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Valuations on division rings

Definition (Schilling)

v : D → Γ ∪ {∞} abelian totally ordered group

I v(x) =∞ ⇐⇒ x = 0,

I v(x + y) ≥ min
(
v(x), v(y)

)
,

I v(xy) = v(x) + v(y).

Useful to obtain information on the fine structure of D:

I construction of noncrossed products (Amitsur 1972)

I counterexamples to the Kneser–Tits conjecture
(Platonov 1977)
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Examples

Twisted Laurent series
D = E ((x ; θ)) = {

∑
i≥k eix

i | ei ∈ E}, xe = θ(e)x

v : D → Z ∪ {∞},
∑

eix
i 7→ min{k | ek 6= 0}

Composite valuations

If u : E → Γ ∪ {∞} is a valuation, define

w : D → (Γ× Z) ∪ {∞} by d =
∑

eix
i 7→

(
u(ev(d)), v(d)

)
.

valuation for the right-to-left lexicographic ordering
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Specific example

D = C((x1))((x2; θ))((y1))((y2; ρ)),
θ(x1) = −x1, ρ(xi ) = xi , ρ(y1) = −y1

center Z = C((x2
1 ))((x2

2 ))((y 2
1 ))((y 2

2 )) and
D is biquaternion: D = (x2

1 , x
2
2 )Z ⊗Z (y 2

1 , y
2
2 )Z

v : D → Z4 ∪ {∞} v(D×)/v(Z×) = (Z/2)4

D = Z = C

D× × D× //

v ((PPPPPPPPPPPP [D×,D×]
residue

// C

(Z/2)4 × (Z/2)4

88rrrrrrrrrrrr

Property

i (=
√
−1) /∈ [D×,D×] because [D×,D×] ⊂ {±1}

Nrd(i) = i4 = 1, so ker Nrd 6= [D×,D×]
(counterexample to Kneser–Tits)
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Existence of valuations

D finite-dimensional division algebra over its center F

Each valuation v on D is an extension of v |F on F .

Theorem (Ershov 1982 – Wadsworth 1986)

Every Henselian valuation on F extends to D. The extension
is unique.

Theorem (Ershov 1988 – Morandi 1989)

A valuation on F extends to D iff D ⊗ F h is division (F h =
Henselization). The extension is unique.

Example

The local invariants of (−1,−1)Q are trivial except at 2, ∞:
the p-adic valuation on Q extends to (−1,−1)Q only for
p = 2.
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From division rings to quadratic forms

Common feature of central simple algebras and quadratic
forms: the group of automorphisms is a simple linear
algebraic group:

Aut(Mn) = PGLn type An−1

Aut(x2
1 + · · ·+ x2

n ) = On type Dn/2 or B(n−1)/2

Corresponding adjoint group:

PGOn = {g ∈ GLn | g t · g scalar}/scalars

= {Int(g) | Int(g) ◦ t = t ◦ Int(g)}
= Aut(Mn, t)
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From division rings to quadratic forms

Theorem (Weil, 1960)

Adjoint classical groups of type An−1

= twisted forms of PGLn

= Aut(A) for A central simple of degree n

Adjoint classical groups of type Dm

= twisted forms of PGO2m

= Aut(A, σ) for (A, σ) such that
(A⊗ Falg, σ ⊗ Id) ' (M2m(Falg), t)

i.e. A is central simple of degree 2m and σ : A→ A is an
orthogonal involution
in particular, σ is linear, σ(xy) = σ(y)σ(x), σ2 = Id.
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Anisotropy

For A central simple,

Aut(A) is anisotropic iff A is division

Aut(A, σ) is anisotropic iff σ is anisotropic, i.e.
σ(x) · x = 0⇒ x = 0

Example

q quadratic form in n variables with Gram matrix b

σ = adjoint involution on Mn: σ(x) = b−1 · x t · b

σ anisotropic iff x t · b · x = 0⇒ x = 0
iff q anisotropic.
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Question
Is there an analogue of a valuation for central simple
algebras with anisotropic involution?

Note:

v(x) =∞ ⇐⇒ x = 0
v(xy) = v(x) + v(y)

}
⇒ no zero-divisor
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Special value functions

v : F → Γ ∪ {∞} valuation with Γ divisible, caract F 6= 2
σ : A→ A involution on a central simple F -algebra

Theorem (Tignol–Wadsworth)

If v is Henselian and σ is anisotropic, there is a unique map
g : A→ Γ ∪ {∞} such that

I g is a vector space valuation:
I g(a) =∞ iff a = 0
I g(a + b) ≥ min

(
g(a), g(b)

)
I g(aλ) = g(a) + v(λ) for λ ∈ F

I g is surmultiplicative:
I g(1) = 0 and g(ab) ≥ g(a) + g(b)

I g is σ-special:
I g(σ(a)a) = 2g(a) for a ∈ A
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Existence of special value functions

A = EndD V , σ adjoint to h : V × V → D

σ anisotropic ⇒ h anisotropic

v extends to vD : D → Γ ∪ {∞}

Define α : V → Γ ∪ {∞} by
α(x) = 1

2 vD

(
h(x , x)

)
α is a vector space valuation.

Every orthogonal base of V splits α:
α
(∑

eiλi

)
= min

(
α(ei ) + vD(λi )

)
Define g : A→ Γ ∪ {∞} by

g(a) = min
(
α
(
a(x)

)
− α(x) | x ∈ V , x 6= 0

)
= min

(
α
(
a(ei )

)
− α(ei ) | i = 1, . . . , n

)
.

Uniqueness: induction on dim V . If A = D, then g = vD .
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Examples

Hensel is needed:

V = Q2, h polar form of q = x2
1 + x2

2 , v = 5-adic valuation

(1, 0) = (3,−1) + (−2, 1)

1
2 v
(
q(1, 0)

)
= 1

2 v(1) = 0 6≥
min
(

1
2 v
(
q(3,−1)

)
, 1

2 v
(
q(−2, 1)

))
= 1

2

Example

A = Mn(F ), v discrete valuation on F with uniformizer π,

σ adjoint to 〈u1, . . . , ur 〉 ⊕ 〈πu′1, . . . , πu′s〉
(u1, . . . , u′s units, r + s = n)

g

(
aij bij

cij dij

)
= min

(
v(aij), v(bij)− 1

2 , v(cij) + 1
2 , v(dij)

)
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Residue involutions

For g surmultiplicative and σ-special,

2g(a) = g(σ(a)a) ≥ g
(
σ(a)

)
+ g(a)

so g(a) ≥ g
(
σ(a)

)
for all a ∈ A

hence g(a) = g
(
σ(a)

)
for all a ∈ A.

Define σ0 on A0 = {g ≥ 0}/{g > 0} by

σ0(a) = σ(a).

Example

A = Mn(F ), v discrete,
σ adjoint to 〈u1, . . . , ur 〉 ⊕ 〈πu′1, . . . , πu′s〉:

A0 = Mr (F )×Ms(F ),
σ0 = ad〈u1, . . . , ur 〉 × ad〈u′1, . . . , u′s〉



Valuations on
division rings

From division rings
to quadratic forms

Special value
functions

Gauges

. . . but the residue is only part of the story

For valuations on division rings, ΓD acts on D.

Example: D = E ((x ; θ)):

ΓD = Z acts through θ on D = E .

Consider the graded ring associated to the filtration by g :

gr(A) =
⊕

γ∈Γ{g ≥ γ}/{g > γ}.

Let ã = a + {g > g(a)} ∈ gr(A) for a ∈ A.

g surmultiplicative ⇒ gr(A) is a graded ring

ã · b̃ =

{
ãb if g(ab) = g(a) + g(b),

0 if g(ab) > g(a) + g(b).
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Example

F with discrete valuation, uniformizer π:

gr(F ) = F [π̃±1] (Laurent polynomials)

A = Mn(F ),

g

(
aij bij

cij dij

)
= min

(
v(aij), v(bij)− 1

2 , v(cij) + 1
2 , v(dij)

)
,

gr(A) = Mn

(
gr(F )

)
, A0 =

(
Mr (F ) 0

0 Ms(F )

)
,

A1/2 =

(
0 π̃Mr×s(F )

Ms×r (F ) 0

)
, . . .

Proposition

A central simple over F Henselian, σ anisotropic, g the
unique σ-special value function:
gr(A) is graded central simple over gr(F ), and

[gr(A) : gr(F )] = [A : F ].
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Gauges

A central simple over F , arbitrary valuation
v : F → Γ ∪ {∞}.

Definition
A gauge on A is a surmultiplicative vector space valuation
g : A→ Γ ∪ {∞} such that gr(A) is graded central simple
over gr(F ) and [gr(A) : gr(F )] = [A : F ].

Examples

A = division algebra: a valuation is a gauge iff it is
defectless.

A = (−1,−1)Q, v = 3-adic valuation:
g(a0 + a1i + a2j + a3k) = min

(
v(a0), v(a1), v(a2), v(a3)

)
is a gauge with gr(A) ' M2

(
F3[t±1]

)
(t = 3̃).

Other gauges: gu(a) = g(uau−1)
gu = g iff ũ is invertible in gr(A).
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Gauges on algebras with involution

σ : A→ A involution on a central simple F -algebra,
v : F → Γ ∪ {∞} valuation with char F 6= 2

Theorem (Tignol–Wadsworth)

There is a σ-special gauge on A iff (A, σ)⊗ F h is anisotropic
(F h = Henselization). When it exists, the σ-special gauge is
unique.

Note:
g(σ(a)a) = 2g(a) ⇐⇒ σ̃(a) · ã 6= 0

so g is σ-special ⇐⇒ σ̃ is anisotropic on gr(A).

Sketch of Proof:
If g is σ-special on A, then g ⊗ vh is σ-special on
(A, σ)⊗ F h, hence (A, σ)⊗ F h is anisotropic.
If (A, σ)⊗ F h is anisotropic, it has a σ-special gauge gh.
Then gh|A is a σ-special gauge on A.
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Toward a noncommutative Bröcker–Prestel
theorem?

A quadratic form q is strongly anisotropic if n × q is
anisotropic for all n ∈ N. (q 6= 0 ⇒ formally real base field)

Theorem (Bröcker – Prestel 1974)

q is strongly anisotropic iff either

I there exists an ordering on F for which q is definite, or

I there exists a valuation on F such that q has at least
two residue forms, and each residue form is strongly
anisotropic.

An involution σ : A→ A is strongly anisotropic if
t ⊗ σ : Mn ⊗ A→ Mn ⊗ A is anisotropic for all n ∈ N.

σ is definite for an ordering P on F if (A, σ)⊗ FP is
anisotropic (FP = real closure).
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Toward a noncommutative Bröcker–Prestel
theorem?

Problem:
If σ is strongly anisotropic and indefinite at each ordering,
find a gauge on A such that σ has at least two residues,
each strongly anisotropic.

OK if index(A) ≤ 2: Kulshrestha (to appear)

Variant: Astier–Unger (2008)


	Valuations on division rings
	From division rings to quadratic forms
	Special value functions
	Gauges

