Positivity, Sums of Squares and Positivstellensätze for Noncommutative *-Algebras

Konrad Schmüdgen (Universität Leipzig)

October, 2009

Dedicated to ALEXANDER PRESTEL on the occasion of his retirement

Contents

1. Positivity in the Noncommutative Setting
2. Positivstellensätze in the Noncommutative Setting
3. Archimedean Quadratic Modules
4. Strict Positivstellensätze

Let $p \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ be a real polynomial.

Let $p \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ be a real polynomial.
Question:
When is p positive (nonnegative)?

Let $p \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ be a real polynomial.
Question:
When is p positive (nonnegative)?

Answer 1:

p is positive if p is a sum of squares (of rational functions).

Let $p \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ be a real polynomial.
Question:
When is p positive (nonnegative)?

Answer 1:

p is positive if p is a sum of squares (of rational functions).

Answer 2:

p is positive if $p\left(t_{1}, \ldots, t_{d}\right) \geq 0$ for all $\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}^{d}$.

Let $p \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ be a real polynomial.
Question:
When is p positive (nonnegative)?

Answer 1:

p is positive if p is a sum of squares (of rational functions).

Answer 2:
p is positive if $p\left(t_{1}, \ldots, t_{d}\right) \geq 0$ for all $\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}^{d}$.
Question:
How to generalize these concepts to noncommutative algebras?

Star Algebras

Let \mathcal{A} be a complex or real unital algebra and let $\mathbb{K}=\mathbb{C}$ resp. $\mathbb{K}=\mathbb{R}$.

Star Algebras

Let \mathcal{A} be a complex or real unital algebra and let $\mathbb{K}=\mathbb{C}$ resp. $\mathbb{K}=\mathbb{R}$. Question:

How do to define "positive elements" of \mathcal{A} ?

Star Algebras

Let \mathcal{A} be a complex or real unital algebra and let $\mathbb{K}=\mathbb{C}$ resp. $\mathbb{K}=\mathbb{R}$. Question:

How do to define "positive elements" of \mathcal{A} ?

Answer:

An algebra involution on \mathcal{A} is needed!
An involution of the algebra \mathcal{A} is a mapping $a \rightarrow a^{*}$ of \mathcal{A} into \mathcal{A} such that $(\lambda a+\mu b)^{*}=\bar{\lambda} a^{*}+\bar{\mu} b^{*},\left(a^{*}\right)^{*}=a$ and $(a b)^{*}=b^{*} a^{*}$ for $a, b \in \mathcal{A}$ and $\lambda, \mu \in \mathbb{K}$.

Star Algebras

Let \mathcal{A} be a complex or real unital algebra and let $\mathbb{K}=\mathbb{C}$ resp. $\mathbb{K}=\mathbb{R}$. Question:

How do to define "positive elements" of \mathcal{A} ?

Answer:

An algebra involution on \mathcal{A} is needed!
An involution of the algebra \mathcal{A} is a mapping $a \rightarrow a^{*}$ of \mathcal{A} into \mathcal{A} such that $(\lambda a+\mu b)^{*}=\bar{\lambda} a^{*}+\bar{\mu} b^{*},\left(a^{*}\right)^{*}=a$ and $(a b)^{*}=b^{*} a^{*}$ for $a, b \in \mathcal{A}$ and $\lambda, \mu \in \mathbb{K}$.

A *-algebra is an algebra equipped with an algebra involution.

Star Algebras

Let \mathcal{A} be a complex or real unital algebra and let $\mathbb{K}=\mathbb{C}$ resp. $\mathbb{K}=\mathbb{R}$. Question:

How do to define "positive elements" of \mathcal{A} ?

Answer:

An algebra involution on \mathcal{A} is needed!
An involution of the algebra \mathcal{A} is a mapping $a \rightarrow a^{*}$ of \mathcal{A} into \mathcal{A} such that $(\lambda a+\mu b)^{*}=\bar{\lambda} a^{*}+\bar{\mu} b^{*},\left(a^{*}\right)^{*}=a$ and $(a b)^{*}=b^{*} a^{*}$ for $a, b \in \mathcal{A}$ and $\lambda, \mu \in \mathbb{K}$.

A *-algebra is an algebra equipped with an algebra involution.

In what follows we suppose that \mathcal{A} is a unital *-algebra. $\mathcal{A}_{h}=\left\{a \in \mathcal{A}: a=a^{*}\right\}$ is called the hermitian part of \mathcal{A}.

Classical Real Algebraic Geometry:
$\mathcal{A}=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], p^{*}:=p$ or $\mathcal{A}=\mathbb{C}\left[x_{1}, \ldots, x_{d}\right], p^{*}=\bar{p}$, where $\bar{p}(x)=\sum \overline{\bar{a}_{\alpha}} x^{\alpha}$ for $p(x)=\sum a_{\alpha} x^{\alpha}$.

Classical Real Algebraic Geometry:

$\mathcal{A}=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], p^{*}:=p$ or
$\mathcal{A}=\mathbb{C}\left[x_{1}, \ldots, x_{d}\right], p^{*}=\bar{p}$, where $\bar{p}(x)=\sum \overline{a_{\alpha}} x^{\alpha}$ for $p(x)=\sum a_{\alpha} x^{\alpha}$.

Positivity of the Involution

All involutions occuring in this talk satisfy the following condition:
If $x_{1}^{*} x_{1}+\cdots+x_{k}^{*} x_{k}=0$ for $x_{1}, \ldots, x_{k} \in \mathcal{A}$, then $x_{1}=\cdots=x_{k}=0$.

Quadratic Modules

Definition: Quadratic Modules

A pre-quadratic module of \mathcal{A} is a subset \mathcal{C} of \mathcal{A}_{h} such that $\mathcal{C}+\mathcal{C} \subseteq \mathcal{C}, \quad \mathbb{R}_{+} \cdot \mathcal{C} \subseteq \mathcal{C}$ and $b^{*} \mathcal{C} b \in \mathcal{C}$ for all $b \in \mathcal{A}$.

Quadratic Modules

Definition: Quadratic Modules

A pre-quadratic module of \mathcal{A} is a subset \mathcal{C} of \mathcal{A}_{h} such that $\mathcal{C}+\mathcal{C} \subseteq \mathcal{C}, \quad \mathbb{R}_{+} \cdot \mathcal{C} \subseteq \mathcal{C}$ and $b^{*} \mathcal{C} b \in \mathcal{C}$ for all $b \in \mathcal{A}$.

A quadratic module of \mathcal{A} is a pre-quadratic module \mathcal{C} such that $1 \in \mathcal{C}$.

Quadratic Modules

Definition: Quadratic Modules

A pre-quadratic module of \mathcal{A} is a subset \mathcal{C} of \mathcal{A}_{h} such that $\mathcal{C}+\mathcal{C} \subseteq \mathcal{C}, \quad \mathbb{R}_{+} \cdot \mathcal{C} \subseteq \mathcal{C}$ and $b^{*} \mathcal{C} b \in \mathcal{C}$ for all $b \in \mathcal{A}$.

A quadratic module of \mathcal{A} is a pre-quadratic module \mathcal{C} such that $1 \in \mathcal{C}$.
Quadratic modules are important in theory of $*$-algebras where they have been called m-admissible wedges.

Quadratic Modules

Definition: Quadratic Modules

A pre-quadratic module of \mathcal{A} is a subset \mathcal{C} of \mathcal{A}_{h} such that $\mathcal{C}+\mathcal{C} \subseteq \mathcal{C}, \quad \mathbb{R}_{+} \cdot \mathcal{C} \subseteq \mathcal{C}$ and $b^{*} \mathcal{C} b \in \mathcal{C}$ for all $b \in \mathcal{A}$.

A quadratic module of \mathcal{A} is a pre-quadratic module \mathcal{C} such that $1 \in \mathcal{C}$.
Quadratic modules are important in theory of $*$-algebras where they have been called m-admissible wedges.
Each quadratic module gives an ordering \preceq on the real vector space \mathcal{A}_{h} by defining $a \preceq b$ (and likewise $b \succeq a$) if and only if $a-b \in \mathcal{C}$.

Algebraic Quadratic Modules

Definition: Pre-Quadratic Module $\mathcal{C}_{\mathcal{X}}$

If \mathcal{X} is a subset of \mathcal{A}_{h}, then

$$
\mathcal{C}_{\mathcal{X}}:=\left\{\sum_{j=1}^{s} \sum_{l=1}^{k} a_{j l}^{*} x_{\mid} a_{j l} ; \quad a_{j l} \in \mathcal{A}, x_{l} \in \mathcal{X}, s, k \in \mathbb{N}\right\}
$$

is the pre-quadratic module of \mathcal{A} generated by the set \mathcal{X}.

Algebraic Quadratic Modules

Definition: Pre-Quadratic Module $\mathcal{C}_{\mathcal{X}}$

If \mathcal{X} is a subset of \mathcal{A}_{h}, then

$$
\mathcal{C}_{\mathcal{X}}:=\left\{\sum_{j=1}^{s} \sum_{l=1}^{k} a_{j \mid}^{*} x_{\mid} a_{j l} ; \quad a_{j l} \in \mathcal{A}, x_{l} \in \mathcal{X}, s, k \in \mathbb{N}\right\}
$$

is the pre-quadratic module of \mathcal{A} generated by the set \mathcal{X}.
All elements $a^{*} a$, where $a \in \mathcal{A}$, are called squares of \mathcal{A}.
The wedge

$$
\sum \mathcal{A}^{2}:=\left\{\sum_{j=1}^{n} a_{j}^{*} a_{j} ; \quad a_{1}, \ldots, a_{n} \in \mathcal{A}, n \in \mathbb{N}\right\}
$$

of finite sums of squares is the smallest quadratic module of \mathcal{A}.

Quadratic Modules Defined by Representations

Let \mathcal{D} be a \mathbb{K}-vector space with scalar product $\langle\cdot, \cdot\rangle$.

Definition: *-Representation

A $*$ - representation of \mathcal{A} on \mathcal{D} is an algebra homomorphism π of \mathcal{A} into the algebra of linear operators mapping \mathcal{D} into itself such that $\pi(1) \varphi=\varphi$ and $\langle\pi(a) \varphi, \psi\rangle=\left\langle\varphi, \pi\left(a^{*}\right) \psi\right\rangle$ for all $\varphi, \psi \in \mathcal{D}$ and $a \in \mathcal{A}$.

Quadratic Modules Defined by Representations

Let \mathcal{D} be a \mathbb{K}-vector space with scalar product $\langle\cdot, \cdot\rangle$.

Definition: *-Representation

A *- representation of \mathcal{A} on \mathcal{D} is an algebra homomorphism π of \mathcal{A} into the algebra of linear operators mapping \mathcal{D} into itself such that $\pi(1) \varphi=\varphi$ and $\langle\pi(a) \varphi, \psi\rangle=\left\langle\varphi, \pi\left(a^{*}\right) \psi\right\rangle$ for all $\varphi, \psi \in \mathcal{D}$ and $a \in \mathcal{A}$.

We write $\pi(a) \geq 0$ when $\langle\pi(a) \varphi, \varphi\rangle \geq 0$ for all $\varphi \in \mathcal{D}$.

Quadratic Modules Defined by Representations

Let \mathcal{D} be a \mathbb{K}-vector space with scalar product $\langle\cdot, \cdot\rangle$.

Definition: *-Representation

A *- representation of \mathcal{A} on \mathcal{D} is an algebra homomorphism π of \mathcal{A} into the algebra of linear operators mapping \mathcal{D} into itself such that $\pi(1) \varphi=\varphi$ and $\langle\pi(a) \varphi, \psi\rangle=\left\langle\varphi, \pi\left(a^{*}\right) \psi\right\rangle$ for all $\varphi, \psi \in \mathcal{D}$ and $a \in \mathcal{A}$.

We write $\pi(a) \geq 0$ when $\langle\pi(a) \varphi, \varphi\rangle \geq 0$ for all $\varphi \in \mathcal{D}$.
Definition: Quadratic Module $\mathcal{A}(\mathcal{S})_{+}$
For a family \mathcal{S} of $*$-representations of \mathcal{A}, we define a quadratic module

$$
\mathcal{A}(\mathcal{S})_{+}:=\left\{a \in \mathcal{A}_{h}: \pi(a) \geq 0 \text { for all } \pi \in \mathcal{S}\right\}
$$

Quadratic Modules Defined by Representations

Let \mathcal{D} be a \mathbb{K}-vector space with scalar product $\langle\cdot, \cdot\rangle$.

Definition: *-Representation

A *- representation of \mathcal{A} on \mathcal{D} is an algebra homomorphism π of \mathcal{A} into the algebra of linear operators mapping \mathcal{D} into itself such that $\pi(1) \varphi=\varphi$ and $\langle\pi(a) \varphi, \psi\rangle=\left\langle\varphi, \pi\left(a^{*}\right) \psi\right\rangle$ for all $\varphi, \psi \in \mathcal{D}$ and $a \in \mathcal{A}$.

We write $\pi(a) \geq 0$ when $\langle\pi(a) \varphi, \varphi\rangle \geq 0$ for all $\varphi \in \mathcal{D}$.

Definition: Quadratic Module $\mathcal{A}(\mathcal{S})_{+}$

For a family \mathcal{S} of $*$-representations of \mathcal{A}, we define a quadratic module

$$
\mathcal{A}(\mathcal{S})_{+}:=\left\{a \in \mathcal{A}_{h}: \pi(a) \geq 0 \text { for all } \pi \in \mathcal{S}\right\} .
$$

If $b \in \mathcal{A}$ and $c \in \mathcal{A}(\mathcal{S})_{+}$, then $\left\langle\pi\left(b^{*} c b\right) \varphi, \varphi\right\rangle=\langle\pi(c) \pi(b) \varphi, \pi(b) \varphi\rangle \geq 0$ for $\pi \in \mathcal{S}$, so that $b^{*} c b \in \mathcal{A}(\mathcal{S})_{+}$.

Quadratic Modules Defined by States

A state of \mathcal{A} is a linear functional f on \mathcal{A} such that $f(1)=1$ and $f\left(a^{*} a\right) \geq 0$ for all $a \in \mathcal{A}$.

Quadratic Modules Defined by States

A state of \mathcal{A} is a linear functional f on \mathcal{A} such that $f(1)=1$ and $f\left(a^{*} a\right) \geq 0$ for all $a \in \mathcal{A}$. If π is a $*$-representation of \mathcal{A} and $\varphi \in \mathcal{D}$ is a unit vector, then $f_{\varphi}(\cdot):=\langle\pi(\cdot) \varphi, \varphi\rangle$ is a state of \mathcal{A}.

Quadratic Modules Defined by States

A state of \mathcal{A} is a linear functional f on \mathcal{A} such that $f(1)=1$ and $f\left(a^{*} a\right) \geq 0$ for all $a \in \mathcal{A}$. If π is a $*$-representation of \mathcal{A} and $\varphi \in \mathcal{D}$ is a unit vector, then $f_{\varphi}(\cdot):=\langle\pi(\cdot) \varphi, \varphi\rangle$ is a state of \mathcal{A}.
By the GNS construction each state arises in this manner:
For each state f there are a $*$-representation π_{f} and a unit vector $\varphi \in \mathcal{D}$ such that $\mathcal{D}=\pi_{f}(\mathcal{A}) \varphi_{f}$ and

$$
f(a)=\left\langle\pi_{f}(a) \varphi_{f}, \varphi_{f}\right\rangle \text { for } a \in \mathcal{A}
$$

Quadratic Modules Defined by States

A state of \mathcal{A} is a linear functional f on \mathcal{A} such that $f(1)=1$ and $f\left(a^{*} a\right) \geq 0$ for all $a \in \mathcal{A}$. If π is a $*$-representation of \mathcal{A} and $\varphi \in \mathcal{D}$ is a unit vector, then $f_{\varphi}(\cdot):=\langle\pi(\cdot) \varphi, \varphi\rangle$ is a state of \mathcal{A}.
By the GNS construction each state arises in this manner:
For each state f there are a $*$-representation π_{f} and a unit vector $\varphi \in \mathcal{D}$ such that $\mathcal{D}=\pi_{f}(\mathcal{A}) \varphi_{f}$ and

$$
f(a)=\left\langle\pi_{f}(a) \varphi_{f}, \varphi_{f}\right\rangle \text { for } a \in \mathcal{A} .
$$

Definition: Quadratic Module $\mathcal{A}(\mathcal{F})_{+}$

Let \mathcal{F} be a set of states on \mathcal{A} such that $f_{a}(\cdot)=f\left(a^{*} a\right)^{-1} f\left(a^{*} \cdot a\right)$ is in \mathcal{F} for all $f \in \mathcal{F}$ and $a \in \mathcal{A}$ satisfying $f\left(a^{*} a\right) \neq 0$. Then

$$
\mathcal{A}(\mathcal{F})_{+}:=\left\{a=a^{*} \in \mathcal{A}: f(a) \geq 0 \text { for } f \in \mathcal{F}\right\}
$$

is a quadratic module of \mathcal{A}.

Positivstellensätze

There is an interplay between quadratic modules which are defined in algebraic terms (such as $\sum \mathcal{A}^{2}$ or $\mathcal{C}_{\mathcal{X}}$) and those which are defined by means of $*$-representations or states (such as $\mathcal{A}(\mathcal{S})_{+}$or $\mathcal{A}(\mathcal{F})_{+}$) for some distinguished family of *-representations or states.

Positivstellensätze

There is an interplay between quadratic modules

which are defined in algebraic terms

(such as $\sum \mathcal{A}^{2}$ or $\mathcal{C}_{\mathcal{X}}$) and those which are defined by means of $*$-representations or states (such as $\mathcal{A}(\mathcal{S})_{+}$or $\mathcal{A}(\mathcal{F})_{+}$) for some distinguished family of *-representations or states.

This is one of the most interesting challenges for the theory!
Positivstellensätze show how elements of $\mathcal{A}(\mathcal{S})_{+}$or $\mathcal{A}(\mathcal{F})_{+}$can be representated by means of $\sum \mathcal{A}^{2}$ or $\mathcal{C}_{\mathcal{X}}$.

Maximal Quadratic Modules

Let \mathcal{A} be a complex unital *-algebra.
A quadratic module \mathcal{C} is called proper if $\mathcal{C} \neq \mathcal{A}_{h}$. (\mathcal{C} is proper if and only if -1 is not in \mathcal{C}.)

Maximal Quadratic Modules

Let \mathcal{A} be a complex unital $*$-algebra.
A quadratic module \mathcal{C} is called proper if $\mathcal{C} \neq \mathcal{A}_{h}$. (\mathcal{C} is proper if and only if -1 is not in \mathcal{C}.)
A proper quadratic module \mathcal{C} of \mathcal{A} is called maximal if there is no proper quadratic module $\tilde{\mathcal{C}}$ of \mathcal{A} such that $\mathcal{C} \subseteq \tilde{\mathcal{C}}$ and $\mathcal{C} \neq \tilde{\mathcal{C}}$.

Maximal Quadratic Modules

Let \mathcal{A} be a complex unital $*$-algebra.
A quadratic module \mathcal{C} is called proper if $\mathcal{C} \neq \mathcal{A}_{h}$.
(\mathcal{C} is proper if and only if -1 is not in \mathcal{C}.)
A proper quadratic module \mathcal{C} of \mathcal{A} is called maximal if there is no proper quadratic module $\tilde{\mathcal{C}}$ of \mathcal{A} such that $\mathcal{C} \subseteq \tilde{\mathcal{C}}$ and $\mathcal{C} \neq \tilde{\mathcal{C}}$.

If \mathcal{C} is a maximal proper quadratic module of a commutative unital ring A, then $\mathcal{C} \cap(-\mathcal{C})$ is a prime ideal and $\mathcal{C} \cup(-\mathcal{C})=A$.

Maximal Quadratic Modules

Let \mathcal{A} be a complex unital $*$-algebra.
A quadratic module \mathcal{C} is called proper if $\mathcal{C} \neq \mathcal{A}_{h}$.
(\mathcal{C} is proper if and only if -1 is not in \mathcal{C}.)
A proper quadratic module \mathcal{C} of \mathcal{A} is called maximal if there is no proper quadratic module $\tilde{\mathcal{C}}$ of \mathcal{A} such that $\mathcal{C} \subseteq \tilde{\mathcal{C}}$ and $\mathcal{C} \neq \tilde{\mathcal{C}}$.

If \mathcal{C} is a maximal proper quadratic module of a commutative unital ring A, then $\mathcal{C} \cap(-\mathcal{C})$ is a prime ideal and $\mathcal{C} \cup(-\mathcal{C})=A$.

Theorem: Cimprič

Suppose \mathcal{C} is a quadratic module of a complex $*$-algebra \mathcal{A}. Let $\mathcal{C}^{0}:=\mathcal{C} \cap(-\mathcal{C})$ and $\mathcal{I}_{\mathcal{C}}:=\mathcal{C}^{0}+i \mathcal{C}^{0}$.
(i) $\mathcal{I}_{\mathcal{C}}$ is a two-sided $*$-ideal of \mathcal{A}.
(ii) If \mathcal{C} is a maximal proper quadratic module, $\mathcal{I}_{\mathcal{C}}$ is a prime ideal and

$$
\mathcal{I}_{\mathcal{C}}=\left\{a \in \mathcal{A}: a x x^{*} a^{*} \in \mathcal{C}^{0} \text { for all } x \in \mathcal{A}\right\} .
$$

Role of the Family \mathcal{S} of Representations

Lemma

Suppose \mathcal{A} has a faithful $*$-representation and \mathcal{A} is the union of finite dimensional subspaces $E_{n}, n \in \mathbb{N}$. Assume that for each $n \in \mathbb{N}$ there exists $k_{n} \in \mathbb{N}$ such that the following is satisfied:

If $a \in \sum \mathcal{A}^{2}$ is in E_{n}, then we can write a as a finite $\operatorname{sum} \sum_{j} a_{j}^{*} a_{j}$ such that all elements a_{j} are in $E_{k_{n}}$.

Role of the Family \mathcal{S} of Representations

Lemma

Suppose \mathcal{A} has a faithful $*$-representation and \mathcal{A} is the union of finite dimensional subspaces $E_{n}, n \in \mathbb{N}$. Assume that for each $n \in \mathbb{N}$ there exists $k_{n} \in \mathbb{N}$ such that the following is satisfied:
If $a \in \sum \mathcal{A}^{2}$ is in E_{n}, then we can write a as a finite sum $\sum_{j} a_{j}^{*} a_{j}$ such that all elements a_{j} are in $E_{k_{n}}$.
The the cone $\sum \mathcal{A}^{2}$ is closed in \mathcal{A} with respect to the finest locally convex topology $\tau_{\text {st }}$ on \mathcal{A}.

Role of the Family \mathcal{S} of Representations

Lemma

Suppose \mathcal{A} has a faithful $*$-representation and \mathcal{A} is the union of finite dimensional subspaces $E_{n}, n \in \mathbb{N}$. Assume that for each $n \in \mathbb{N}$ there exists $k_{n} \in \mathbb{N}$ such that the following is satisfied:

If $a \in \sum \mathcal{A}^{2}$ is in E_{n}, then we can write a as a finite sum $\sum_{j} a_{j}^{*} a_{j}$ such that all elements a_{j} are in $E_{k_{n}}$.
The the cone $\sum \mathcal{A}^{2}$ is closed in \mathcal{A} with respect to the finest locally convex topology $\tau_{\text {st }}$ on \mathcal{A}.

In the commutative case this condition means that the quadratic module $\sum \mathcal{A}^{2}$ is stable.

Role of the Family \mathcal{S} of Representations

Theorem: K.S. 1979

If \mathcal{A} is the commutative $*$-algebra $\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$, the Weyl algebra $\mathcal{W}(d)$, the enveloping algebra $\mathcal{E}(g)$ or the free $*$-algebra $\mathbb{C}\left\langle x_{1}, \ldots, x_{d}\right\rangle$, then the cone $\sum \mathcal{A}^{2}$ is closed in the finest locally convex topology on \mathcal{A}.

Role of the Family \mathcal{S} of Representations

Theorem: K.S. 1979

If \mathcal{A} is the commutative $*$-algebra $\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$, the Weyl algebra $\mathcal{W}(d)$, the enveloping algebra $\mathcal{E}(g)$ or the free $*$-algebra $\mathbb{C}\left\langle x_{1}, \ldots, x_{d}\right\rangle$, then the cone $\sum \mathcal{A}^{2}$ is closed in the finest locally convex topology on \mathcal{A}.

Corollary:

Let \mathcal{A} be one of the $*$-algebras from the preceding theorem. For any $a \in \mathcal{A}_{h}$ the following are equivalent:
(i): $a \in \sum \mathcal{A}^{2}$.
(ii): $\pi(a) \geq 0$ for all (irreducible) $*$-representations π of \mathcal{A}.
(iii): $f(a) \geq 0$ for each (pure) state f of \mathcal{A}.

Role of the Family \mathcal{S} of Representations

Theorem: K.S. 1979

If \mathcal{A} is the commutative $*$-algebra $\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$, the Weyl algebra $\mathcal{W}(d)$, the enveloping algebra $\mathcal{E}(g)$ or the free $*$-algebra $\mathbb{C}\left\langle x_{1}, \ldots, x_{d}\right\rangle$, then the cone $\sum \mathcal{A}^{2}$ is closed in the finest locally convex topology on \mathcal{A}.

Corollary:

Let \mathcal{A} be one of the $*$-algebras from the preceding theorem. For any $a \in \mathcal{A}_{h}$ the following are equivalent:
(i): $a \in \sum \mathcal{A}^{2}$.
(ii): $\pi(a) \geq 0$ for all (irreducible) $*$-representations π of \mathcal{A}.
(iii): $f(a) \geq 0$ for each (pure) state f of \mathcal{A}.

In case of the free polynomial algebra $\mathcal{A}=\mathbb{C}\left\langle x_{1}, \ldots, x_{d}\right\rangle$ the implication (ii) \rightarrow (i) is usally called Helton's theorem.

Some Examples

Example 1: Commutative Polynomial Algebra $\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$

$\mathcal{S}:=\left\{\pi_{t}: t \in \mathbb{R}\right\}$, where $\pi_{t}(p)=p(t), \mathcal{D}=\mathbb{C}$ or
$\mathcal{S}=\left\{\pi_{\mu}: \mu \in M\left(\mathbb{R}^{d}\right)\right\}$,
where $M\left(\mathbb{R}^{d}\right)$ is the set of positive Borel measure on \mathbb{R}^{d} which have finite moments and $\pi_{\mu}(p) q=p \cdot q$ for $p, q \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right] \subseteq L^{2}\left(\mathbb{R}^{d}, \mu\right)$.

Some Examples

Example 1: Commutative Polynomial Algebra $\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$

$\mathcal{S}:=\left\{\pi_{t}: t \in \mathbb{R}\right\}$, where $\pi_{t}(p)=p(t), \mathcal{D}=\mathbb{C}$ or
$\mathcal{S}=\left\{\pi_{\mu}: \mu \in M\left(\mathbb{R}^{d}\right)\right\}$,
where $M\left(\mathbb{R}^{d}\right)$ is the set of positive Borel measure on \mathbb{R}^{d} which have finite moments and $\pi_{\mu}(p) q=p \cdot q$ for $p, q \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right] \subseteq L^{2}\left(\mathbb{R}^{d}, \mu\right)$.

Example 2: Weyl Algebra
$\mathcal{W}=\mathbb{C}\left\langle a, a^{*} \mid a a^{*}-a^{*} a=1\right\rangle=\mathbb{C}\left\langle p=p^{*}, q=q^{*} \mid p q-q p=-i\right\rangle$
$\mathcal{S}=\left\{\pi_{0}\right\}$, where π_{0} is the Bargmann-Fock representation $\left(\pi_{0}(a) e_{n}=n^{1 / 2} e_{n-1}, \pi_{0}\left(a^{*}\right) e_{n}=(n+1)^{1 / 2} e_{n+1}\right.$ on $\left.l^{2}\left(\mathbb{N}_{0}\right)\right)$ or the Schrödinger representation $\left(\pi_{0}(q) f=t f(t), \pi_{0}(p) f=-i f^{\prime}(t)\right.$ on $L^{2}(\mathbb{R})$).

Some Examples

Example 3: Enveloping Algebras $\mathcal{E}(g)$ of a Real Lie Algebra g with Involution $x^{*}=-x$ for $x \in g$

$\mathcal{S}=\{d U ; U$ unitary representation of $G\}$

Some Examples

Example 3: Enveloping Algebras $\mathcal{E}(g)$ of a Real Lie Algebra g with Involution $x^{*}=-x$ for $x \in g$
 $$
\mathcal{S}=\{d U ; U \text { unitary representation of } G\}
$$

Example 4: Free Polynomial Algebra $\mathbb{C}\left\langle x_{1}, \ldots, x_{d}\right\rangle$

with Involution $x_{j}^{*}=x_{j}$
\mathcal{S} is the set of all $*$-representations.
If X_{1}, \ldots, X_{d} are arbitrary bounded self-adjoint operators, then there is a *-representation π such that $\pi\left(x_{1}\right)=X_{1}, \ldots, \pi\left(x_{d}\right)=X_{d}$.

What about Artin's Theorem in the Noncommutative Case?

Artin's Theorem on the solution of Hilbert's 17th problem:
For each nonnegative polynomial a on \mathbb{R}^{d} there exists a nonzero polynomial $c \in \mathbb{R}[t]$ such that $c^{2} a \in \sum \mathbb{R}[t]^{2}$.

What about Artin's Theorem in the Noncommutative Case?

Artin's Theorem on the solution of Hilbert's 17th problem:

For each nonnegative polynomial a on \mathbb{R}^{d} there exists a nonzero polynomial $c \in \mathbb{R}[t]$ such that $c^{2} a \in \sum \mathbb{R}[t]^{2}$.

For a noncommutative $*$-algebra \mathcal{A} it is natural to generalize the latter to

$$
c^{*} a c \in \sum \mathcal{A}^{2} .
$$

What about Artin's Theorem in the Noncommutative Case?

Artin's Theorem on the solution of Hilbert's 17th problem:

For each nonnegative polynomial a on \mathbb{R}^{d} there exists a nonzero polynomial $c \in \mathbb{R}[t]$ such that $c^{2} a \in \sum \mathbb{R}[t]^{2}$.

For a noncommutative $*$-algebra \mathcal{A} it is natural to generalize the latter to

$$
c^{*} a c \in \sum \mathcal{A}^{2} .
$$

One might also think of

$$
\sum_{k} c_{k}^{*} a c_{k} \in \sum \mathcal{A}^{2}
$$

but it can be shown that such a condition corresponds to a Nichtnegativstellensatz rather than a Positivstellensatz.

An Essential Difference

In the commutative case the relation $c^{2} a \in \sum \mathbb{R}[x]^{2}$ implies that the polynomial a is nonnegative on \mathbb{R}^{d}.
However, in the noncommutative case such a converse is not true.

An Essential Difference

In the commutative case the relation $c^{2} a \in \sum \mathbb{R}[x]^{2}$ implies that the polynomial a is nonnegative on \mathbb{R}^{d}.
However, in the noncommutative case such a converse is not true.

Example: Weyl Algebra

Let \mathcal{A} be the Weyl algebra \mathcal{W} and $\mathcal{S}=\left\{\pi_{0}\right\}$.
Set $N=a^{*} a$. Since $a a^{*}-a^{*} a=1$, we have $a(N-1) a^{*}=N^{2}+a^{*} a \in \sum \mathcal{A}^{2}$. But $\pi_{0}(N-1)$ is not nonnegative, since $\left\langle\pi_{0}(N-1) e_{0}, e_{0}\right\rangle=-1$ for the vacuum vector e_{0}.

An Essential Difference

In the commutative case the relation $c^{2} a \in \sum \mathbb{R}[x]^{2}$ implies that the polynomial a is nonnegative on \mathbb{R}^{d}.
However, in the noncommutative case such a converse is not true.

Example: Weyl Algebra

Let \mathcal{A} be the Weyl algebra \mathcal{W} and $\mathcal{S}=\left\{\pi_{0}\right\}$.
Set $N=a^{*} a$. Since $a a^{*}-a^{*} a=1$, we have $a(N-1) a^{*}=N^{2}+a^{*} a \in \sum \mathcal{A}^{2}$. But $\pi_{0}(N-1)$ is not nonnegative, since $\left\langle\pi_{0}(N-1) e_{0}, e_{0}\right\rangle=-1$ for the vacuum vector e_{0}.

Example: *-Algebra Generated by an Isometry

Let \mathcal{A} be the $*$-algebra with a single generator a and relation $a^{*} a=1$. Then $p_{0}:=1-a a^{*} \neq 0$ is a projection in \mathcal{A} and $p_{0} a x a^{*} p_{0}=0 \in \sum \mathcal{A}^{2}$ for arbitrary $x \in \mathcal{A}$.
But elements of the form $a x a^{*}$ are in general not nonnegative in *-representations of \mathcal{A}.

An Essential Difference

Problem:
Suppose that $c^{*} a c \in \sum \mathcal{A}^{2}$.
One needs additional conditions on c to ensure that then $a \in \mathcal{A}(\mathcal{S})_{+}$.

An Essential Difference

Problem:
Suppose that $c^{*} a c \in \sum \mathcal{A}^{2}$.
One needs additional conditions on c to ensure that then $a \in \mathcal{A}(\mathcal{S})_{+}$.

If the representations are by bounded operators, then it suffices that

$$
\operatorname{ran} \pi\left(c^{*}\right) \subset \operatorname{ker} \pi(a) .
$$

Version 1 of Artin's Theorem in the Noncommutative Case

Version 1: Denominator Free
 For any $a=a^{*} \in \mathcal{A}$ such that $\pi(a) \geq 0$ for all $\pi \in \mathcal{S}$ we have $a \in \sum \mathcal{A}^{2}$.

Version 1 of Artin's Theorem in the Noncommutative Case

Version 1: Denominator Free

For any $a=a^{*} \in \mathcal{A}$ such that $\pi(a) \geq 0$ for all $\pi \in \mathcal{S}$ we have $a \in \sum \mathcal{A}^{2}$.

Example 1: Fejer-Riesz Theorem:

Let $\mathcal{A}=\mathbb{C}\left\langle z, z^{-1} \mid z^{*} z=z^{*} z=1\right\rangle$ be the trigonometric polynomials.
Let $\mathcal{S}=\left\{\pi_{w}(p)=p\left(w, w^{-1}\right) ; w \in \mathbb{T}\right\}$ or $\mathcal{S}=\left\{\pi_{0}(z)=U\right\}$, where $U e_{n}=e_{n+1}$ on $I^{2}(\mathbb{Z})$ is the bilateratal shift. If $\pi(p) \geq 0$ for all $\pi \in \mathcal{S}$, then there is $q \in \mathcal{A}$ such that $p=q^{*} q$.

Version 1 of Artin's Theorem in the Noncommutative Case

Version 1: Denominator Free

For any $a=a^{*} \in \mathcal{A}$ such that $\pi(a) \geq 0$ for all $\pi \in \mathcal{S}$ we have $a \in \sum \mathcal{A}^{2}$.

Example 1: Fejer-Riesz Theorem:

Let $\mathcal{A}=\mathbb{C}\left\langle z, z^{-1} \mid z^{*} z=z^{*} z=1\right\rangle$ be the trigonometric polynomials.
Let $\mathcal{S}=\left\{\pi_{w}(p)=p\left(w, w^{-1}\right) ; w \in \mathbb{T}\right\}$ or $\mathcal{S}=\left\{\pi_{0}(z)=U\right\}$, where $U e_{n}=e_{n+1}$ on $I^{2}(\mathbb{Z})$ is the bilateratal shift. If $\pi(p) \geq 0$ for all $\pi \in \mathcal{S}$, then there is $q \in \mathcal{A}$ such that $p=q^{*} q$.

Example 2: Noncommutative Fejer-Riesz Theorem: Savchuk, K. S.

Let $\mathcal{A}=\mathbb{C}\left\langle s, s^{*} \mid s s^{*}=1\right\rangle$ be the $*$-algebra generated by an isometry.
Let \mathcal{S} be all $*$-representations of \mathcal{A} or $\mathcal{S}=\left\{\pi_{0}\right\}$, where $\pi_{0}(s) e_{n}=e_{n+1}$ on $I^{2}\left(\mathbb{N}_{0}\right)$ is the unilateral shift.
If $\pi(p) \geq 0$ for all $\pi \in \mathcal{S}$, then there is $q \in \mathcal{A}$ such that $p=q^{*} q$.

Examples of Version 1

Example 3: Curves (C. Scheiderer)

Let $\mathcal{A}=\mathbb{R}[C]$ be the (real) coordinate algebra of an irreducible smooth affine curve C.
If C has at least one nonreal point at infinity, then version 1 holds. Example: $x^{3}+y^{3}+1=0$

Examples of Version 1

Example 3: Curves (C. Scheiderer)

Let $\mathcal{A}=\mathbb{R}[C]$ be the (real) coordinate algebra of an irreducible smooth affine curve C.
If C has at least one nonreal point at infinity, then version 1 holds. Example: $x^{3}+y^{3}+1=0$

Example: $y^{3}=x^{2}$. Then $y \notin \sum \mathcal{A}^{2}$.

Examples of Version 1

Example 3: Curves (C. Scheiderer)

Let $\mathcal{A}=\mathbb{R}[C]$ be the (real) coordinate algebra of an irreducible smooth affine curve C.
If C has at least one nonreal point at infinity, then version 1 holds. Example: $x^{3}+y^{3}+1=0$

Example: $y^{3}=x^{2}$. Then $y \notin \sum \mathcal{A}^{2}$.

Example 4: Spherical Isometries (Helton/McCullough/Putinar)

$\mathcal{A}=\mathbb{C}\left\langle x_{1}, x_{1}^{*}, \ldots, x_{d}, x_{d}^{*} \mid x_{1}^{*} x_{1}+\cdots+x_{d}^{*} x_{d}=1\right\rangle$.
Then version 1 holds.

Examples of Version 1

Example 5: Group Algebra of a Free Group

Let G be a free group and $\mathcal{A}=\mathbb{C}[G]$ be the group algebra with involution $g^{*}=g^{-1}, g \in G$. Then version 1 holds.

Examples of Version 1

Example 5: Group Algebra of a Free Group

Let G be a free group and $\mathcal{A}=\mathbb{C}[G]$ be the group algebra with involution $g^{*}=g^{-1}, g \in G$. Then version 1 holds.

Example 6: Matrices $M_{n}\left(\mathbb{C}\left[x_{1}\right]\right)$

Djokovic (1976): Any element $A \in M_{n}\left(\mathbb{C}\left[x_{1}\right]\right)_{+}$is a square $A=B^{*} B$, $B \in M_{n}\left(\mathbb{C}\left[x_{1}\right]\right)$. That is, version 1 holds.

Version 2 of Artin's Theorem in the Noncommutative Case

Version 2: With Denominators

For any $a=a^{*} \in \mathcal{A}$ such that $\pi(a) \geq 0$ for all $\pi \in \mathcal{S}$ there exists a $c \in \mathcal{A}$ such that c is not a zero divisor and $c^{*} a c \in \sum \mathcal{A}^{2}$.

Version 2 of Artin's Theorem in the Noncommutative Case

Version 2: With Denominators

For any $a=a^{*} \in \mathcal{A}$ such that $\pi(a) \geq 0$ for all $\pi \in \mathcal{S}$ there exists a $c \in \mathcal{A}$ such that c is not a zero divisor and $c^{*} a c \in \sum \mathcal{A}^{2}$.

Example 1: Matrices of Poynomials
Gondard/Ribenboim (1974), Procesi/Schacher (1976)
$\mathcal{A}=M_{n}\left(\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]\right)$ and $\mathcal{S}=\left\{\pi_{t}\left(\left(a_{i j}\right)\right)=\left(a_{i j}(t)\right) ; t \in \mathbb{R}^{d}\right\}$.
Then version 2 holds.

Version 2 of Artin's Theorem in the Noncommutative Case

Version 2: With Denominators

For any $a=a^{*} \in \mathcal{A}$ such that $\pi(a) \geq 0$ for all $\pi \in \mathcal{S}$ there exists a $c \in \mathcal{A}$ such that c is not a zero divisor and $c^{*} a c \in \sum \mathcal{A}^{2}$.

Example 1: Matrices of Poynomials

Gondard/Ribenboim (1974), Procesi/Schacher (1976)
$\mathcal{A}=M_{n}\left(\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]\right)$ and $\mathcal{S}=\left\{\pi_{t}\left(\left(a_{i j}\right)\right)=\left(a_{i j}(t)\right) ; t \in \mathbb{R}^{d}\right\}$.
Then version 2 holds.

Theorem: Savchuk, K.S.

Suppose \mathcal{A} has no zero divisors and $\mathcal{A} \backslash\{0\}$ satifies a right Ore condition (e.g. for any $a \in \mathcal{A}$ and $s \in \mathcal{A} \backslash\{0\}$ there are $b \in \mathcal{A}$ and $t \in \mathcal{A} \backslash\{0\}$ such that $a t=s b$). Let \mathcal{A} be a $*$-algebra of operators on a pre-Hilbert space. Let \mathcal{S} consists only of the identity representation.
If \mathcal{A} satisfies version 2 , then so $M_{n}(\mathcal{A})$.

Version 2 of Artin's Theorem in the Noncommutative Case

Example 2: Crossed Product Algebra

Let G be a finite group acting as *-automorphims $g \rightarrow \alpha_{g}$ of a unital *-algebra \mathcal{A}. The crossed-product algebra $\mathcal{A} \times{ }_{\alpha} G$ is a unital $*$-algebra: As a vector space it is $\mathcal{A} \otimes \mathbb{C}[G]$, product and involution are given by $\left.(a \otimes g)(b \otimes h)=a \alpha_{g}(b) \otimes g h\right),(a \otimes g)^{*}=\alpha_{g^{-1}}\left(a^{*}\right) \otimes g^{-1}, a, b \in \mathcal{A}, g, h \in G$

Version 2 of Artin's Theorem in the Noncommutative Case

Example 2: Crossed Product Algebra

Let G be a finite group acting as *-automorphims $g \rightarrow \alpha_{g}$ of a unital *-algebra \mathcal{A}. The crossed-product algebra $\mathcal{A} \times{ }_{\alpha} G$ is a unital $*$-algebra: As a vector space it is $\mathcal{A} \otimes \mathbb{C}[G]$, product and involution are given by $\left.(a \otimes g)(b \otimes h)=a \alpha_{g}(b) \otimes g h\right),(a \otimes g)^{*}=\alpha_{g^{-1}}\left(a^{*}\right) \otimes g^{-1}, a, b \in \mathcal{A}, g, h \in G$

Suppose that $G=\mathbb{Z}_{n}$. If \mathcal{A} satisfies version 2 , then also $\mathcal{A} \times{ }_{\alpha} \mathbb{Z}_{n}$.

Version 2 of Artin's Theorem in the Noncommutative Case

Example 2: Crossed Product Algebra

Let G be a finite group acting as $*$-automorphims $g \rightarrow \alpha_{g}$ of a unital *-algebra \mathcal{A}. The crossed-product algebra $\mathcal{A} \times{ }_{\alpha} G$ is a unital *-algebra: As a vector space it is $\mathcal{A} \otimes \mathbb{C}[G]$, product and involution are given by $\left.(a \otimes g)(b \otimes h)=a \alpha_{g}(b) \otimes g h\right),(a \otimes g)^{*}=\alpha_{g^{-1}}\left(a^{*}\right) \otimes g^{-1}, a, b \in \mathcal{A}, g, h \in G$

Suppose that $G=\mathbb{Z}_{n}$. If \mathcal{A} satisfies version 2 , then also $\mathcal{A} \times{ }_{\alpha} \mathbb{Z}_{n}$.
Idea of proof: Embedd $\mathcal{A} \times{ }_{\alpha} \mathbb{Z}_{n}$ as a $*$-subalgebra of $M_{n}(\mathcal{A})$, construct a conditional expectation to $\mathcal{A} \times{ }_{\alpha} \mathbb{Z}_{n}$ and apply the preceding theorem. If σ is an $*$-automorphism of order 3 , then $\mathcal{A} \times{ }_{\alpha} \mathbb{Z}_{3}$ is the set of matrices

$$
\left(\begin{array}{lll}
a & b & c \\
\sigma(c) & \sigma(a) & \sigma(b) \\
\sigma^{2}(b) & \sigma^{2}(c) & \sigma^{2}(a)
\end{array}\right), a, b, c \in \mathcal{A}
$$

Version 3 of Artin's Theorem in the Noncommutative Case

Denominators Sets and Preorderings

A preorder \mathcal{C} is a quadratic module such that

$$
c_{1} c_{2} \in \mathcal{C} \text { for all } c_{1}, c_{2} \in \mathcal{C}, \quad c_{1} c_{2}=c_{2} c_{1} .
$$

Version 3 of Artin's Theorem in the Noncommutative Case

Denominators Sets and Preorderings

A preorder \mathcal{C} is a quadratic module such that

$$
c_{1} c_{2} \in \mathcal{C} \text { for all } c_{1}, c_{2} \in \mathcal{C}, \quad c_{1} c_{2}=c_{2} c_{1} .
$$

Let $\mathcal{C}_{\mathcal{A}}$ be the smallest preorder on \mathcal{A} and $a \in \mathcal{A}_{h}$. We form a denominator set \mathcal{S}_{a} :
(i) $a \in \mathcal{S}_{a}$.
(ii) If $b \in \mathcal{S}_{a}$ and $x \in \mathcal{A}$, then $x^{*} b x \in \mathcal{S}_{a}$.
(iii) If $c \in \mathcal{C}_{\mathcal{A}}$ commutes with $b \in \mathcal{S}_{a}$, then $c b \in \mathcal{S}_{a}$.

Version 3 of Artin's Theorem in the Noncommutative Case

Denominators Sets and Preorderings

A preorder \mathcal{C} is a quadratic module such that

$$
c_{1} c_{2} \in \mathcal{C} \text { for all } c_{1}, c_{2} \in \mathcal{C}, \quad c_{1} c_{2}=c_{2} c_{1} .
$$

Let $\mathcal{C}_{\mathcal{A}}$ be the smallest preorder on \mathcal{A} and $a \in \mathcal{A}_{h}$. We form a denominator set \mathcal{S}_{a} :

```
(i) \(a \in \mathcal{S}_{a}\). (ii) If \(b \in \mathcal{S}_{a}\) and \(x \in \mathcal{A}\), then \(x^{*} b x \in \mathcal{S}_{a}\).
(iii) If \(c \in \mathcal{C}_{\mathcal{A}}\) commutes with \(b \in \mathcal{S}_{a}\), then \(c b \in \mathcal{S}_{a}\).
```

Motivation: Suppose \mathcal{A} is a $*$-algebra of bounded operators on a Hilbert space. If a is positive, then all elements of \mathcal{S}_{a} and $\mathcal{C}_{\mathcal{A}}$ are positive as well.

Version 3 of Artin's Theorem in the Noncommutative Case

Denominators Sets and Preorderings

A preorder \mathcal{C} is a quadratic module such that

$$
c_{1} c_{2} \in \mathcal{C} \text { for all } c_{1}, c_{2} \in \mathcal{C}, \quad c_{1} c_{2}=c_{2} c_{1} .
$$

Let $\mathcal{C}_{\mathcal{A}}$ be the smallest preorder on \mathcal{A} and $a \in \mathcal{A}_{h}$. We form a denominator set \mathcal{S}_{a} :
(i) $a \in \mathcal{S}_{a}$.
(ii) If $b \in \mathcal{S}_{a}$ and $x \in \mathcal{A}$, then $x^{*} b x \in \mathcal{S}_{a}$.
(iii) If $c \in \mathcal{C}_{\mathcal{A}}$ commutes with $b \in \mathcal{S}_{a}$, then $c b \in \mathcal{S}_{a}$.

Motivation: Suppose \mathcal{A} is a $*$-algebra of bounded operators on a Hilbert space. If a is positive, then all elements of \mathcal{S}_{a} and $\mathcal{C}_{\mathcal{A}}$ are positive as well.

Version 3: Most General Denominators and Right Hand Sides

Suppose that $a=a^{*} \in \mathcal{A}$ such that $\pi(a) \geq 0$ for all $\pi \in \mathcal{S}$.
Then there exist a $s_{a} \in \mathcal{S}_{a}$ such that $s_{a} \in \mathcal{C}_{\mathcal{A}}$.
Example: $x^{*}\left(c_{1}^{*} c_{1}+c_{2}^{*} c_{2}\right) a x=y_{2}^{*}\left(c_{3}^{*} c_{3}\left(y_{1}^{*}\left(c_{4}^{*} c_{4}+c_{5}^{*} c_{5}\right) y_{1}\right)\right) y_{2}+\cdots$.

Version 3 of Artin's Theorem in the Noncommutative Case

Denominators Sets and Preorderings

A preorder \mathcal{C} is a quadratic module such that

$$
c_{1} c_{2} \in \mathcal{C} \text { for all } c_{1}, c_{2} \in \mathcal{C}, \quad c_{1} c_{2}=c_{2} c_{1} .
$$

Let $\mathcal{C}_{\mathcal{A}}$ be the smallest preorder on \mathcal{A} and $a \in \mathcal{A}_{h}$. We form a denominator set \mathcal{S}_{a} :
(i) $a \in \mathcal{S}_{a}$.
(ii) If $b \in \mathcal{S}_{a}$ and $x \in \mathcal{A}$, then $x^{*} b x \in \mathcal{S}_{a}$.
(iii) If $c \in \mathcal{C}_{\mathcal{A}}$ commutes with $b \in \mathcal{S}_{a}$, then $c b \in \mathcal{S}_{a}$.

Motivation: Suppose \mathcal{A} is a $*$-algebra of bounded operators on a Hilbert space. If a is positive, then all elements of \mathcal{S}_{a} and $\mathcal{C}_{\mathcal{A}}$ are positive as well.

Version 3: Most General Denominators and Right Hand Sides

Suppose that $a=a^{*} \in \mathcal{A}$ such that $\pi(a) \geq 0$ for all $\pi \in \mathcal{S}$.
Then there exist a $s_{a} \in \mathcal{S}_{a}$ such that $s_{a} \in \mathcal{C}_{\mathcal{A}}$.
Example: $x^{*}\left(c_{1}^{*} c_{1}+c_{2}^{*} c_{2}\right) a x=y_{2}^{*}\left(c_{3}^{*} c_{3}\left(y_{1}^{*}\left(c_{4}^{*} c_{4}+c_{5}^{*} c_{5}\right) y_{1}\right)\right) y_{2}+\cdots$.
Examples of version 3: Talk by Y. Savchuk

An Example Concerning Versions 1, 2 and 3

Weyl Algebra $\mathcal{A}=\mathbb{C}\left\langle a, a^{*} \mid a a^{*}-a^{*} a=1\right\rangle$

$\mathcal{S}=\left\{\pi_{0}\right\}$, where π_{0} is the Bargmann-Fock representation $\left(\pi_{0}(a) e_{n}=n^{1 / 2} e_{n-1}, \pi_{0}\left(a^{*}\right) e_{n}=(n+1)^{1 / 2} e_{n+1}\right.$ on $\left.I^{2}\left(\mathbb{N}_{0}\right)\right)$.

An Example Concerning Versions 1, 2 and 3

Weyl Algebra $\mathcal{A}=\mathbb{C}\left\langle a, a^{*} \mid a a^{*}-a^{*} a=1\right\rangle$

$\mathcal{S}=\left\{\pi_{0}\right\}$, where π_{0} is the Bargmann-Fock representation $\left(\pi_{0}(a) e_{n}=n^{1 / 2} e_{n-1}, \pi_{0}\left(a^{*}\right) e_{n}=(n+1)^{1 / 2} e_{n+1}\right.$ on $\left.I^{2}\left(\mathbb{N}_{0}\right)\right)$.

Let $f(N) \in \mathbb{C}[N]$, where $N:=a^{*} a$. Then we have:

An Example Concerning Versions 1, 2 and 3

Weyl Algebra $\mathcal{A}=\mathbb{C}\left\langle a, a^{*} \mid a a^{*}-a^{*} a=1\right\rangle$

$\mathcal{S}=\left\{\pi_{0}\right\}$, where π_{0} is the Bargmann-Fock representation $\left(\pi_{0}(a) e_{n}=n^{1 / 2} e_{n-1}, \pi_{0}\left(a^{*}\right) e_{n}=(n+1)^{1 / 2} e_{n+1}\right.$ on $\left.I^{2}\left(\mathbb{N}_{0}\right)\right)$.

Let $f(N) \in \mathbb{C}[N]$, where $N:=a^{*} a$. Then we have:
$f \in \mathcal{A}(\mathcal{S})_{+}$iff $f(n) \geq 0$ for all $n \in \mathbb{N}_{0} .\left(\pi_{0}(N)\right.$ has spectrum $\left.\mathbb{N}_{0}.\right)$

An Example Concerning Versions 1, 2 and 3

Weyl Algebra $\mathcal{A}=\mathbb{C}\left\langle a, a^{*} \mid a a^{*}-a^{*} a=1\right\rangle$

$\mathcal{S}=\left\{\pi_{0}\right\}$, where π_{0} is the Bargmann-Fock representation $\left(\pi_{0}(a) e_{n}=n^{1 / 2} e_{n-1}, \pi_{0}\left(a^{*}\right) e_{n}=(n+1)^{1 / 2} e_{n+1}\right.$ on $\left.I^{2}\left(\mathbb{N}_{0}\right)\right)$.

Let $f(N) \in \mathbb{C}[N]$, where $N:=a^{*} a$. Then we have:
$f \in \mathcal{A}(\mathcal{S})_{+}$iff $f(n) \geq 0$ for all $n \in \mathbb{N}_{0}$. ($\pi_{0}(N)$ has spectrum \mathbb{N}_{0}.)
$f \in \sum \mathcal{A}^{2}$ iff $f \in N \sum^{2}+N(N-1) \sum^{2}+\cdots+N(N-1) \cdots(N-k) \sum^{2}$.
$\left((N-1)(N-2) \in \mathcal{A}(\mathcal{S})_{+} \backslash \sum \mathcal{A}^{2}, a^{* k} a^{k}=N(N-1) \cdots(N-(k-1))\right)$

An Example Concerning Versions 1, 2 and 3

Weyl Algebra $\mathcal{A}=\mathbb{C}\left\langle a, a^{*} \mid a a^{*}-a^{*} a=1\right\rangle$

$\mathcal{S}=\left\{\pi_{0}\right\}$, where π_{0} is the Bargmann-Fock representation $\left(\pi_{0}(a) e_{n}=n^{1 / 2} e_{n-1}, \pi_{0}\left(a^{*}\right) e_{n}=(n+1)^{1 / 2} e_{n+1}\right.$ on $\left.I^{2}\left(\mathbb{N}_{0}\right)\right)$.

Let $f(N) \in \mathbb{C}[N]$, where $N:=a^{*} a$. Then we have:
$f \in \mathcal{A}(\mathcal{S})_{+}$iff $f(n) \geq 0$ for all $n \in \mathbb{N}_{0}$. ($\pi_{0}(N)$ has spectrum \mathbb{N}_{0}.)
$f \in \sum \mathcal{A}^{2}$ iff $f \in N \sum^{2}+N(N-1) \sum^{2}+\cdots+N(N-1) \cdots(N-k) \sum^{2}$.
$\left((N-1)(N-2) \in \mathcal{A}(\mathcal{S})_{+} \backslash \sum \mathcal{A}^{2}, a^{* k} a^{k}=N(N-1) \cdots(N-(k-1))\right)$
If $f \in \mathcal{A}(\mathcal{S})_{+}$, then version $\mathbf{3}$ holds for f, there are $c_{1}, \ldots, c_{k} \in \sum \mathcal{A}^{2}$ such that $c_{j} f=f c_{j}, c:=c_{1} \cdots c_{k} \neq 0$ and $c f \in \sum \mathcal{A}^{2}$.

An Example Concerning Versions 1, 2 and 3

Weyl Algebra $\mathcal{A}=\mathbb{C}\left\langle a, a^{*} \mid a a^{*}-a^{*} a=1\right\rangle$

$\mathcal{S}=\left\{\pi_{0}\right\}$, where π_{0} is the Bargmann-Fock representation $\left(\pi_{0}(a) e_{n}=n^{1 / 2} e_{n-1}, \pi_{0}\left(a^{*}\right) e_{n}=(n+1)^{1 / 2} e_{n+1}\right.$ on $\left.I^{2}\left(\mathbb{N}_{0}\right)\right)$.

Let $f(N) \in \mathbb{C}[N]$, where $N:=a^{*} a$. Then we have:
$f \in \mathcal{A}(\mathcal{S})_{+}$iff $f(n) \geq 0$ for all $n \in \mathbb{N}_{0}$. ($\pi_{0}(N)$ has spectrum \mathbb{N}_{0}.)
$f \in \sum \mathcal{A}^{2}$ iff $f \in N \sum^{2}+N(N-1) \sum^{2}+\cdots+N(N-1) \cdots(N-k) \sum^{2}$.
$\left((N-1)(N-2) \in \mathcal{A}(\mathcal{S})_{+} \backslash \sum \mathcal{A}^{2}, a^{* k} a^{k}=N(N-1) \cdots(N-(k-1))\right)$
If $f \in \mathcal{A}(\mathcal{S})_{+}$, then version $\mathbf{3}$ holds for f, there are $c_{1}, \ldots, c_{k} \in \sum \mathcal{A}^{2}$ such that $c_{j} f=f c_{j}, c:=c_{1} \cdots c_{k} \neq 0$ and $c f \in \sum \mathcal{A}^{2}$.
(For instance, $\left(a^{*} a\right)\left(a^{* 3} a^{3}\right)(N-1)(N-2)=\left(a^{* 3} a^{3}\right)^{2}$.)

Some Open Problems

Problem

Suppose that version 2 holds for \mathcal{A}_{1} and \mathcal{A}_{2}. Does it hold for $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$?

Some Open Problems

Problem

Suppose that version 2 holds for \mathcal{A}_{1} and \mathcal{A}_{2}. Does it hold for $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$?

Problem

Does version 2 of Artin's theorem hold for the Weyl algebra (Example 2) or for Enveloping algebras (Example 3)?

Some Open Problems

Problem

Suppose that version 2 holds for \mathcal{A}_{1} and \mathcal{A}_{2}. Does it hold for $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$?

Problem

Does version 2 of Artin's theorem hold for the Weyl algebra (Example 2) or for Enveloping algebras (Example 3)?

For the Weyl algebra there are the following open problems:
Let $\mathcal{A}=\pi_{0}(\mathcal{W})$ be the $*$-algebra of differential operators

$$
a=\sum_{k} p_{k}(t)\left(\frac{d}{d t}\right)^{k}
$$

with polynomial coefficients acting on the Schwartz space $\mathcal{S}(\mathbb{R}) \subseteq L^{2}(\mathbb{R})$.

Some Open Problems

Problem 1: Version 2 of Artin's Theorem

Suppose $\langle a \varphi, \varphi\rangle \geq 0$ for $\varphi \in \mathcal{S}(\mathbb{R})$. Does there exist a nonzero element $c \in \mathcal{A}$ such that

$$
c^{*} a c \in \sum \mathcal{A}^{2} ?
$$

Some Open Problems

Problem 1: Version 2 of Artin's Theorem

Suppose $\langle a \varphi, \varphi\rangle \geq 0$ for $\varphi \in \mathcal{S}(\mathbb{R})$. Does there exist a nonzero element $c \in \mathcal{A}$ such that

$$
c^{*} a c \in \sum \mathcal{A}^{2} ?
$$

Problem 2: A Version of a Noncommutative Stengle Theorem

Suppose $\langle a \varphi, \varphi\rangle \geq 0$ for $\varphi \in C_{0}^{\infty}(0,+\infty)$. Does there exist an nonzero element $c \in \mathcal{A}$ such that

$$
c^{*} a c=\sum a_{i}^{*} a_{i}+\sum b_{j}^{*} q b_{j} ?
$$

Definition and Simple Properties

A quadratic module C of a commutative unital ring A is called Archimedean if for any $a \in A$ there is an $n \in \mathbb{N}$ such that $n-a \in C$.

Definition and Simple Properties

A quadratic module C of a commutative unital ring A is called Archimedean if for any $a \in A$ there is an $n \in \mathbb{N}$ such that $n-a \in C$.

Definition of Archimedean Modules

A quadratic module \mathcal{C} of a unital *-algebra \mathcal{A} is called Archimedean if for each element $a=a^{*} \in \mathcal{A}$ there exists a $\lambda>0$ such that

$$
\begin{equation*}
\lambda \cdot 1-a \in \mathcal{C} \text { and } \lambda \cdot 1+a \in \mathcal{C} . \tag{1}
\end{equation*}
$$

Definition and Simple Properties

A quadratic module C of a commutative unital ring A is called Archimedean if for any $a \in A$ there is an $n \in \mathbb{N}$ such that $n-a \in C$.

Definition of Archimedean Modules

A quadratic module \mathcal{C} of a unital $*$-algebra \mathcal{A} is called Archimedean if for each element $a=a^{*} \in \mathcal{A}$ there exists a $\lambda>0$ such that

$$
\begin{equation*}
\lambda \cdot 1-a \in \mathcal{C} \text { and } \lambda \cdot 1+a \in \mathcal{C} . \tag{1}
\end{equation*}
$$

In terms of the order relation \geq defined by \mathcal{C} condition (1) means that

$$
\lambda \cdot 1 \leq a \leq \lambda \cdot 1 .
$$

This means that 1 is an order unit of the ordered vector space.

Definition and Simple Properties

A quadratic module C of a commutative unital ring A is called Archimedean if for any $a \in A$ there is an $n \in \mathbb{N}$ such that $n-a \in C$.

Definition of Archimedean Modules

A quadratic module \mathcal{C} of a unital $*$-algebra \mathcal{A} is called Archimedean if for each element $a=a^{*} \in \mathcal{A}$ there exists a $\lambda>0$ such that

$$
\begin{equation*}
\lambda \cdot 1-a \in \mathcal{C} \text { and } \lambda \cdot 1+a \in \mathcal{C} . \tag{1}
\end{equation*}
$$

In terms of the order relation \geq defined by \mathcal{C} condition (1) means that

$$
\lambda \cdot 1 \leq a \leq \lambda \cdot 1 .
$$

This means that 1 is an order unit of the ordered vector space.

Lemma (Vidav, K.S., Cimprič)

\mathcal{C} is Archimedean iff (1) holds for a set of hermitian generators of \mathcal{A}.

Definition and Simple Properties

Lemma

\mathcal{C} is Archimedean if and only if for element $a \in \mathcal{A}$ there exists a number $\lambda>0$ such that $\lambda \cdot 1-a^{*} a \in \mathcal{A}$.
(It suffices to know the latter condition for a set of generators.)

Definition and Simple Properties

Lemma

\mathcal{C} is Archimedean if and only if for element $a \in \mathcal{A}$ there exists a number $\lambda>0$ such that $\lambda \cdot 1-a^{*} a \in \mathcal{A}$.
(It suffices to know the latter condition for a set of generators.)
\mathcal{C} is Archimedean if and only if the unit 1 is an internal point of \mathcal{C} (that is, for any $a \in \mathcal{A}_{h}$ there exists a number $\varepsilon_{a}>0$ such that $1+\lambda a \in \mathcal{C}$ for all $\lambda \in \mathbb{R},|\lambda| \leq \varepsilon_{a}$.)

Definition and Simple Properties

Lemma

\mathcal{C} is Archimedean if and only if for element $a \in \mathcal{A}$ there exists a number $\lambda>0$ such that $\lambda \cdot 1-a^{*} a \in \mathcal{A}$.
(It suffices to know the latter condition for a set of generators.)
\mathcal{C} is Archimedean if and only if the unit 1 is an internal point of \mathcal{C} (that is, for any $a \in \mathcal{A}_{h}$ there exists a number $\varepsilon_{a}>0$ such that
$1+\lambda a \in \mathcal{C}$ for all $\lambda \in \mathbb{R},|\lambda| \leq \varepsilon_{a}$.)

- Eidelheit's separation theorem for convex sets applies!

Abstract Positivstellensätze

C-Positivity

A $*$-representation π is called \mathcal{C}-positive if $\pi(c) \geq 0$ for all $c \in \mathcal{C}$. A state is called \mathcal{C}-positive if $f(c) \geq 0$ for all $c \in \mathcal{C}$.

Abstract Positivstellensätze

C-Positivity

A *-representation π is called \mathcal{C}-positive if $\pi(c) \geq 0$ for all $c \in \mathcal{C}$. A state is called \mathcal{C}-positive if $f(c) \geq 0$ for all $c \in \mathcal{C}$.

Standard Example: Preorder of Basic Closed Semialgebraic Sets

Let $f=\left(f_{1}, \cdots, f_{k}\right)$ is a k-tuple of elements $f_{j} \in \mathcal{A}:=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$.
Basic closed semialgebraic set: $\mathcal{K}_{f}=\left\{t \in \mathbb{R}^{d}: f_{1}(t) \geq 0, \cdots, f_{k}(t) \geq 0\right\}$.
Preorder: $\mathcal{T}_{f}=\left\{\sum_{\varepsilon_{i} \in\{0,1\}} \sum_{j=1}^{n} f_{1}^{\varepsilon_{1}} \cdots f_{k}^{\varepsilon_{k}} g_{j}^{2} ; g_{j} \in \mathcal{A}, n \in \mathbb{N}\right\}$.

Abstract Positivstellensätze

C-Positivity

A *-representation π is called \mathcal{C}-positive if $\pi(c) \geq 0$ for all $c \in \mathcal{C}$. A state is called \mathcal{C}-positive if $f(c) \geq 0$ for all $c \in \mathcal{C}$.

Standard Example: Preorder of Basic Closed Semialgebraic Sets

Let $f=\left(f_{1}, \cdots, f_{k}\right)$ is a k-tuple of elements $f_{j} \in \mathcal{A}:=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$.
Basic closed semialgebraic set: $\mathcal{K}_{f}=\left\{t \in \mathbb{R}^{d}: f_{1}(t) \geq 0, \cdots, f_{k}(t) \geq 0\right\}$.
Preorder: $\mathcal{I}_{f}=\left\{\sum_{\varepsilon_{i} \in\{0,1\}} \sum_{j=1}^{n} f_{1}^{\varepsilon_{1}} \cdots f_{k}^{\varepsilon_{k}} g_{j}^{2} ; g_{j} \in \mathcal{A}, n \in \mathbb{N}\right\}$.
Then we have : \mathcal{T}_{f} is Archimedean if and only if \mathcal{K}_{f} is compact. (Crucial step in the proof of the Archimedean Positivstellensatz!)

Abstract Positivstellensätze

C-Positivity

A *-representation π is called \mathcal{C}-positive if $\pi(c) \geq 0$ for all $c \in \mathcal{C}$. A state is called \mathcal{C}-positive if $f(c) \geq 0$ for all $c \in \mathcal{C}$.

Standard Example: Preorder of Basic Closed Semialgebraic Sets

Let $f=\left(f_{1}, \cdots, f_{k}\right)$ is a k-tuple of elements $f_{j} \in \mathcal{A}:=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$.
Basic closed semialgebraic set: $\mathcal{K}_{f}=\left\{t \in \mathbb{R}^{d}: f_{1}(t) \geq 0, \cdots, f_{k}(t) \geq 0\right\}$.
Preorder: $\mathcal{I}_{f}=\left\{\sum_{\varepsilon_{i} \in\{0,1\}} \sum_{j=1}^{n} f_{1}^{\varepsilon_{1}} \cdots f_{k}^{\varepsilon_{k}} g_{j}^{2} ; g_{j} \in \mathcal{A}, n \in \mathbb{N}\right\}$.
Then we have : \mathcal{T}_{f} is Archimedean if and only if \mathcal{K}_{f} is compact. (Crucial step in the proof of the Archimedean Positivstellensatz!)

For $t \in \mathbb{R}^{d}$, let $f_{t}(p)=p(t)$ denote the point evaluation on \mathcal{A}.
Then: f_{t} is \mathcal{T}_{f}-positive if and only if $t \in \mathcal{K}_{f}$.

Abstract Positivstellensätze

C-Positivity

A *-representation π is called \mathcal{C}-positive if $\pi(c) \geq 0$ for all $c \in \mathcal{C}$. A state is called \mathcal{C}-positive if $f(c) \geq 0$ for all $c \in \mathcal{C}$.

Standard Example: Preorder of Basic Closed Semialgebraic Sets

Let $f=\left(f_{1}, \cdots, f_{k}\right)$ is a k-tuple of elements $f_{j} \in \mathcal{A}:=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$.
Basic closed semialgebraic set: $\mathcal{K}_{f}=\left\{t \in \mathbb{R}^{d}: f_{1}(t) \geq 0, \cdots, f_{k}(t) \geq 0\right\}$.
Preorder: $\mathcal{I}_{f}=\left\{\sum_{\varepsilon_{i} \in\{0,1\}} \sum_{j=1}^{n} f_{1}^{\varepsilon_{1}} \cdots f_{k}^{\varepsilon_{k}} g_{j}^{2} ; g_{j} \in \mathcal{A}, n \in \mathbb{N}\right\}$.
Then we have : \mathcal{T}_{f} is Archimedean if and only if \mathcal{K}_{f} is compact. (Crucial step in the proof of the Archimedean Positivstellensatz!)

For $t \in \mathbb{R}^{d}$, let $f_{t}(p)=p(t)$ denote the point evaluation on \mathcal{A}.
Then: f_{t} is \mathcal{T}_{f}-positive if and only if $t \in \mathcal{K}_{f}$.

Abstract Positivstellensätze

Assume that \mathcal{C} is an Archimedean quadratic module of \mathcal{A}.

Abstract Positivstellensatz

For any element $a=a^{*} \in \mathcal{A}$ the following are equivalent:
(i) $a+\varepsilon \cdot 1 \in \mathcal{C}$ for each $\varepsilon>0$.
(ii) $\pi($ a) ≥ 0 for each \mathcal{C}-positive $*$-representation π of \mathcal{A}.
(iii) $f($ a ≥ 0 for each \mathcal{C}-positive (pure) state f on \mathcal{A}.

Abstract Positivstellensätze

Assume that \mathcal{C} is an Archimedean quadratic module of \mathcal{A}.

Abstract Positivstellensatz

For any element $a=a^{*} \in \mathcal{A}$ the following are equivalent:
(i) $a+\varepsilon \cdot 1 \in \mathcal{C}$ for each $\varepsilon>0$.
(ii) $\pi($ a) ≥ 0 for each \mathcal{C}-positive $*$-representation π of \mathcal{A}.
(iii) $f($ a ≥ 0 for each \mathcal{C}-positive (pure) state f on \mathcal{A}.

Idea of Proof: Eidelheit's separation theorem and GNS-construction

Abstract Positivstellensätze

Assume that \mathcal{C} is an Archimedean quadratic module of \mathcal{A}.

Abstract Positivstellensatz

For any element $a=a^{*} \in \mathcal{A}$ the following are equivalent:
(i) $a+\varepsilon \cdot 1 \in \mathcal{C}$ for each $\varepsilon>0$.
(ii) $\pi($ a $) \geq 0$ for each \mathcal{C}-positive $*$-representation π of \mathcal{A}.
(iii) $f($ a ≥ 0 for each \mathcal{C}-positive (pure) state f on \mathcal{A}.

Idea of Proof: Eidelheit's separation theorem and GNS-construction

Example: Compact Basic Closed Sets

Condition (iii) means that $a \geq 0$ on \mathcal{K}_{f} and (i) that $a+\varepsilon \in \mathcal{T}_{f}$ for any $\varepsilon>0$. If we know that \mathcal{I}_{f} is Archimedean (!), then the implication (iii) \rightarrow (i) is the assertion of the Archimedean Positivstellensatz: If \mathcal{K}_{f} is compact and $a \geq 0$ on \mathcal{K}_{f}, then $a+\varepsilon \in \mathcal{T}_{f}$.

Abstract Positivstellensätze

Assume that \mathcal{C} is an Archimedean quadratic module of \mathcal{A}.

Abstract Positivstellensatz

For any element $a=a^{*} \in \mathcal{A}$ the following are equivalent:
(i) $a+\varepsilon \cdot 1 \in \mathcal{C}$ for each $\varepsilon>0$.
(ii) $\pi($ a $) \geq 0$ for each \mathcal{C}-positive $*$-representation π of \mathcal{A}.
(iii) $f($ a ≥ 0 for each \mathcal{C}-positive (pure) state f on \mathcal{A}.

Idea of Proof: Eidelheit's separation theorem and GNS-construction

Example: Compact Basic Closed Sets

Condition (iii) means that $a \geq 0$ on \mathcal{K}_{f} and (i) that $a+\varepsilon \in \mathcal{T}_{f}$ for any $\varepsilon>0$. If we know that \mathcal{I}_{f} is Archimedean (!), then the implication (iii) \rightarrow (i) is the assertion of the Archimedean Positivstellensatz: If \mathcal{K}_{f} is compact and $a \geq 0$ on \mathcal{K}_{f}, then $a+\varepsilon \in \mathcal{T}_{f}$.

Abstract Positivstellensätze

Abstract Nichtnegativstellensatz: J. Cimprič 2005

For $a=a^{*} \in \mathcal{A}$ the following are equivalent:
(i) There exist nonzero elements x_{1}, \ldots, x_{r} of \mathcal{A} such that $\sum_{k=1}^{r} x_{k}^{*} a x_{k}$ belongs to $1+\mathcal{C}$.
(ii) For any \mathcal{C}-positive $*$-representation π of \mathcal{A} there exists a vector η such that $\langle\pi(a) \eta, \eta\rangle>0$.

Abstract Positivstellensätze

Abstract Nichtnegativstellensatz: J. Cimprič 2005

For $a=a^{*} \in \mathcal{A}$ the following are equivalent:
(i) There exist nonzero elements x_{1}, \ldots, x_{r} of \mathcal{A} such that $\sum_{k=1}^{r} x_{k}^{*} a x_{k}$ belongs to $1+\mathcal{C}$.
(ii) For any \mathcal{C}-positive $*$-representation π of \mathcal{A} there exists a vector η such that $\langle\pi(a) \eta, \eta\rangle>0$.

Proof of $(\mathrm{i}) \rightarrow(\mathrm{ii}):$ Suppose that $\sum_{k} x_{k}^{*} a x_{k}=1+c$ with $c \in \mathcal{C}$. If π is a \mathcal{C}-positive $*$-representation and $\varphi \in \mathcal{D}(\pi), \varphi \neq 0$, then

$$
\begin{aligned}
& \sum_{k}\left\langle\pi(a) \pi\left(x_{k}\right) \varphi, \pi\left(x_{k}\right) \varphi\right\rangle=\sum_{k}\left\langle\pi\left(x_{k}^{*} a x_{k}\right) \varphi, \varphi\right\rangle \\
& =\langle\pi(1+c) \varphi, \varphi\rangle \geq\langle\pi(1) \varphi, \varphi\rangle=\langle\varphi, \varphi\rangle>0
\end{aligned}
$$

Hence at least one summand $\left\langle\pi(a) \pi\left(x_{k}\right) \varphi, \pi\left(x_{k}\right) \varphi\right\rangle$ is positive.

\mathcal{C}-Positive Representations

Lemma

If \mathcal{C} is an Archimedean quadratic module and π is a \mathcal{C}-positive *-representation of \mathcal{A}, then all operators $\pi(a), a \in \mathcal{A}$, are bounded.

\mathcal{C}-Positive Representations

Lemma

If \mathcal{C} is an Archimedean quadratic module and π is a \mathcal{C}-positive *-representation of \mathcal{A}, then all operators $\pi(a)$, $a \in \mathcal{A}$, are bounded.

Proof. Let $a \in \mathcal{A}$. Since \mathcal{C} is Archimedean, there exists a $\lambda_{a}>0$ such that $\lambda \cdot 1-a^{*} a \in \mathcal{C}$. Therefore,

$$
\left\langle\left(\pi\left(\lambda_{a} \cdot 1-a^{*} a\right) \varphi, \varphi\right\rangle=\lambda_{a}\|\varphi\|^{2}-\|\pi(a) \varphi\|^{2} \geq 0\right.
$$

and hence $\|\pi(a) \varphi\| \leq \lambda_{a}^{1 / 2}\|\varphi\|$ for all $\varphi \in \mathcal{D}(\pi)$ and any \mathcal{C}-positive representation π.

\mathcal{C}-Positive Representations

Lemma

If \mathcal{C} is an Archimedean quadratic module and π is a \mathcal{C}-positive *-representation of \mathcal{A}, then all operators $\pi(a)$, $a \in \mathcal{A}$, are bounded.

Proof. Let $a \in \mathcal{A}$. Since \mathcal{C} is Archimedean, there exists a $\lambda_{a}>0$ such that $\lambda \cdot 1-a^{*} a \in \mathcal{C}$. Therefore,

$$
\left\langle\left(\pi\left(\lambda_{a} \cdot 1-a^{*} a\right) \varphi, \varphi\right\rangle=\lambda_{a}\|\varphi\|^{2}-\|\pi(a) \varphi\|^{2} \geq 0\right.
$$

and hence $\|\pi(a) \varphi\| \leq \lambda_{a}^{1 / 2}\|\varphi\|$ for all $\varphi \in \mathcal{D}(\pi)$ and any \mathcal{C}-positive representation π.

Definition

A $*$-algebra \mathcal{A} is called algebraically bounded if the quadratic module $\sum \mathcal{A}^{2}$ is Archimedean.

\mathcal{C}-Positive Representations

Lemma

If \mathcal{C} is an Archimedean quadratic module and π is a \mathcal{C}-positive *-representation of \mathcal{A}, then all operators $\pi(a)$, $a \in \mathcal{A}$, are bounded.

Proof. Let $a \in \mathcal{A}$. Since \mathcal{C} is Archimedean, there exists a $\lambda_{a}>0$ such that $\lambda \cdot 1-a^{*} a \in \mathcal{C}$. Therefore,

$$
\left\langle\left(\pi\left(\lambda_{a} \cdot 1-a^{*} a\right) \varphi, \varphi\right\rangle=\lambda_{a}\|\varphi\|^{2}-\|\pi(a) \varphi\|^{2} \geq 0\right.
$$

and hence $\|\pi(a) \varphi\| \leq \lambda_{a}^{1 / 2}\|\varphi\|$ for all $\varphi \in \mathcal{D}(\pi)$ and any \mathcal{C}-positive representation π.

Definition

A $*$-algebra \mathcal{A} is called algebraically bounded if the quadratic module $\sum \mathcal{A}^{2}$ is Archimedean.

Since $*$-representations are always $\sum \mathcal{A}^{2}$-positive, each $*$-representation of an algebraically bounded $*$-algebra acts by bounded operators.

Examples of Archimedean Quadratic Modules

Example 1: Veronese Map

Let \mathcal{A} be the complex *-algebra of rational functions generated by

$$
x_{k l}:=x_{k} x_{l}\left(1+x_{1}^{2}+\cdots+x_{d}^{2}\right)^{-1}, \quad k, I=, 1, \cdots, d,
$$

where $x_{0}:=1$. Since $1=\sum_{r, s} x_{r s}^{2} \geq x_{k l}^{2} \geq 0$ for $k, I=1, \ldots, d$, the quadratic module $\sum \mathcal{A}^{2}$ is Archimedean and \mathcal{A} is algebraically bounded.

Examples of Archimedean Quadratic Modules

Example 1: Veronese Map

Let \mathcal{A} be the complex *-algebra of rational functions generated by

$$
x_{k l}:=x_{k} x_{l}\left(1+x_{1}^{2}+\cdots+x_{d}^{2}\right)^{-1}, \quad k, l=, 1, \cdots, d,
$$

where $x_{0}:=1$. Since $1=\sum_{r, s} x_{r s}^{2} \geq x_{k l}^{2} \geq 0$ for $k, l=1, \ldots, d$, the quadratic module $\sum \mathcal{A}^{2}$ is Archimedean and \mathcal{A} is algebraically bounded.

Example 2:

The $*$-algebra \mathcal{A} with generators a and defining relation $a a^{*}+q a^{*} a=1$, where $q>0$, is algebraically bounded.

Examples of Archimedean Quadratic Modules

Example 1: Veronese Map

Let \mathcal{A} be the complex *-algebra of rational functions generated by

$$
x_{k l}:=x_{k} x_{l}\left(1+x_{1}^{2}+\cdots+x_{d}^{2}\right)^{-1}, \quad k, l=, 1, \cdots, d,
$$

where $x_{0}:=1$. Since $1=\sum_{r, s} x_{r s}^{2} \geq x_{k l}^{2} \geq 0$ for $k, l=1, \ldots, d$, the quadratic module $\sum \mathcal{A}^{2}$ is Archimedean and \mathcal{A} is algebraically bounded.

Example 2:

The $*$-algebra \mathcal{A} with generators a and defining relation $a a^{*}+q a^{*} a=1$, where $q>0$, is algebraically bounded.

Proof: $1-a a^{*} \in \sum \mathcal{A}^{2}, q^{-1}-a^{*} a \in \sum \mathcal{A}^{2}$.

Examples of Archimedean Quadratic Modules

Example 3: Compact Quantum Group Algebras

The $*$-algebra \mathcal{A} is span of elements $v_{k l}$ satisfying the relation

$$
\sum_{l=1}^{d} v_{k l}^{*} v_{k l}=1
$$

for all k. Hence $1-v_{k l}^{*} v_{k l} \in \sum \mathcal{A}^{2}$, so \mathcal{A} is algebraically bounded.

Examples of Archimedean Quadratic Modules

Example 3: Compact Quantum Group Algebras

The $*$-algebra \mathcal{A} is span of elements $v_{k l}$ satisfying the relation

$$
\sum_{l=1}^{d} v_{k l}^{*} v_{k l}=1
$$

for all k. Hence $1-v_{k l}^{*} v_{k l} \in \sum \mathcal{A}^{2}$, so \mathcal{A} is algebraically bounded.
For the quantum group $S U_{q}(2), \mathcal{A}$ has two generators a and c satisfying

$$
a c=q c a, \quad c^{*} c=c c^{*}, \quad a a^{*}+q^{2} c c^{*}=1, \quad a^{*} a+c^{*} c=1 .
$$

Examples of Archimedean Quadratic Modules

Example 3: Compact Quantum Group Algebras

The $*$-algebra \mathcal{A} is span of elements $v_{k l}$ satisfying the relation

$$
\sum_{l=1}^{d} v_{k l}^{*} v_{k l}=1
$$

for all k. Hence $1-v_{k l}^{*} v_{k l} \in \sum \mathcal{A}^{2}$, so \mathcal{A} is algebraically bounded.
For the quantum group $S U_{q}(2), \mathcal{A}$ has two generators a and c satisfying

$$
a c=q c a, \quad c^{*} c=c c^{*}, \quad a a^{*}+q^{2} c c^{*}=1, \quad a^{*} a+c^{*} c=1
$$

Many compact quantum spaces have algebraically bounded coordinate *-algebras \mathcal{A}.

Basic Idea for Algebras of Fractions

Preorder \mathcal{T}_{f} is Archimedean if and only if \mathcal{K}_{f} is compact.

Basic Idea for Algebras of Fractions

Preorder \mathcal{T}_{f} is Archimedean if and only if \mathcal{K}_{f} is compact.
Archimedean quadratic modules \leftrightarrow compact noncommutative semi-algebraic sets

Basic Idea for Algebras of Fractions

Preorder \mathcal{T}_{f} is Archimedean if and only if \mathcal{K}_{f} is compact.
Archimedean quadratic modules \leftrightarrow compact noncommutative semi-algebraic sets

Example

Let $\mathcal{A}=\mathbb{C}[x]$. Clearly, $\sum \mathcal{A}^{2}$ is not Archimedean.

Basic Idea for Algebras of Fractions

Preorder \mathcal{T}_{f} is Archimedean if and only if \mathcal{K}_{f} is compact.

Archimedean quadratic modules \leftrightarrow

 compact noncommutative semi-algebraic sets
Example

Let $\mathcal{A}=\mathbb{C}[x]$. Clearly, $\sum \mathcal{A}^{2}$ is not Archimedean.
Let \mathcal{B} generated by $1, a:=\left(1+x^{2}\right)^{-1}$ and $b:=x\left(1+x^{2}\right)^{-1}$.
Since $1 / 4-b^{2}=(a-1 / 2)^{2}$ and $1 / 4-(a-1 / 2)^{2}=b^{2}$, the quadratic module $\sum \mathcal{B}^{2}$ is Archimedean!

Basic Idea for Algebras of Fractions

Preorder \mathcal{T}_{f} is Archimedean if and only if \mathcal{K}_{f} is compact.

Archimedean quadratic modules \leftrightarrow

 compact noncommutative semi-algebraic sets
Example

Let $\mathcal{A}=\mathbb{C}[x]$. Clearly, $\sum \mathcal{A}^{2}$ is not Archimedean.
Let \mathcal{B} generated by $1, a:=\left(1+x^{2}\right)^{-1}$ and $b:=x\left(1+x^{2}\right)^{-1}$.
Since $1 / 4-b^{2}=(a-1 / 2)^{2}$ and $1 / 4-(a-1 / 2)^{2}=b^{2}$, the quadratic module $\sum \mathcal{B}^{2}$ is Archimedean!

Each character of \mathcal{A} yields a unique character on \mathcal{B}.

Basic Idea for Algebras of Fractions

Preorder \mathcal{T}_{f} is Archimedean if and only if \mathcal{K}_{f} is compact.

Archimedean quadratic modules \leftrightarrow

 compact noncommutative semi-algebraic sets
Example

Let $\mathcal{A}=\mathbb{C}[x]$. Clearly, $\sum \mathcal{A}^{2}$ is not Archimedean.
Let \mathcal{B} generated by $1, a:=\left(1+x^{2}\right)^{-1}$ and $b:=x\left(1+x^{2}\right)^{-1}$.
Since $1 / 4-b^{2}=(a-1 / 2)^{2}$ and $1 / 4-(a-1 / 2)^{2}=b^{2}$, the quadratic module $\sum \mathcal{B}^{2}$ is Archimedean!

Each character of \mathcal{A} yields a unique character on \mathcal{B}.
But there exists a character χ_{∞} on \mathcal{B} given by $\chi_{\infty}(a)=\chi_{\infty}(b)=0$ which does not come from a character of \mathcal{A}.

Basic Idea for Algebras of Fractions

Preorder \mathcal{T}_{f} is Archimedean if and only if \mathcal{K}_{f} is compact.

Archimedean quadratic modules \leftrightarrow

 compact noncommutative semi-algebraic sets
Example

Let $\mathcal{A}=\mathbb{C}[x]$. Clearly, $\sum \mathcal{A}^{2}$ is not Archimedean.
Let \mathcal{B} generated by $1, a:=\left(1+x^{2}\right)^{-1}$ and $b:=x\left(1+x^{2}\right)^{-1}$.
Since $1 / 4-b^{2}=(a-1 / 2)^{2}$ and $1 / 4-(a-1 / 2)^{2}=b^{2}$, the quadratic module $\sum \mathcal{B}^{2}$ is Archimedean!

Each character of \mathcal{A} yields a unique character on \mathcal{B}.
But there exists a character χ_{∞} on \mathcal{B} given by $\chi_{\infty}(a)=\chi_{\infty}(b)=0$ which does not come from a character of \mathcal{A}.

Idea: Reduce SOS representations in \mathcal{A} to SOS representations in \mathcal{B}. Positivity on all characters of \mathcal{B} requires positivity on all characters of \mathcal{A} and positivity at χ_{∞}.

Basic Idea for Algebras of Fractions

Many algebras are not algebraically bounded, but they do have algebraically bounded fraction $*$-algebras with different classes of denominators!

Important Examples: Weyl algebras and Enveloping algebras

A Strict Positivstellensatz for the Weyl Algebra

Weyl algebra: $\mathcal{W}=\mathbb{C}\left\langle p, q \mid p q-q p=-i, p=p^{*}, q=q^{*}\right\rangle$

A Strict Positivstellensatz for the Weyl Algebra

Weyl algebra: $\mathcal{W}=\mathbb{C}\left\langle p, q \mid p q-q p=-i, p=p^{*}, q=q^{*}\right\rangle$
Schrödinger representation π of \mathcal{W} : $(\pi(q) f)(t)=t f(t)$ and $(\pi(p) f)(t)=-i f^{\prime}(t)$ on $\mathcal{S}(\mathbb{R})=\mathcal{D}$ in $L^{2}(\mathbb{R})$.

A Strict Positivstellensatz for the Weyl Algebra

Weyl algebra: $\mathcal{W}=\mathbb{C}\left\langle p, q \mid p q-q p=-i, p=p^{*}, q=q^{*}\right\rangle$
Schrödinger representation π of \mathcal{W} : $(\pi(q) f)(t)=t f(t)$ and $(\pi(p) f)(t)=-i f^{\prime}(t)$ on $\mathcal{S}(\mathbb{R})=\mathcal{D}$ in $L^{2}(\mathbb{R})$.

Then $\mathcal{A}:=\pi(\mathcal{W})$ is the $*$-algebra of differential operators

$$
a=\sum_{k=0}^{n} p_{k}(t)\left(\frac{d}{d t}\right)^{k}
$$

with polynomial coeffcient $p_{k} \in \mathbb{C}[t]$ acting on the Schwartz space $\mathcal{S}(\mathbb{R})$.

A Strict Positivstellensatz for the Weyl Algebra

Weyl algebra: $\mathcal{W}=\mathbb{C}\left\langle p, q \mid p q-q p=-i, p=p^{*}, q=q^{*}\right\rangle$
Schrödinger representation π of \mathcal{W} : $(\pi(q) f)(t)=t f(t)$ and $(\pi(p) f)(t)=-i f^{\prime}(t)$ on $\mathcal{S}(\mathbb{R})=\mathcal{D}$ in $L^{2}(\mathbb{R})$.
Then $\mathcal{A}:=\pi(\mathcal{W})$ is the $*$-algebra of differential operators

$$
a=\sum_{k=0}^{n} p_{k}(t)\left(\frac{d}{d t}\right)^{k}
$$

with polynomial coeffcient $p_{k} \in \mathbb{C}[t]$ acting on the Schwartz space $\mathcal{S}(\mathbb{R})$.
Each element $c \in \mathcal{W}, c \neq 0$, can be written as

$$
c=\sum_{j=0}^{d_{1}} \sum_{l=0}^{d_{2}} \gamma_{j l} p^{j} q^{\prime}=\sum_{n=0}^{d_{2}} f_{n}(p) q^{n}=\sum_{k=0}^{d_{1}} g_{k}(q) p^{k}
$$

where $\gamma_{j l} \in \mathbb{C}, f_{n}(p) \in \mathbb{C}[p], g_{k}(q) \in \mathbb{C}[q]$ uniquely determined by c. Set $d(c)=\left(d_{1}, d_{2}\right)$ if there are $j_{0}, l_{0} \in \mathbb{N}_{0}$ such that $\gamma_{d_{1}, l_{0}} \neq 0$ and $\gamma_{j j_{0}, d_{2}} \neq 0$.

A Strict Positivstellensatz for the Weyl Algebra

Fix two non-zero reals α and β. Let \mathcal{S} be the unital monoid generated by

$$
p \pm \alpha i, q \pm \beta i
$$

A Strict Positivstellensatz for the Weyl Algebra

Fix two non-zero reals α and β. Let \mathcal{S} be the unital monoid generated by

$$
p \pm \alpha i, q \pm \beta i .
$$

Theorem 1:

Let $c=c^{*}$ be a nonzero element of the Weyl algebra \mathcal{A} with multi-degree $d(c)=\left(2 n_{1}, 2 n_{2}\right)$, where $n_{1}, n_{2} \in \mathbb{N}_{0}$. Suppose that:

A Strict Positivstellensatz for the Weyl Algebra

Fix two non-zero reals α and β. Let \mathcal{S} be the unital monoid generated by

$$
p \pm \alpha i, q \pm \beta i .
$$

Theorem 1:

Let $c=c^{*}$ be a nonzero element of the Weyl algebra \mathcal{A} with multi-degree $d(c)=\left(2 n_{1}, 2 n_{2}\right)$, where $n_{1}, n_{2} \in \mathbb{N}_{0}$. Suppose that:
(I) There exists a bounded self-adjoint operator $T>0$ on $L^{2}(\mathbb{R})$ such that $\pi_{0}(c) \geq T$.

A Strict Positivstellensatz for the Weyl Algebra

Fix two non-zero reals α and β. Let \mathcal{S} be the unital monoid generated by

$$
p \pm \alpha i, q \pm \beta i .
$$

Theorem 1:

Let $c=c^{*}$ be a nonzero element of the Weyl algebra \mathcal{A} with multi-degree $d(c)=\left(2 n_{1}, 2 n_{2}\right)$, where $n_{1}, n_{2} \in \mathbb{N}_{0}$. Suppose that:
(I) There exists a bounded self-adjoint operator $T>0$ on $L^{2}(\mathbb{R})$ such that $\pi_{0}(c) \geq T$.
(II) $\gamma_{2 n_{1}, 2 n_{2}} \neq 0$ and both polynomials $f_{2 n_{2}}$ and $g_{2 n_{1}}$ are positive on the real line.

A Strict Positivstellensatz for the Weyl Algebra

Fix two non-zero reals α and β. Let \mathcal{S} be the unital monoid generated by

$$
p \pm \alpha i, q \pm \beta i .
$$

Theorem 1:

Let $c=c^{*}$ be a nonzero element of the Weyl algebra \mathcal{A} with multi-degree $d(c)=\left(2 n_{1}, 2 n_{2}\right)$, where $n_{1}, n_{2} \in \mathbb{N}_{0}$. Suppose that:
(I) There exists a bounded self-adjoint operator $T>0$ on $L^{2}(\mathbb{R})$ such that $\pi_{0}(c) \geq T$.
(II) $\gamma_{2 n_{1}, 2 n_{2}} \neq 0$ and both polynomials $f_{2 n_{2}}$ and $g_{2 n_{1}}$ are positive on the real line.

Then there exists an element $s \in \mathcal{S}$ such that

$$
s^{*} c s \in \sum \mathcal{A}^{2} .
$$

A Strict Positivstellensatz for the Enveloping Algebra of the $a x+b$-Group

Let \mathcal{A} is the complex universal enveloping algebra of the Lie algebra of the affine group of the real line. Then \mathcal{A} is the unital $*$-algebra with two generators $a=a^{*}$ and $b=b^{*}$ and defining relation

$$
a b-b a=i b
$$

A Strict Positivstellensatz for the Enveloping Algebra of the $a x+b$-Group

Let \mathcal{A} is the complex universal enveloping algebra of the Lie algebra of the affine group of the real line. Then \mathcal{A} is the unital $*$-algebra with two generators $a=a^{*}$ and $b=b^{*}$ and defining relation

$$
a b-b a=i b
$$

Each nonzero element $c \in \mathcal{A}$ can be written as

$$
c=\sum_{j=0}^{d_{1}} \sum_{l=0}^{d_{2}} \gamma_{j l} a^{j} b^{\prime}=\sum_{n=0}^{d_{2}} f_{n}(a) b^{n}=\sum_{k=0}^{d_{1}} g_{k}(b) a^{n}
$$

Here $\gamma_{j l} \in \mathbb{C}$ and $f_{n}(a), g_{k}(b)$ are polynomials uniquely determined by c. Set $d(c)=\left(d_{1}, d_{2}\right)$ if there are $j_{0}, l_{0} \in \mathbb{N}_{0}$ such that $\gamma_{d_{1}, l_{0}} \neq 0$ and $\gamma_{j_{0}, d_{2}} \neq 0$.

A Strict Positivstellensatz for the Enveloping Algebra of the $a x+b$-Group

Let α and β be reals such that $\alpha<-1, \beta \neq 0$ and α is not an integer. Let \mathcal{S} denote the unital monoid generated by $b \pm \beta i ; a \pm(\alpha+n) i, n \in \mathbb{Z}$.

A Strict Positivstellensatz for the Enveloping Algebra of the $a x+b$-Group

Let α and β be reals such that $\alpha<-1, \beta \neq 0$ and α is not an integer. Let \mathcal{S} denote the unital monoid generated by $b \pm \beta i ; a \pm(\alpha+n) i, n \in \mathbb{Z}$.

Theorem 2

Let $c=c^{*} \in \mathcal{A}, c \neq 0, d(c)=\left(2 n_{1}, 2 n_{2}\right)$, where $n_{1}, n_{2} \in \mathbb{N}_{0}$. Assume :

A Strict Positivstellensatz for the Enveloping Algebra of the $a x+b$-Group

Let α and β be reals such that $\alpha<-1, \beta \neq 0$ and α is not an integer. Let \mathcal{S} denote the unital monoid generated by $b \pm \beta i ; a \pm(\alpha+n) i, n \in \mathbb{Z}$.

Theorem 2

Let $c=c^{*} \in \mathcal{A}, c \neq 0, d(c)=\left(2 n_{1}, 2 n_{2}\right)$, where $n_{1}, n_{2} \in \mathbb{N}_{0}$. Assume :
(I)There is a bounded selfadjoint operators $T_{ \pm}>0$ on $L^{2}(\mathbb{R})$ such that

$$
\pi_{ \pm}(c)=\sum_{k=0}^{2 n_{1}} g_{k}\left(\pm e^{x}\right)\left(i \frac{d}{d x}\right)^{k} \geq T_{ \pm}
$$

A Strict Positivstellensatz for the Enveloping Algebra of the $a x+b$-Group

Let α and β be reals such that $\alpha<-1, \beta \neq 0$ and α is not an integer. Let \mathcal{S} denote the unital monoid generated by $b \pm \beta i ; a \pm(\alpha+n) i, n \in \mathbb{Z}$.

Theorem 2

Let $c=c^{*} \in \mathcal{A}, c \neq 0, d(c)=\left(2 n_{1}, 2 n_{2}\right)$, where $n_{1}, n_{2} \in \mathbb{N}_{0}$. Assume :
(I)There is a bounded selfadjoint operators $T_{ \pm}>0$ on $L^{2}(\mathbb{R})$ such that

$$
\pi_{ \pm}(c)=\sum_{k=0}^{2 n_{1}} g_{k}\left(\pm e^{x}\right)\left(i \frac{d}{d x}\right)^{k} \geq T_{ \pm}
$$

(II) $\gamma_{2 n_{1}, 2 n_{2}} \neq 0$. The polynomials $f_{2 n_{2}}\left(\cdot+n_{2} i\right)$ and $g_{2 n_{1}}$ are positive on \mathcal{R}.

A Strict Positivstellensatz for the Enveloping Algebra of the $a x+b$-Group

Let α and β be reals such that $\alpha<-1, \beta \neq 0$ and α is not an integer. Let \mathcal{S} denote the unital monoid generated by $b \pm \beta i ; a \pm(\alpha+n) i, n \in \mathbb{Z}$.

Theorem 2

Let $c=c^{*} \in \mathcal{A}, c \neq 0, d(c)=\left(2 n_{1}, 2 n_{2}\right)$, where $n_{1}, n_{2} \in \mathbb{N}_{0}$. Assume :
(I)There is a bounded selfadjoint operators $T_{ \pm}>0$ on $L^{2}(\mathbb{R})$ such that

$$
\pi_{ \pm}(c)=\sum_{k=0}^{2 n_{1}} g_{k}\left(\pm e^{x}\right)\left(i \frac{d}{d x}\right)^{k} \geq T_{ \pm}
$$

(II) $\gamma_{2 n_{1}, 2 n_{2}} \neq 0$. The polynomials $f_{2 n_{2}}\left(\cdot+n_{2} i\right)$ and $g_{2 n_{1}}$ are positive on \mathcal{R}.

Then there exists an element $s \in \mathcal{S}$ such that

$$
s^{*} c s \in \sum \mathcal{A}^{2}
$$

