, then all elements of S_a and C_A are positive as well.

Version 3: Most General Denominators and Right Hand Sides

Suppose that $a = a^* \in \mathcal{A}$ such that $\pi(a) > 0$ for all $\pi \in \mathcal{S}$. Then there exist a $s_a \in S_a$ such that $s_a \in C_A$.

Example: $x^*(c_1^*c_1 + c_2^*c_2)ax = y_2^*(c_3^*c_3(y_1^*(c_4^*c_4 + c_5^*c_5)y_1))y_2 + \cdots$

Examples of version 3: Talk by Y. Savchuk

An Example Concerning Versions 1, 2 and 3

Weyl Algebra $\mathcal{A} = \mathbb{C}\langle a, a^* | \, aa^* - a^*a = 1 angle$

 $S = \{\pi_0\}$, where π_0 is the Bargmann-Fock representation $(\pi_0(a)e_n = n^{1/2}e_{n-1}, \pi_0(a^*)e_n = (n+1)^{1/2}e_{n+1} \text{ on } l^2(\mathbb{N}_0)).$
Weyl Algebra $\mathcal{A} = \mathbb{C}\langle a, a^* | aa^* - a^*a = 1 angle$

 $S = \{\pi_0\}$, where π_0 is the Bargmann-Fock representation $(\pi_0(a)e_n = n^{1/2}e_{n-1}, \pi_0(a^*)e_n = (n+1)^{1/2}e_{n+1} \text{ on } l^2(\mathbb{N}_0)).$

Let $f(N) \in \mathbb{C}[N]$, where $N := a^*a$. Then we have:

Weyl Algebra $\mathcal{A} = \mathbb{C}\langle a, a^* | aa^* - a^*a = 1 angle$

 $\mathcal{S} = \{\pi_0\}, \text{ where } \pi_0 \text{ is the Bargmann-Fock representation} \\ (\pi_0(a)e_n = n^{1/2}e_{n-1}, \ \pi_0(a^*)e_n = (n+1)^{1/2}e_{n+1} \text{ on } l^2(\mathbb{N}_0)).$

Let $f(N) \in \mathbb{C}[N]$, where $N := a^*a$. Then we have:

 $f \in \mathcal{A}(\mathcal{S})_+$ iff $f(n) \ge 0$ for all $n \in \mathbb{N}_0$. $(\pi_0(N)$ has spectrum \mathbb{N}_0 .)

Weyl Algebra $\mathcal{A} = \mathbb{C}\langle a, a^* | \, aa^* - a^*a = 1 angle$

 $S = \{\pi_0\}, \text{ where } \pi_0 \text{ is the Bargmann-Fock representation} \\ (\pi_0(a)e_n = n^{1/2}e_{n-1}, \pi_0(a^*)e_n = (n+1)^{1/2}e_{n+1} \text{ on } l^2(\mathbb{N}_0)). \\ \text{Let } f(N) \in \mathbb{C}[N], \text{ where } N := a^*a. \text{ Then we have:} \\ f \in \mathcal{A}(S)_+ \text{ iff } f(n) \ge 0 \text{ for all } n \in \mathbb{N}_0. \ (\pi_0(N) \text{ has spectrum } \mathbb{N}_0.) \\ f \in \sum \mathcal{A}^2 \text{ iff } f \in N \sum^2 + N(N-1) \sum^2 + \dots + N(N-1) \dots (N-k) \sum^2. \\ ((N-1)(N-2) \in \mathcal{A}(S)_+ \setminus \sum \mathcal{A}^2, a^{*k}a^k = N(N-1) \dots (N-(k-1))) \end{cases}$

Weyl Algebra $\mathcal{A} = \mathbb{C}\langle a, a^* | aa^* - a^*a = 1 \rangle$

 $\mathcal{S} = \{\pi_0\}$, where π_0 is the Bargmann-Fock representation $(\pi_0(a)e_n = n^{1/2}e_{n-1}, \pi_0(a^*)e_n = (n+1)^{1/2}e_{n+1} \text{ on } l^2(\mathbb{N}_0)).$ Let $f(N) \in \mathbb{C}[N]$, where $N := a^*a$. Then we have: $f \in \mathcal{A}(S)_+$ iff $f(n) \ge 0$ for all $n \in \mathbb{N}_0$. $(\pi_0(N)$ has spectrum \mathbb{N}_0 .) $f \in \sum \mathcal{A}^2$ iff $f \in N \sum^2 + N(N-1) \sum^2 + \dots + N(N-1) \dots (N-k) \sum^2$. $((N-1)(N-2) \in \mathcal{A}(S)_+ \setminus \sum \mathcal{A}^2, a^{*k}a^k = N(N-1)\cdots(N-(k-1)))$ If $f \in \mathcal{A}(\mathcal{S})_+$, then version 3 holds for f, there are $c_1, \ldots, c_k \in \sum \mathcal{A}^2$ such that $c_i f = fc_i$, $c := c_1 \cdots c_k \neq 0$ and $cf \in \sum A^2$.

Weyl Algebra $\mathcal{A} = \mathbb{C}\langle a, a^* | aa^* - a^*a = 1 \rangle$

 $\mathcal{S} = \{\pi_0\}$, where π_0 is the Bargmann-Fock representation $(\pi_0(a)e_n = n^{1/2}e_{n-1}, \pi_0(a^*)e_n = (n+1)^{1/2}e_{n+1} \text{ on } l^2(\mathbb{N}_0)).$ Let $f(N) \in \mathbb{C}[N]$, where $N := a^*a$. Then we have: $f \in \mathcal{A}(S)_+$ iff $f(n) \ge 0$ for all $n \in \mathbb{N}_0$. $(\pi_0(N)$ has spectrum \mathbb{N}_0 .) $f \in \sum \mathcal{A}^2$ iff $f \in N \sum^2 + N(N-1) \sum^2 + \dots + N(N-1) \dots (N-k) \sum^2$. $((N-1)(N-2) \in \mathcal{A}(\mathcal{S})_+ \setminus \sum \mathcal{A}^2, a^{*k}a^k = N(N-1)\cdots(N-(k-1)))$ If $f \in \mathcal{A}(\mathcal{S})_+$, then version 3 holds for f, there are $c_1, \ldots, c_k \in \sum \mathcal{A}^2$ such that $c_i f = fc_i$, $c := c_1 \cdots c_k \neq 0$ and $cf \in \sum A^2$. (For instance, $(a^*a)(a^{*3}a^3)(N-1)(N-2) = (a^{*3}a^3)^2$.)

Problem

Suppose that version 2 holds for A_1 and A_2 . Does it hold for $A_1 \otimes A_2$?

Problem

Suppose that version 2 holds for A_1 and A_2 . Does it hold for $A_1 \otimes A_2$?

Problem

Does version 2 of Artin's theorem hold for the Weyl algebra (Example 2) or for Enveloping algebras (Example 3)?

Problem

Suppose that version 2 holds for A_1 and A_2 . Does it hold for $A_1 \otimes A_2$?

Problem

Does version 2 of Artin's theorem hold for the Weyl algebra (Example 2) or for Enveloping algebras (Example 3)?

For the Weyl algebra there are the following open problems:

Let $\mathcal{A} = \pi_0(\mathcal{W})$ be the *-algebra of differential operators

$$a = \sum_{k} p_k(t) \left(rac{d}{dt}
ight)^k$$

with polynomial coefficients acting on the Schwartz space $\mathcal{S}(\mathbb{R}) \subseteq L^2(\mathbb{R})$.

Problem 1: Version 2 of Artin's Theorem

Suppose $\langle a\varphi, \varphi \rangle \geq 0$ for $\varphi \in \mathcal{S}(\mathbb{R})$. Does there exist a nonzero element $c \in \mathcal{A}$ such that

$${f c}^*$$
a ${f c}\in\sum {\cal A}^2$?

Problem 1: Version 2 of Artin's Theorem

Suppose $\langle a\varphi, \varphi \rangle \geq 0$ for $\varphi \in \mathcal{S}(\mathbb{R})$. Does there exist a nonzero element $c \in A$ such that

$$c^*$$
a $c \in \sum \mathcal{A}^2$?

Problem 2: A Version of a Noncommutative Stengle Theorem

Suppose $\langle a\varphi, \varphi \rangle \geq 0$ for $\varphi \in C_0^{\infty}(0, +\infty)$. Does there exist an nonzero element $c \in \mathcal{A}$ such that

$$c^*ac = \sum a_i^*a_i + \sum b_j^*qb_j?$$

A quadratic module C of a *commutative* unital ring A is called **Archimedean** if for any $a \in A$ there is an $n \in \mathbb{N}$ such that $n - a \in C$.

A quadratic module C of a *commutative* unital ring A is called **Archimedean** if for any $a \in A$ there is an $n \in \mathbb{N}$ such that $n - a \in C$.

Definition of Archimedean Modules

A quadratic module \mathcal{C} of a unital *-algebra \mathcal{A} is called **Archimedean** if for each element $a = a^* \in \mathcal{A}$ there exists a $\lambda > 0$ such that

$$\lambda \cdot 1 - a \in \mathcal{C} \quad \text{and} \quad \lambda \cdot 1 + a \in \mathcal{C}. \tag{1}$$

A quadratic module C of a *commutative* unital ring A is called **Archimedean** if for any $a \in A$ there is an $n \in \mathbb{N}$ such that $n - a \in C$.

Definition of Archimedean Modules

A quadratic module \mathcal{C} of a unital *-algebra \mathcal{A} is called **Archimedean** if for each element $a = a^* \in \mathcal{A}$ there exists a $\lambda > 0$ such that

$$\lambda \cdot 1 - a \in \mathcal{C} \quad \text{and} \quad \lambda \cdot 1 + a \in \mathcal{C}. \tag{1}$$

In terms of the order relation \geq defined by C condition (1) means that

$$\lambda \cdot 1 \leq a \leq \lambda \cdot 1.$$

This means that 1 is an order unit of the ordered vector space.

A quadratic module C of a *commutative* unital ring A is called **Archimedean** if for any $a \in A$ there is an $n \in \mathbb{N}$ such that $n - a \in C$.

Definition of Archimedean Modules

A quadratic module \mathcal{C} of a unital *-algebra \mathcal{A} is called **Archimedean** if for each element $a = a^* \in \mathcal{A}$ there exists a $\lambda > 0$ such that

$$\lambda \cdot 1 - a \in \mathcal{C} \quad \text{and} \quad \lambda \cdot 1 + a \in \mathcal{C}. \tag{1}$$

In terms of the order relation \geq defined by C condition (1) means that

$$\lambda \cdot 1 \leq a \leq \lambda \cdot 1.$$

This means that 1 is an order unit of the ordered vector space.

Lemma (Vidav, K.S., Cimprič)

 \mathcal{C} is Archimedean iff (1) holds for a set of hermitian generators of \mathcal{A} .

Lemma

C is Archimedean if and only if for element $a \in A$ there exists a number $\lambda > 0$ such that $\lambda \cdot 1 - a^* a \in \mathcal{A}$. (It suffices to know the latter condition for a set of generators.)

Lemma

C is Archimedean if and only if for element $a \in A$ there exists a number $\lambda > 0$ such that $\lambda \cdot 1 - a^* a \in \mathcal{A}$. (It suffices to know the latter condition for a set of generators.)

 \mathcal{C} is Archimedean if and only if the unit 1 is an internal point of \mathcal{C} (that is, for any $a \in A_h$ there exists a number $\varepsilon_a > 0$ such that $1 + \lambda a \in \mathcal{C}$ for all $\lambda \in \mathbb{R}$, $|\lambda| < \varepsilon_a$.)

Lemma

C is Archimedean if and only if for element $a \in A$ there exists a number $\lambda > 0$ such that $\lambda \cdot 1 - a^* a \in \mathcal{A}$. (It suffices to know the latter condition for a set of generators.)

 \mathcal{C} is Archimedean if and only if the unit 1 is an internal point of \mathcal{C} (that is, for any $a \in A_h$ there exists a number $\varepsilon_a > 0$ such that $1 + \lambda a \in \mathcal{C}$ for all $\lambda \in \mathbb{R}$, $|\lambda| < \varepsilon_a$.)

• Eidelheit's separation theorem for convex sets applies!

C-Positivity

A *-representation π is called C-positive if $\pi(c) \ge 0$ for all $c \in C$. A state is called C-positive if $f(c) \ge 0$ for all $c \in C$.

C-Positivity

A *-representation π is called C-positive if $\pi(c) \geq 0$ for all $c \in C$. A state is called C-positive if f(c) > 0 for all $c \in C$.

Standard Example: Preorder of Basic Closed Semialgebraic Sets

Let $f = (f_1, \dots, f_k)$ is a k-tuple of elements $f_i \in \mathcal{A} := \mathbb{R}[x_1, \dots, x_d]$.

Basic closed semialgebraic set: $\mathcal{K}_f = \{t \in \mathbb{R}^d : f_1(t) \ge 0, \cdots, f_k(t) \ge 0\}.$

Preorder: $\mathcal{T}_f = \{ \sum_{\varepsilon \in \{0,1\}} \sum_{i=1}^n f_1^{\varepsilon_1} \cdots f_k^{\varepsilon_k} g_i^2 ; g_i \in \mathcal{A}, n \in \mathbb{N} \}.$

C-Positivity

A *-representation π is called C-positive if $\pi(c) \geq 0$ for all $c \in C$. A state is called C-positive if f(c) > 0 for all $c \in C$.

Standard Example: Preorder of Basic Closed Semialgebraic Sets

Let $f = (f_1, \dots, f_k)$ is a k-tuple of elements $f_i \in \mathcal{A} := \mathbb{R}[x_1, \dots, x_d]$.

Basic closed semialgebraic set: $\mathcal{K}_f = \{t \in \mathbb{R}^d : f_1(t) \ge 0, \cdots, f_k(t) \ge 0\}.$

Preorder:
$$\mathcal{T}_f = \{ \sum_{\varepsilon_i \in \{0,1\}} \sum_{j=1}^n f_1^{\varepsilon_1} \cdots f_k^{\varepsilon_k} g_j^2 ; g_j \in \mathcal{A}, n \in \mathbb{N} \}.$$

Then we have : \mathcal{T}_f is Archimedean if and only if \mathcal{K}_f is compact. (Crucial step in the proof of the Archimedean Positivstellensatz!)

C-Positivity

A *-representation π is called C-positive if $\pi(c) \geq 0$ for all $c \in C$. A state is called C-positive if f(c) > 0 for all $c \in C$.

Standard Example: Preorder of Basic Closed Semialgebraic Sets

Let $f = (f_1, \dots, f_k)$ is a k-tuple of elements $f_i \in \mathcal{A} := \mathbb{R}[x_1, \dots, x_d]$.

Basic closed semialgebraic set: $\mathcal{K}_f = \{t \in \mathbb{R}^d : f_1(t) \ge 0, \cdots, f_k(t) \ge 0\}.$

Preorder:
$$\mathcal{T}_f = \{ \sum_{\varepsilon_i \in \{0,1\}} \sum_{j=1}^n f_1^{\varepsilon_1} \cdots f_k^{\varepsilon_k} g_j^2 ; g_j \in \mathcal{A}, n \in \mathbb{N} \}.$$

Then we have : \mathcal{T}_f is Archimedean if and only if \mathcal{K}_f is compact. (Crucial step in the proof of the Archimedean Positivstellensatz!)

For $t \in \mathbb{R}^d$, let $f_t(p) = p(t)$ denote the point evaluation on \mathcal{A} .

Then: f_t is \mathcal{T}_f -positive if and only if $t \in \mathcal{K}_f$.

C-Positivity

A *-representation π is called C-positive if $\pi(c) \geq 0$ for all $c \in C$. A state is called C-positive if f(c) > 0 for all $c \in C$.

Standard Example: Preorder of Basic Closed Semialgebraic Sets

Let $f = (f_1, \dots, f_k)$ is a k-tuple of elements $f_i \in \mathcal{A} := \mathbb{R}[x_1, \dots, x_d]$.

Basic closed semialgebraic set: $\mathcal{K}_f = \{t \in \mathbb{R}^d : f_1(t) \ge 0, \cdots, f_k(t) \ge 0\}.$

Preorder:
$$\mathcal{T}_f = \{ \sum_{\varepsilon_i \in \{0,1\}} \sum_{j=1}^n f_1^{\varepsilon_1} \cdots f_k^{\varepsilon_k} g_j^2 ; g_j \in \mathcal{A}, n \in \mathbb{N} \}.$$

Then we have : \mathcal{T}_f is Archimedean if and only if \mathcal{K}_f is compact. (Crucial step in the proof of the Archimedean Positivstellensatz!)

For $t \in \mathbb{R}^d$, let $f_t(p) = p(t)$ denote the point evaluation on \mathcal{A} .

Then: f_t is \mathcal{T}_f -positive if and only if $t \in \mathcal{K}_f$.

Assume that C is an Archimedean guadratic module of A.

Abstract Positivstellensatz For any element $a = a^* \in \mathcal{A}$ the following are equivalent: (i) $a + \varepsilon \cdot 1 \in \mathcal{C}$ for each $\varepsilon > 0$. (ii) $\pi(a) \geq 0$ for each C-positive *-representation π of A. (iii) $f(a) \ge 0$ for each C-positive (pure) state f on A.

Assume that C is an Archimedean guadratic module of A.

Abstract Positivstellensatz

For any element $a = a^* \in \mathcal{A}$ the following are equivalent:

(i) $a + \varepsilon \cdot 1 \in \mathcal{C}$ for each $\varepsilon > 0$.

(ii) $\pi(a) \geq 0$ for each C-positive *-representation π of A.

(iii) $f(a) \ge 0$ for each C-positive (pure) state f on A.

Idea of Proof: Eidelheit's separation theorem and GNS-construction

Assume that C is an Archimedean guadratic module of A.

Abstract Positivstellensatz

For any element $a = a^* \in \mathcal{A}$ the following are equivalent:

(i) $a + \varepsilon \cdot 1 \in \mathcal{C}$ for each $\varepsilon > 0$.

(ii) $\pi(a) \geq 0$ for each C-positive *-representation π of A.

(iii) $f(a) \ge 0$ for each C-positive (pure) state f on A.

Idea of Proof: Eidelheit's separation theorem and GNS-construction

Example: Compact Basic Closed Sets

Condition (iii) means that $a \ge 0$ on \mathcal{K}_f and (i) that $a + \varepsilon \in \mathcal{T}_f$ for any $\varepsilon > 0$. If we know that \mathcal{T}_f is Archimedean (!), then the implication $(iii) \rightarrow (i)$ is the assertion of the Archimedean Positivstellensatz: If \mathcal{K}_f is compact and $a \geq 0$ on \mathcal{K}_f , then $a + \varepsilon \in \mathcal{T}_f$.

Assume that C is an Archimedean guadratic module of A.

Abstract Positivstellensatz

For any element $a = a^* \in \mathcal{A}$ the following are equivalent:

(i) $a + \varepsilon \cdot 1 \in \mathcal{C}$ for each $\varepsilon > 0$.

(ii) $\pi(a) \geq 0$ for each C-positive *-representation π of A.

(iii) $f(a) \ge 0$ for each C-positive (pure) state f on A.

Idea of Proof: Eidelheit's separation theorem and GNS-construction

Example: Compact Basic Closed Sets

Condition (iii) means that $a \ge 0$ on \mathcal{K}_f and (i) that $a + \varepsilon \in \mathcal{T}_f$ for any $\varepsilon > 0$. If we know that \mathcal{T}_f is Archimedean (!), then the implication $(iii) \rightarrow (i)$ is the assertion of the Archimedean Positivstellensatz: If \mathcal{K}_f is compact and $a \geq 0$ on \mathcal{K}_f , then $a + \varepsilon \in \mathcal{T}_f$.

Abstract Nichtnegativstellensatz: J. Cimprič 2005

For $a = a^* \in A$ the following are equivalent:

- (i) There exist nonzero elements x_1, \ldots, x_r of \mathcal{A} such that $\sum_{k=1}^r x_k^* a x_k$ belongs to 1 + C.
- (ii) For any C-positive *-representation π of A there exists a vector η such that $\langle \pi(a)\eta, \eta \rangle > 0$.

Abstract Nichtnegativstellensatz: J. Cimprič 2005

For $a = a^* \in A$ the following are equivalent:

(i) There exist nonzero elements x_1, \ldots, x_r of \mathcal{A} such that $\sum_{k=1}^r x_k^* a x_k$ belongs to 1 + C.

(ii) For any C-positive *-representation π of A there exists a vector η such that $\langle \pi(a)\eta, \eta \rangle > 0$.

Proof of (i) \rightarrow (ii): Suppose that $\sum_{k} x_{k}^{*} a x_{k} = 1 + c$ with $c \in C$. If π is a C-positive *-representation and $\varphi \in \mathcal{D}(\pi)$, $\varphi \neq 0$, then

$$\begin{split} \sum_{k} \langle \pi(\boldsymbol{a}) \pi(\boldsymbol{x}_{k}) \varphi, \pi(\boldsymbol{x}_{k}) \varphi \rangle &= \sum_{k} \langle \pi(\boldsymbol{x}_{k}^{*} \boldsymbol{a} \boldsymbol{x}_{k}) \varphi, \varphi \rangle \\ &= \langle \pi(1+c) \varphi, \varphi \rangle \geq \langle \pi(1) \varphi, \varphi \rangle = \langle \varphi, \varphi \rangle > 0. \end{split}$$

Hence at least one summand $\langle \pi(a)\pi(x_k)\varphi, \pi(x_k)\varphi \rangle$ is positive.

Lemma

If C is an Archimedean quadratic module and π is a C-positive *-representation of \mathcal{A} , then all operators $\pi(a)$, $a \in \mathcal{A}$, are bounded.

Lemma

If C is an Archimedean quadratic module and π is a C-positive *-representation of \mathcal{A} , then all operators $\pi(a)$, $a \in \mathcal{A}$, are bounded.

Proof. Let $a \in A$. Since C is Archimedean, there exists a $\lambda_a > 0$ such that $\lambda \cdot 1 - a^* a \in C$. Therefore.

$$\langle (\pi(\lambda_a\cdot 1-a^*a)arphi,arphi
angle=\lambda_a||arphi||^2-||\pi(a)arphi||^2\geq 0$$

and hence $||\pi(a)\varphi|| \leq \lambda_a^{1/2} ||\varphi||$ for all $\varphi \in \mathcal{D}(\pi)$ and any \mathcal{C} -positive representation π .

Lemma

If C is an Archimedean quadratic module and π is a C-positive *-representation of \mathcal{A} , then all operators $\pi(a)$, $a \in \mathcal{A}$, are bounded.

Proof. Let $a \in A$. Since C is Archimedean, there exists a $\lambda_a > 0$ such that $\lambda \cdot 1 - a^* a \in C$. Therefore.

$$\langle (\pi(\lambda_{a}\cdot 1-a^{*}a)arphi,arphi
angle=\lambda_{a}||arphi||^{2}-||\pi(a)arphi||^{2}\geq 0$$

and hence $||\pi(a)\varphi|| < \lambda_a^{1/2} ||\varphi||$ for all $\varphi \in \mathcal{D}(\pi)$ and any \mathcal{C} -positive representation π .

Definition

A *-algebra \mathcal{A} is called **algebraically bounded** if the quadratic module $\sum A^2$ is Archimedean.

Lemma

If C is an Archimedean quadratic module and π is a C-positive *-representation of \mathcal{A} , then all operators $\pi(a)$, $a \in \mathcal{A}$, are bounded.

Proof. Let $a \in A$. Since C is Archimedean, there exists a $\lambda_a > 0$ such that $\lambda \cdot 1 - a^* a \in C$. Therefore.

$$\langle (\pi(\lambda_{a}\cdot 1-a^{*}a)arphi,arphi
angle=\lambda_{a}||arphi||^{2}-||\pi(a)arphi||^{2}\geq 0$$

and hence $||\pi(a)\varphi|| \leq \lambda_a^{1/2} ||\varphi||$ for all $\varphi \in \mathcal{D}(\pi)$ and any \mathcal{C} -positive representation π .

Definition

A *-algebra \mathcal{A} is called **algebraically bounded** if the quadratic module $\sum A^2$ is Archimedean.

Since *-representations are always $\sum A^2$ -positive, each *-representation of an algebraically bounded *-algebra acts by bounded operators.

Example 1: Veronese Map

Let \mathcal{A} be the complex *-algebra of rational functions generated by

$$x_{kl} := x_k x_l (1 + x_1^2 + \dots + x_d^2)^{-1}, \ k, l = 1, \dots, d,$$

where $x_0 := 1$. Since $1 = \sum_{r,s} x_{rs}^2 \ge x_{kl}^2 \ge 0$ for $k, l=1, \ldots, d$, the quadratic module $\sum A^2$ is Archimedean and A is algebraically bounded.

Example 1: Veronese Map

Let \mathcal{A} be the complex *-algebra of rational functions generated by

$$x_{kl} := x_k x_l (1 + x_1^2 + \dots + x_d^2)^{-1}, \ k, l = 1, \dots, d,$$

where $x_0 := 1$. Since $1 = \sum_{r,s} x_{rs}^2 \ge x_{kl}^2 \ge 0$ for $k, l=1, \ldots, d$, the quadratic module $\sum A^2$ is Archimedean and A is algebraically bounded.

Example 2:

The *-algebra A with generators *a* and defining relation $aa^* + qa^*a = 1$, where q > 0, is algebraically bounded.

Example 1: Veronese Map

Let \mathcal{A} be the complex *-algebra of rational functions generated by

$$x_{kl} := x_k x_l (1 + x_1^2 + \dots + x_d^2)^{-1}, \ k, l = 1, \dots, d,$$

where $x_0 := 1$. Since $1 = \sum_{r,s} x_{rs}^2 \ge x_{kl}^2 \ge 0$ for $k, l=1, \ldots, d$, the quadratic module $\sum A^2$ is Archimedean and A is algebraically bounded.

Example 2:

The *-algebra A with generators *a* and defining relation $aa^* + qa^*a = 1$, where q > 0, is algebraically bounded.

Proof:
$$1 - aa^* \in \sum \mathcal{A}^2$$
, $q^{-1} - a^*a \in \sum \mathcal{A}^2$.

Example 3: Compact Quantum Group Algebras

The *-algebra \mathcal{A} is span of elements v_{kl} satisfying the relation

$$\sum_{l=1}^d \ v_{kl}^* v_{kl} = 1$$

for all k. Hence $1 - v_{kl}^* v_{kl} \in \sum \mathcal{A}^2$, so \mathcal{A} is algebraically bounded.
Examples of Archimedean Quadratic Modules

Example 3: Compact Quantum Group Algebras

The *-algebra \mathcal{A} is span of elements v_{kl} satisfying the relation

$$\sum_{l=1}^d \ v_{kl}^* v_{kl} = 1$$

for all k. Hence $1 - v_{kl}^* v_{kl} \in \sum A^2$, so A is algebraically bounded. For the quantum group $SU_q(2)$, A has two generators a and c satisfying

$$ac = qca, \ c^*c = cc^*, \ aa^* + q^2cc^* = 1 \ , \ a^*a + c^*c = 1.$$

Examples of Archimedean Quadratic Modules

Example 3: Compact Quantum Group Algebras

The *-algebra \mathcal{A} is span of elements v_{kl} satisfying the relation

$$\sum_{l=1}^d v_{kl}^* v_{kl} = 1$$

for all k. Hence $1 - v_{kl}^* v_{kl} \in \sum A^2$, so A is algebraically bounded. For the quantum group $SU_a(2)$, A has two generators a and c satisfying

$$ac = qca, c^*c = cc^*, aa^* + q^2cc^* = 1, a^*a + c^*c = 1.$$

Many compact quantum spaces have algebraically bounded coordinate *-algebras \mathcal{A} .

Preorder \mathcal{T}_f is Archimedean if and only if \mathcal{K}_f is compact.

Preorder \mathcal{T}_f is Archimedean if and only if \mathcal{K}_f is compact.

Archimedean quadratic modules \leftrightarrow compact noncommutative semi-algebraic sets

Preorder \mathcal{T}_f is Archimedean if and only if \mathcal{K}_f is compact.

Archimedean quadratic modules \leftrightarrow compact noncommutative semi-algebraic sets

Example

Let $\mathcal{A} = \mathbb{C}[x]$. Clearly, $\sum \mathcal{A}^2$ is not Archimedean.

Preorder \mathcal{T}_f is Archimedean if and only if \mathcal{K}_f is compact.

Archimedean quadratic modules \leftrightarrow compact noncommutative semi-algebraic sets

Example

Let $\mathcal{A} = \mathbb{C}[x]$. Clearly, $\sum \mathcal{A}^2$ is not Archimedean. Let \mathcal{B} generated by 1, $a := (1 + x^2)^{-1}$ and $b := x(1 + x^2)^{-1}$. Since $1/4 - b^2 = (a - 1/2)^2$ and $1/4 - (a - 1/2)^2 = b^2$, the quadratic module $\sum \mathcal{B}^2$ is Archimedean!

Preorder \mathcal{T}_f is Archimedean if and only if \mathcal{K}_f is compact.

Archimedean quadratic modules \leftrightarrow compact noncommutative semi-algebraic sets

Example

Let $\mathcal{A} = \mathbb{C}[x]$. Clearly, $\sum \mathcal{A}^2$ is not Archimedean. Let \mathcal{B} generated by 1, $a := (1 + x^2)^{-1}$ and $b := x(1 + x^2)^{-1}$. Since $1/4 - b^2 = (a - 1/2)^2$ and $1/4 - (a - 1/2)^2 = b^2$, the quadratic module $\sum \mathcal{B}^2$ is Archimedean!

Each character of \mathcal{A} yields a unique character on \mathcal{B} .

Preorder \mathcal{T}_f is Archimedean if and only if \mathcal{K}_f is compact.

Archimedean guadratic modules \leftrightarrow compact noncommutative semi-algebraic sets

Example

Let $\mathcal{A} = \mathbb{C}[x]$. Clearly, $\sum \mathcal{A}^2$ is not Archimedean. Let \mathcal{B} generated by 1, $a := (1 + x^2)^{-1}$ and $b := x(1 + x^2)^{-1}$. Since $1/4 - b^2 = (a - 1/2)^2$ and $1/4 - (a - 1/2)^2 = b^2$. the quadratic module $\sum B^2$ is Archimedean!

Each character of \mathcal{A} yields a unique character on \mathcal{B} . But there exists a character χ_{∞} on \mathcal{B} given by $\chi_{\infty}(a) = \chi_{\infty}(b) = 0$ which does **not** come from a character of \mathcal{A} .

Preorder \mathcal{T}_f is Archimedean if and only if \mathcal{K}_f is compact.

Archimedean guadratic modules \leftrightarrow compact noncommutative semi-algebraic sets

Example

Let $\mathcal{A} = \mathbb{C}[x]$. Clearly, $\sum \mathcal{A}^2$ is not Archimedean. Let \mathcal{B} generated by 1, $a := (1 + x^2)^{-1}$ and $b := x(1 + x^2)^{-1}$. Since $1/4 - b^2 = (a - 1/2)^2$ and $1/4 - (a - 1/2)^2 = b^2$. the quadratic module $\sum B^2$ is Archimedean!

Each character of \mathcal{A} yields a unique character on \mathcal{B} . But there exists a character χ_{∞} on \mathcal{B} given by $\chi_{\infty}(a) = \chi_{\infty}(b) = 0$ which does **not** come from a character of \mathcal{A} .

Idea: Reduce SOS representations in \mathcal{A} to SOS representations in \mathcal{B} . Positivity on all characters of \mathcal{B} requires positivity on all characters of \mathcal{A} and positivity at χ_{∞} .

Many algebras are not algebraically bounded, but they do have algebraically bounded fraction *-algebras with different classes of denominators!

Important Examples: Weyl algebras and Enveloping algebras

Weyl algebra: $\mathcal{W} = \mathbb{C}\langle p, q | pq - qp = -i, p = p^*, q = q^* \rangle$

Weyl algebra: $\mathcal{W} = \mathbb{C}\langle p, q | pq - qp = -i, p = p^*, q = q^* \rangle$

Schrödinger representation π of \mathcal{W} : $(\pi(q)f)(t) = tf(t)$ and $(\pi(p)f)(t) = -if'(t)$ on $\mathcal{S}(\mathbb{R}) = \mathcal{D}$ in $L^2(\mathbb{R})$.

Weyl algebra:
$$\mathcal{W}=\mathbb{C}\langle p,q|pq-qp=-i,p=p^*,q=q^*
angle$$

Schrödinger representation π of \mathcal{W} : $(\pi(q)f)(t) = tf(t)$ and $(\pi(p)f)(t) = -if'(t)$ on $\mathcal{S}(\mathbb{R}) = \mathcal{D}$ in $L^2(\mathbb{R})$.

Then $\mathcal{A} := \pi(\mathcal{W})$ is the *-algebra of differential operators

$$a = \sum_{k=0}^{n} p_k(t) (\frac{d}{dt})^k$$

with polynomial coeffcient $p_k \in \mathbb{C}[t]$ acting on the Schwartz space $\mathcal{S}(\mathbb{R})$.

Weyl algebra:
$$\mathcal{W}=\mathbb{C}\langle p,q|pq-qp=-i,p=p^*,q=q^*
angle$$

Schrödinger representation π of \mathcal{W} : $(\pi(q)f)(t) = tf(t)$ and $(\pi(p)f)(t) = -if'(t)$ on $\mathcal{S}(\mathbb{R}) = \mathcal{D}$ in $L^2(\mathbb{R})$.

Then $\mathcal{A} := \pi(\mathcal{W})$ is the *-algebra of differential operators

$$a = \sum_{k=0}^{n} p_k(t) (\frac{d}{dt})^k$$

with polynomial coeffcient $p_k \in \mathbb{C}[t]$ acting on the Schwartz space $\mathcal{S}(\mathbb{R})$. Each element $c \in W$, $c \neq 0$, can be written as

$$c = \sum_{j=0}^{d_1} \sum_{l=0}^{d_2} \gamma_{jl} p^j q^l = \sum_{n=0}^{d_2} f_n(p) q^n = \sum_{k=0}^{d_1} g_k(q) p^k,$$

where $\gamma_{il} \in \mathbb{C}$, $f_n(p) \in \mathbb{C}[p]$, $g_k(q) \in \mathbb{C}[q]$ uniquely determined by *c*. Set $d(c) = (d_1, d_2)$ if there are $j_0, l_0 \in \mathbb{N}_0$ such that $\gamma_{d_1, l_0} \neq 0$ and $\gamma_{i_0, d_2} \neq 0$.

Fix two non-zero reals α and β . Let S be the unital monoid generated by

 $p \pm \alpha i, q \pm \beta i.$

Fix two non-zero reals α and β . Let S be the unital monoid generated by

 $p \pm \alpha i, q \pm \beta i.$

Theorem 1:

Let $c = c^*$ be a nonzero element of the Weyl algebra \mathcal{A} with multi-degree $d(c) = (2n_1, 2n_2)$, where $n_1, n_2 \in \mathbb{N}_0$. Suppose that:

> Konrad Schmüdgen (Universität Leipzig) Positivity, Sums of Squares and Positivstellensätze for Noncommutative

Fix two non-zero reals α and β . Let S be the unital monoid generated by

 $p \pm \alpha i, q \pm \beta i.$

Theorem 1:

Let $c = c^*$ be a nonzero element of the Weyl algebra \mathcal{A} with multi-degree $d(c) = (2n_1, 2n_2)$, where $n_1, n_2 \in \mathbb{N}_0$. Suppose that:

(I) There exists a bounded self-adjoint operator T > 0 on $L^2(\mathbb{R})$ such that $\pi_0(c) \geq T$.

Fix two non-zero reals α and β . Let S be the unital monoid generated by

 $p \pm \alpha i, q \pm \beta i.$

Theorem 1:

Let $c = c^*$ be a nonzero element of the Weyl algebra \mathcal{A} with multi-degree $d(c) = (2n_1, 2n_2)$, where $n_1, n_2 \in \mathbb{N}_0$. Suppose that:

(I) There exists a bounded self-adjoint operator T > 0 on $L^2(\mathbb{R})$ such that $\pi_0(c) \geq T$. (II) $\gamma_{2n_1,2n_2} \neq 0$ and both polynomials f_{2n_2} and g_{2n_1} are positive on the real line.

Fix two non-zero reals α and β . Let S be the unital monoid generated by

 $p \pm \alpha i, q \pm \beta i.$

Theorem 1:

Let $c = c^*$ be a nonzero element of the Weyl algebra \mathcal{A} with multi-degree $d(c) = (2n_1, 2n_2)$, where $n_1, n_2 \in \mathbb{N}_0$. Suppose that:

(I) There exists a bounded self-adjoint operator T > 0 on $L^2(\mathbb{R})$ such that $\pi_0(c) > T$. (II) $\gamma_{2n_1,2n_2} \neq 0$ and both polynomials f_{2n_2} and g_{2n_1} are positive on the real line.

Then there exists an element $s \in S$ such that

$$s^*cs \in \sum \mathcal{A}^2.$$

Let \mathcal{A} is the complex universal enveloping algebra of the Lie algebra of the affine group of the real line. Then A is the unital *-algebra with two generators $a = a^*$ and $b = b^*$ and defining relation

$$ab - ba = ib.$$

Let \mathcal{A} is the complex universal enveloping algebra of the Lie algebra of the affine group of the real line. Then A is the unital *-algebra with two generators $a = a^*$ and $b = b^*$ and defining relation

Each nonzero element $c \in \mathcal{A}$ can be written as

$$c = \sum_{j=0}^{d_1} \sum_{l=0}^{d_2} \gamma_{jl} a^j b^l = \sum_{n=0}^{d_2} f_n(a) b^n = \sum_{k=0}^{d_1} g_k(b) a^n.$$

Here $\gamma_{il} \in \mathbb{C}$ and $f_n(a)$, $g_k(b)$ are polynomials uniquely determined by c. Set $d(c) = (d_1, d_2)$ if there are $j_0, l_0 \in \mathbb{N}_0$ such that $\gamma_{d_1, l_0} \neq 0$ and $\gamma_{l_0, d_2} \neq 0$.

Let α and β be reals such that $\alpha < -1$, $\beta \neq 0$ and α is not an integer. Let S denote the unital monoid generated by $b \pm \beta i$; $a \pm (\alpha + n)i$, $n \in \mathbb{Z}$.

Let α and β be reals such that $\alpha < -1$, $\beta \neq 0$ and α is not an integer. Let S denote the unital monoid generated by $b \pm \beta i$; $a \pm (\alpha + n)i$, $n \in \mathbb{Z}$.

Theorem 2

Let $c=c^* \in \mathcal{A}$, $c\neq 0$, $d(c)=(2n_1, 2n_2)$, where $n_1, n_2 \in \mathbb{N}_0$. Assume :

Let α and β be reals such that $\alpha < -1$, $\beta \neq 0$ and α is not an integer. Let S denote the unital monoid generated by $b \pm \beta i$; $a \pm (\alpha+n)i$, $n \in \mathbb{Z}$.

Theorem 2

Let $c=c^* \in \mathcal{A}$, $c\neq 0$, $d(c)=(2n_1, 2n_2)$, where $n_1, n_2 \in \mathbb{N}_0$. Assume :

(I)There is a bounded selfadjoint operators $T_+ > 0$ on $L^2(\mathbb{R})$ such that

$$\pi_\pm(c)=\sum_{k=0}^{2n_1}g_k(\pm e^x)ig(irac{d}{dx}ig)^k\geq T_\pm.$$

Konrad Schmüdgen (Universität Leipzig) Positivity, Sums of Squares and Positivstellensätze for Noncommutative

Let α and β be reals such that $\alpha < -1$, $\beta \neq 0$ and α is not an integer. Let S denote the unital monoid generated by $b \pm \beta i$; $a \pm (\alpha + n)i$, $n \in \mathbb{Z}$.

Theorem 2

Let $c=c^* \in \mathcal{A}$, $c\neq 0$, $d(c)=(2n_1, 2n_2)$, where $n_1, n_2 \in \mathbb{N}_0$. Assume :

(I)There is a bounded selfadjoint operators $T_+ > 0$ on $L^2(\mathbb{R})$ such that

$$\pi_{\pm}(c)=\sum_{k=0}^{2n_1}g_k(\pm e^{\mathrm{x}})ig(irac{d}{d\mathrm{x}}ig)^k\geq T_{\pm}.$$

(II) $\gamma_{2n_1,2n_2} \neq 0$. The polynomials $f_{2n_2}(\cdot + n_2 i)$ and g_{2n_1} are positive on \mathcal{R} .

Let α and β be reals such that $\alpha < -1$, $\beta \neq 0$ and α is not an integer. Let S denote the unital monoid generated by $b \pm \beta i$; $a \pm (\alpha + n)i$, $n \in \mathbb{Z}$.

Theorem 2

Let $c=c^* \in \mathcal{A}$, $c\neq 0$, $d(c)=(2n_1, 2n_2)$, where $n_1, n_2 \in \mathbb{N}_0$. Assume :

(I)There is a bounded selfadjoint operators $T_+ > 0$ on $L^2(\mathbb{R})$ such that

$$\pi_{\pm}(c)=\sum_{k=0}^{2n_1}g_k(\pm e^x)\big(i\frac{d}{dx}\big)^k\geq T_{\pm}.$$

(II) $\gamma_{2n_1,2n_2} \neq 0$. The polynomials $f_{2n_2}(\cdot + n_2 i)$ and g_{2n_1} are positive on \mathcal{R} . Then there exists an element $s \in S$ such that

$$s^*cs \in \sum \mathcal{A}^2.$$