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Karim Becher asked me to give an introduction at the workshop on Central Simple Algebras
over Function Fields of Surfaces that took place in Konstanz from August 27 till August
31. These notes are based on the slides I used for that talk. To prepare the talk I used
especially the papers of Colliot-Thélène, [2, 3, 4].

1. The Brauer group of a field

It is known that the Brauer group of a field plays an important role in the arithmetic of a
field. We mention only two applications, but many more could be given.

• (1932) For instance the calculation of the Brauer group of a global field k, expressed
in the exact sequence

0→ Br(k)→
⊕

v

Br(kv)→ Q/Z→ 0,

where v runs over “all” valuations, non-Archimedean and Archimedean, of the
global field k, (cf. [1]),

– contains implicitly the higher reciprocity laws, and
– implies the Hasse Norm theorem for cyclic extensions

• (2006) T. Scanlon proved a conjecture of Florian Pop, (cf. [7]),
– Fields finitely generated over the prime field that are elementary equivalent are

isomorphic.
Cyclic division algebras play an essential role in Scanlon’s proof.

The aim of this introduction is to state the theorem of de Jong, on the period-index problem
for central simple algebras over function fields in two variables over an algebraically closed
field. To do this we need to give a survey of the basic definitions and facts from the theory
of central simple algebras, (P.Gille explained all these facts extensively in his talks).

2. Central simple algebras over a field

Throughout k is a field.

1. Definition A central simple k-algebra is a finite dimensional k-algebra, with centre k
and no non-trivial two sided ideals.
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A central simple k-algebra of dimension n is a “twisted form” of the endomorphism algebra
End(V ) ∼= Mn(k) of a finite dimensional k-vector space V . This is expressed more formally
by the statement that the following properties are equivalent,

(1) A is a c.s. k-algebra,
(2) for all field extensions K, A⊗k K is a c.s. K-algebra,
(3) there exists a (finite separable) field extension K/k, such that A⊗k K ∼= Mn(K).

Such a field extension K/k is called a splitting field for A.

From this one obtains the following facts:

(a) dimk A = n2, the square root of the dimension of A is called its degree, degA := n,
(b) If A,B c.s. k-alg., then A⊗k B is a c.s. k-alg.
(c) The opposite algebra A0, obtained by defining the multiplication on the k-vector

space A as; a · b := ba is a c.s. k-alg, and A ⊗ A0 ∼= Mn(k). This can be seen as
follows,

A⊗k A
0 → Endk−vec(A)

(a⊗ b) 7→ axb

defines an injective morphism of algebras of the same dimension, so it defines an
isomorphism.

3. Classifying central division algebras over k

2. Definition Consider the following equivalence relation on the set of isomorphism classes
of c.s. k=alg.

A ∼ B ⇔Mr(A) ∼= Ms(B) for some r, s ∈ N>0,

The tensor product induces the structure of an abelian group on the set of equivalence
classes,

[A] · [B] := [A⊗B].

The Brauer group Br(k) of the field k is this group of equivalence classes of c.s.

It follows from Wedderburn’s theorem,

3. Theorem (Wedderburn) let A be a c.s. k-algebra, then A = Mn(D), with D a (finite
dimensional) division algebra with centre k.
Mr(D) ∼= Ms(D

′) iff r = s and D ∼= D′.

that the Brauer group classifies division algebras over k.

4. Definition The index of A, is the degree of the “division algebra part” of A, i(A) :=
(ind(A) :=) degD

Brauer proved the following basic facts

5. Proposition Let A ∼= Mn(D), be a c.s. k-algebra,

• if K is any maximal commutative subfield of D, i(A) = [K : k],
• i(A) = gcd{[L : K]|D ⊗k L ∼= Mm(L)},
• for any (tensor) power Al of A, one has i(Al)|i(A),
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• [Ai(A)] = [k].

It follows from the last property that the Brauer group of a field is a torsion group and
the period (or exponent) of A, i.e., this is the period of the class [A] in the abelian torsion
group Br(k), divides the index of A. The relation between the period and the index of A
is stronger,

6. Proposition Let D be a c.d.a. over k. Let i(D) = pn1
1 · · · pnr

r , be the prime factorization
of the index of D Then the period of D is of the form p(D) = pm1

1 · · · pmr
r , and for all i,

1 ≤ mi ≤ ni.

As a first application, of the fact that division algebras over a field k are classified by an
abelian torsion group, Brauer proved,

7. Theorem Let D be a c.d.a. over k. Then

D ∼= D1 ⊗ · · · ⊗Dr,

with Dj central division algebras over k, and i(Dj) = p
nj

j .

Proof: (Sketch)
The structure theorem of abelian groups implies that the element [D] of period p(D) =
pm1

1 · · · pmr
r , is a product of elements of period pmi

i , so D ∼ D1⊗· · ·⊗Dr, with Dj k-division
algebras and p(Dj) = p

mj

j . Moreover it follows that Dj ∼ D⊗lj , (lj =
∏

i 6=j p
mi
i )).

Since i(Dj)|i(D) we obtain, using proposition 6, i(Dj) = p
aj

j , with aj < nj Finally
pn1

1 · · · pnr
r = i(D) = i(D1⊗· · ·⊗Dr) = pa1

1 · · · par
r ≤ pn1

1 · · · pnr
r , implies, for all j = 1, . . . , r,

that i(Dj) = p
nj

j . Comparing the degree of D with the degree of D1 ⊗ · · · ⊗ Dr yields
D ∼= D1 ⊗ · · · ⊗Dr. 2

4. Examples - Cyclic algebras

We assume now (for the sake of simplicity) that the characteristic of k does not divide n.

8. Definition Let K/k be a cyclic Galois extension, [K : k] = n, Gal(K/k) = 〈σ〉. Define
on the K-vector space A :=

⊕n−1
i=0 Kv

i, an algebra structure by

vn = a ∈ k, and ∀x ∈ K, vx = σ(x)v.

Then one can proof that A is a central simple k-algebra of degree n. Such a c.s. k-algebra
is called a cyclic algebra, it is denoted by (K/k, σ, a).

For n = 2 one obtains the quaternion algebras (a, b)k := (k(
√

(b))/k, σ, a) over k.

9. Proposition

• (K/k, σ, a) is trivial in Br(k) iff a ∈ NK/k(K∗).
• (K/k, σ, a) ⊗k (K/k, σ, b) ∼ (K/k, σ, ab), so p((K/k, σ, a)) is the smallest integer

such that at ∈ NK/k(K∗).

10. Remark

• Not all division algebras are cyclic algebras.
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• Central simple algebras have a Galois splitting field but not all division algebras
have a maximal subfield which is Galois splitting field. (This is Amitsur’s non-
crossed product theorem.)
• The main open question on the structure of division algebras is: Are algebras of

prime index cyclic?
(Division algebras of index 2 and 3 are known to be cyclic, the problem is open for
algebras of prime index ≥ 5. We refer to the talk by P. Gille.)

5. Period - index problem

The research on central simple algebras shows that the relation between the period and the
index is very important. Some facts,

• let k be a global field then p(A) = i(A), and any central simple algebra A over k is
a cyclic algebra.
• Brauer gave the first example of a c.s.a. for which p(A) 6= i(A):

k = C(x, y, z, t) and A = (x, y)k ⊗ (z, t)k.

• the period-index problem is related to the problem of decomposing division algebras
as tensor products,

– there exist division algebras of period p, p prime, that are not isomorphic in a
tensor product of division algebras of index p. (e.g., examples by Amitsur and
Tignol for p = 2).

Up to Brauer equivalence Merkurjev and Suslin proved the following deep theorem,

11. Theorem (Merkurjev-Suslin)
Let ζn ∈ k, then every c.s. k-algebra of period n is equivalent to a tensor product of cyclic
algebras of index n.

Examples of algebras A with p(A) 6= i(A). . The following propositions can be used
to construct examples of c.s.a. with period not equal to the index.

12. Proposition (Jacobson) The biquaternion algebra A = (a, b)k ⊗k (c, d)k is a divi-
sion algebra iff the quadratic form, (called the Albert form of A), 〈a, b,−ab,−c,−d, cd〉 is
anisotropic.

The following is due to different authors, see for instance [2, proposition 2].

13. Proposition Let K/k be a cyclic extension, Gal(K/k) = 〈σ〉, t a variable. A a c.s.
k-algebra.

i(Ak(t) ⊗ (K(t)/k(t), σ, t)) = i(AK) · [K : k].

14. Corollary Let a, b, c ∈ k∗, c 6∈ k∗2. Let K = k(
√
c). Then (a, b)K is a division algebra

iff (a, b)k ⊗k (c, d)k is a division algebra.

Examples
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• The example given above k = C(x, y, z, t) and A = (x, y)k ⊗ (z, t)k, p(A) = 2
and i(A) = 4. This since A is a division algebra because the quadratic form
〈x, y,−xy,−z,−t, zt〉 is anisotropic over k.
• Let k = C(x)(y, z) then one can use corollary 14 to prove that (f(x), y)k⊗(g(x), z)k

is a division algebra iff f(x) 6≡ g(x) mod k∗2.
It follows (x, y)k ⊗k (x+ 1, y)k is a division algebra of index 4 and period 2.
• Let a ∈ k∗, a 6∈ k∗2, K = k(x, y) then (x, a)K ⊗K (x + 1, y)K is a division algebra

of index 4 and period 2. (This example also follows from corollary 14.)

6. Intermezzo - Brauer group of a scheme - cohomology

We only mentioned definitions and basic facts concerning the Brauer group of a field.
Azumaya (1951) extended the definition of the Brauer group to the case of local rings,
Auslander-Goldman (1960) extended it further to the case of any commutative ring.
This is not sufficient to develop the theory. The deeper theorems, also the theorem of de
Jong are based on other aspects of the Brauer group: cohomological interpretations and
the algebraic geometric definition of “algebras” and of the Brauer group. This aspect will
be addressed to extensively in the other lecture. We Grothendieck from:
Alexander GROTHENDIECK, Le Groupe de Brauer, in “Dix exposés sur la cohomologie des
schémas”

• Les développements de Azumaya-Auslander-Goldman peuvent se généraliser d’ail-
leur de façon essentiellement triviale au cas des préschémas de base généraux, ce
qui est un des buts du présent exposé.
• Cependant, l’interprétation cohomologique du groupe de Brauer, qui a joué un rôle

important dans le cas classique, ne pouvait être développée dans [3] et [2], faute de
disposer d’une théorie de la cohomologie étale, développée dans [1] et [11]. C’est
elle qui donne tout son charme à la variante “globale” du group de Brauer.

7. Brauer group and cohomological dimension

From now on we assume, for the sake of simplicity, that k is a field of characteristic zero!
Before we state de Jong’s theorem we indicate some links between the Brauer group and the
cohomological dimension of a field. We will not give a formal definition of cohomological
dimension, we refer to [8] for it, instead we will use characterizations of fields of “low”
cohomological dimension, characterizations that are strongly related to the Brauer group.

15. Definition The reduced norm of a c.s. k-algebra A, of degree n, is the map

nr : A→ A⊗k k →Mn(k)
det→ k.

If A =
⊕n2

i=1 kei, and x =
∑n2

i=1 xiei ∈ A then nr(x) is a homogeneous polynomial, of
degree n, in the n2 variables xi. The reduced norm takes it values in k.
A is a division algebra iff the homogeneous polynomial nr(x) has no non-trivial zero in k.
In the same way one can define the reduced characteristic polynomial χred(t) for the elements
x ∈ A. It is a polynomial of degree n. The coefficient of tn−1 is called the reduced trace, it is
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a homogenous linear polynomial in the xi. In general the coefficient of td is a homogeneous
polynomial of degree n− d in the xi.

16. Remark Alternatively one can replace the algebraic closure k by any splitting field
of A. One can show that the map one obtains is independent of the chosen splitting field.
A priori the determinant takes values in the algebraic closure k, however one can prove
that the determinant of elements in the image of A does take values in k.

Fields of (cohomological) dimension ≤ 1. The following properties are equivalent

• For all (finite) algebraic extensions K/k, Br(K) = 0
• For all L/K finite Galois extensions, K/k (finite) algebraic, the norm NL/K : L∗ →
k∗ is surjective.

(Note that (1) implies (2), follows since the hypothesis implies that all cyclic algebras are
trivial, use proposition 9. If we allow us to use the theorem of Merkurjev-Suslin it is also
clear that (2) implies (1). However this implication can be obtained with cohomological
methods without using the deep theorem of Merkurjev-Suslin.

17. Definition Fields k which satisfy these equivalent properties are said to be of dimen-
sion ≤ 1, (since we assume the characteristic to be zero it are the fields of cohomological
dimension ≤ 1).

18. Definition A field k is called a Ci-field if all systems of homogeneous n-dimensional
forms fj, j = 1, . . . , r over k, with deg fj = dj and n >

∑
j d

i
j have a non-trivial solution

in k.

19. Lemma Let k be a field for which there exist finite field extensions of arbitrarily large
degree. Finite extensions of Ci fields are Ci fields.
Extensions of transcendence degree d over a Ci field are Ci+d fields.

Proof: See [6, page 310-312]. (See also the appendix at the end of this note.) 2

Examples of fields of (cohomological) dimension ≤ 1.

• Algebraically closed fields.
• Let k be a C1-field. The reduced norm form of a c.s. k-algebra is of degree degA

and has degA2 variables. It follows that there are no non-trivial division algebras
over k.
(Note also that it is easy to see that the C1 condition implies that the norm forms
of finite field extension are surjective!)
• Chevalley and Warning proved that finite fields are C1 fields.
• Tsen’s theorem: Let k be an algebraically closed field then k(x) is a C1-field.

Fields of (cohomological) dimension ≤ 2. Merkurjev-Suslin’s results imply:

20. Theorem A field k is of (cohomological) dimension ≤ 2 iff for all finite extensions
K/k and all K-division algebras D, the reduced norm map nrD : D∗ → K∗ is surjective.

Proof: See [8] 2
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Examples of fields of (cohomological) dimension ≤ 2.

(1) Totally imaginary number fields are of dimension ≤ 2.
(2) C2-fields, (e.g. using lemma 19, C(x, y), Fq(x)), are of cohomological dimension ≤ 2.
(3) Merkurjev constructed for all N , fields of dimension ≤ 2 over which there exists

quadratic forms of dimension N that are anisotropic. (The so called u-invariant
of fields of cohomological dimension ≤ 2, can be arbitrarily high). It follows that
there are fields of dimension ≤ 2 which are not Ci for any i.

8. de Jong’s Theorem

21. Theorem (de Jong, cf. [5])
Let k be an algebraically closed field and let K/k be a finitely generated field extension of
transcendence degree 2. Let A be a c.s. K-algebra. Then i(A) = p(A).

We discuss a special case of this theorem, namely the case p(A) = 2m3n. That the theorem
holds in this case was noticed by several authors: Artin-Harris, Artin-Tate, Merkurjev-
Suslin, Yanchevskii, Platonov, cf. [2]. First we show that it suffices to prove the theorem
for algebras of prime period p.
Proof: Brauer’s theorem, see theorem 7, implies that it suffices to consider algebras A
with p(A) = pr, p prime.
Assume one can prove that algebras of period p, p prime, are of index p. Let A be a
c.s.a. of period pr. We argue by induction on r. The algebra A⊗p is of period pr−1, so
by induction it is split by an extension K ′/K with [K ′ : K] = pr−1. Then A′ = A ⊗K K ′

has period p. We assume the theorem holds for algebras of prime period, so A′ is split by
an extension K ′′/K ′, with [K ′′ : K ′] = p. It follows that K ′′ is a splitting field for A and
[K ′′ : K] = pr, it follows that i(A) = pr. 2

The case p(A) = 2.

Proof: Let K/k be as in de Jong’s theorem, let A be a c.s.a. over K of period
2. By Merkurjev-Suslin, A is equivalent a tensor product of quaternion algebra. But
K is a C2-field so (a, b) ⊗ (c, d) is never a division algebra since the quadratic form
〈a, b,−ab,−c,−d, cd〉 is isotropic. It follows that i(A) = 2. 2

The case p(A) = 3.
Proof: Again, invoking Merkurjev-Suslin, it suffices to show that any two cyclic division
algebras A, B of deg 3 have a common splitting field of the form K(γ), [K(γ) : K] = 3.
Write A = K ⊕ VA, with VA a vector space of dimension 8 over K, similarly B = K ⊕ VB,
dimK VN = 8. We like to find α ∈ VA and β ∈ VB such that α and β have the same
reduced characteristic polynomial. Let x1v1 + · · · + x8v8 represent a general element in
VA, and y1w1 + · · · + y8w8 a general element in VB. Comparing the coefficients of the
characteristic polynomials of x, y, leads to 3 homogeneous equation in the 16 variables
x1, . . . , x8, y1, . . . , y8, one of degree one (comparing the reduced traces), one of degree 2
(comparing the coefficients in degree 1), and one of degree 3 (comparing the reduced
norms). The field K is a C2-field it follows, since 16 > 1 + 22 + 32 = 14, that this system
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has a non-trivial solution. This solution defines a polynomial χ(t) which is the reduced
characteristic polynomial of an element in VA ⊂ A and of an element in VB ⊂ B. So χ(t)
has to be irreducible. Let L = K[t]/χ(t), then A⊗K B ⊗ L ∼= Mn2(L). 2

22. Remark The proof of these special cases only uses the fact that K is a C2-field. (To
use the Merkurjev-Suslin theorem we need, in the second case, the fact that a primitive
third root of unity ζ3 is in K. However this can be avoided, since adjoining ζ3 to K yields
an extension of degree 2, and neither the index nor the period of algebras of degree prime
to 2 changes after quadratic extensions.

M. Artin formulates the following question (cf. citeart):

Let K be a C2-field and A a c.s. K-algebra. Is the period of A equal to the
index of A?

The result of de Jong gives evidence for the answer to this question to be positive.

We recall the examples of algebras for which the index is not equal to the period mentioned
above.

• k = C(x, y, z, t), A = (x, y)k ⊗ (z, t)k., p(A) = 2, i(A) = 4
• k = C(x, y, z), A = (y, x)k ⊗k (y + 1, z)k, p(A) = 2, i(A) = 4
• k a field which is not quadratically closed, a ∈ k∗\k∗2, K = k(x, y), A = (x, a)K⊗K

(x+ 1, y)K then p(A) = 2 and i(A) = 4.
• Merkurjev’s fields of u-invariant 2n and cohomological dimension 2. The Clifford

invariants associated to the anisotropic forms of maximal dimension yield c.s.a. of
exponent 2 and arbitrarily high index.

The first two examples show that the hypothesis “transcendence degree 2” in de Jong’s
theorem is necessary. The third example shows that some (strong) condition on the base
field is necessary, in de Jong’s theorem the condition is: k is algebraically closed. A field of
transcendence degree 2 over an algebraically closed field is a field of cohomolgical dimension
≤ 2, but the last example shows that cohomological dimension ≤ 2 alone does not suffice
to have period equal to index.

We mentioned above that one can define the Brauer group not only for fields and commu-
tative rings but also for schemes in general. The other lectures will spend ample time to
explain this. We mention only that if k is an algebraically closed field and Y is a smooth
projective geometrically connected variety over k then there is an injection of the Brauer
group of Y into the Brauer group of the function field of Y , Br(Y ) ↪→ Br(k(Y )). The image
of the Brauer of Y in Br(k(Y ) defines an important subgroup, the so called unramified
part of the Brauer group of k(Y ). In general it is not so easy to describe the elements
of the unramified part of the Brauer group. The following result of Colliot-Thélène uses
de Jong’s theorem, and proves the existence of “unramified” division algebras for which
the index is an arbitrarily high power of the period. (Previous to Colliot-Thélène’s result,
A.Kresh gave an example of an unramified biquaternion division algebra, cf. [2].)



AN INTRODUCTION 9

23. Theorem (Colliot-Thélène, cf. [2]) Soit l premier. Soit k un corps algébriquement
clos de caractéristique différent de l. Pour 1 ≤ n < m, il existe une variété projective et
lisse Y sur k, de dimension lm−n + 1, et une algèbre à division sur le corps des fonction
k(Y ), non ramifiée sur Y , d’exposant ln et d’indice lm.

9. Appendix: Remarks on Ci-fields

I add a few words on Ci fields, thereby replying on questions and comments that I obtained
during the workshop.

The definition of Ci-field one mostly find in the literature is different form the one I gave
in these notes.

24. Definition A field k is called a C̃i-field if every homogeneous form of degree d in n
variables, with n > di, has a non-trivial zero in k.

It is possible to prove that the C̃i property, in the sense of definition 24, is equivalent with
the following statement,

Every system of r homogeneous forms of degree d in n variables, with n > rdi

has a non-trivial zero in k.

We refer to [6, page 310-312] for a proof of this equivalence. The proof is based on the fact
that a field that is not algebraically closed has a normic form of arbitrarily large degree.
A normic form over a field k, is a form of degree n in n-variables that has only the trivial
zero in k. For instance the norm of a finite field extension K/k, [K : k], gives rise to a
normic form of degree n over k.
If a field the C̃i property, in the sense of definition 24, holds for a field k that allows a
normic form of degree n for any n, then it is possible to prove that the field is also Ci in
the stronger sense, i.e., in the sense of definition 18,

Every system of homogeneous forms, f1, . . . , fr, in n variables, deg fi = di,
with n >

∑r
i=1 d

i, has a non-trivial zero in k.

As far as I know the question whether or not a field that is not algebraically closed admits
a normic form for every degree n is still open.

During the lectures several examples and questions concerning Ci and C̃i fields came up.

• A field of transcendence degree d over an algebraically closed field is a Cd field.
• A field of transcendence degree d over a finite field is a Cd+1 field.
• Certain properties of imaginary-global and local fields show that these fields “be-

have as C2 or C̃2-fields”, e.g., the period of a division algebra over a global or a
local field is equal to its index, quadratic forms over imaginary-global, or over local
fields, of dimension > 4 have a non-trivial zero in their field of definition. However
imaginary-global and local fields are not C̃i for any i.
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Some comments concerning local fields. Terjanian (1966) gave an example of an form
of degree 4 in 20 variables over Q2 that has only the trivial zero in Q2.
Work of russian mathematicians (and not of Ax, as Tamás Szamuely rightly pointed out
during the last talk), Arkhipov, Karatsuba (1981), of Lewis, Montgomery (1983) and of
Alemu (1985) proves that p-adic fields are not C̃i for any i. This work also showed that there
exists forms of degree d over Qp, d not a multiple of p, in more that d2 variables that only
have trivial zeros in Qp. More recently David Leep and Nicolas Bartholdi (independently)
found explicit examples of such forms.

Ax and-Kochen proved the following statement: For a fixed degree d there exists a finite
(but non-constructible) set S(d) of prime numbers such that any form f of degree d in
n > d2 variables over Qp has a non-trivial zero provided p 6∈ S.
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