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Abstract. This paper presents an algorithm and its implementation in the software package

NCSOStools for finding sums of hermitian squares and commutators decompositions for poly-

nomials in noncommuting variables. The algorithm is based on noncommutative analogs of

the classical Gram matrix method and the Newton polytope method, which allows us to use

semidefinite programming. For rational polynomials numerical evidence can be tweaked to

obtain an exact certificate using rational numbers. In the presence of Slater points, the Peyrl-

Parrilo rounding and projecting method applies. On the other hand, in the absence of strict

feasibility, a variant of the facial reduction is proposed to reduce the size of the semidefinite

program and to enforce the existence of Slater points.

1. Introduction

The main question studied in this paper is whether a given real polynomial in noncom-
muting variables (nc polynomial) can be decomposed as a sum of hermitian squares and com-
mutators. Using semidefinite programming we obtain numerical evidence and, if the input
polynomial is rational, we can employ facial reduction to extract an exact rational certificate.

1.1. Motivation. The interest in finding decompositions of an noncommutative (nc) polyno-
mial as a sum of hermitian squares and commutators is based on the following simple fact.
If such a decomposition exists, the given nc polynomial is necessarily trace-positive, i.e., all
of its evaluations at tuples of matrices have nonnegative trace. Following Helton’s seminal
paper [Hel02], this belongs to free real algebraic geometry (including free positivity) where one
is interested in positivity of nc polynomials. Much of today’s interest in (free) real algebraic
geometry is due to its powerful applications. For instance, the use of sums of squares and
the truncated moment problem for polynomial optimization on Rn established by Lasserre
and Parrilo [Las01, Las09, Par03, PS03, Sch05] is nowadays a common fact in real algebraic
geometry with applications to control theory, mathematical finance and operations research.
In the free context there are many facets of applications as well. A nice survey on connections
to control theory, systems engineering and optimization is given by de Oliveira, Helton, Mc-
Cullough, Putinar [dOHMP08]. Applications of the free case to quantum physics are explained
e.g. by Pironio, Navascués, Aćın [PNA10] who also consider computational aspects related to
sums of hermitian squares (without commutators). Trace-positive nc polynomials fill a gap
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between these two cases, so we expect a considerable development of their applications in the
future.

On the theoretical level, trace-positive nc polynomials arise e.g. in the Lieb-Seiringer re-
formulation of the famous Bessis-Moussa-Villani (BMV) conjecture [BMV75] from statistical
quantum mechanics.1 Many modern results on this problem have been obtained with the aid
of computer programs – using sums of hermitian squares and commutators decompositions
– written in an ad-hoc manner. This connection will be explained in detail later to demon-
strate the usage of our proposed algorithm. In addition, trace-positive nc polynomials occur
naturally in von Neumann algebras and functional analysis. For instance, Connes’ embedding
problem [Con76] on finite II1-factors is a question about the existence of a certain type of
sum of hermitian squares (sohs) certificates for trace-positive nc polynomials [KS08a]. It is
widely believed that Connes’ conjecture is false and our results will enable us to look for a
counterexample using a computer algebra system.

As a consequence of this surge of interest in free real algebraic geometry and sums of
(hermitian) squares of nc polynomials we developed NCSOStools [CKP11] – an open source
Matlab toolbox for solving such problems using semidefinite programming. As a side product
our toolbox implements symbolic computation with noncommuting variables in Matlab.

1.2. Related work and contribution. We will denote the convex cone of sums of hermitian
squares and commutators by Θ2.

Sum of hermitian squares decompositions were intensively studied by several authors.
An outstanding result is due to Helton [Hel02], who has proved that for an nc polynomial
f ∈ R〈X〉, we have f(A1, . . . , An) � 0 for all symmetric matrices Ai of the same size if and
only if f is a sum of hermitian squares. We also refer the reader to [McC01, MP05] for nice
alternative proofs. In [KP10] the third and the fourth author presented an algorithm for finding
sums of hermitian squares decompositions (without commutators) using a variant of the Gram
matrix method. The key ingredient of the method was semidefinite programming together
with the Newton chip method to reduce the size of the semidefinite programming problems,
which eventually turned out to be linear in the length and in the degree of the nc polynomial.
Extending this method we proposed in [BCKP] another variant of the Gram matrix method
to answer the question whether f ∈ Θ2 holds. Similarly to [KP10], semidefinite programming
was the main tool. However, an important topic that remained open in [BCKP] was how to
provide efficiently numerical or exact certificates for either f ∈ Θ2 or f 6∈ Θ2.

Therefore the main contribution of this paper is the following:

(a) We present the tracial Gram matrix method, tailored for sums of hermitian squares
and commutators, to resolve the separability question for Θ2. We also present an
improvement of this method using a cyclic extension of the Newton chip method from
[KP10] which reduces the dimensions of the underlying semidefinite programs to a more
manageable level. This method can be understood as a noncommutative generalization
of the classical Newton polytope method [Rez78].

(b) Once we know whether a given rational nc polynomial f belongs to Θ2 we want to
obtain an exact (rational) certificate. Following ideas from [PP08] we propose an
algorithm which under strict feasibility assumption theoretically and practically always
yields a rational certificate. On the other hand, in the absence of strict feasibility, a
variant of the facial reduction [BW81] (in our case projecting onto the orthogonal

1Recently, Stahl announced a proof of the original formulation of the BMV conjecture [Sta].
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complement of the null space of the analytic center) is used to reduce the size of the
semidefinite program and enforce the existence of Slater points.

(c) We provide new rational certificates for three instances of nc polynomials related to the
Bessis-Moussa-Villani conjecture to demonstrate how to use the proposed algorithm as
implemented in NCSOStools.

2. Preliminaries

2.1. Words, nc polynomials and involution. Fix n ∈ N and let 〈X〉 be the set of words in
the n noncommuting letters X1, . . . , Xn (including the empty word denoted by 1), i.e., 〈X〉 is
the monoid freely generated by X := (X1, . . . , Xn). We consider linear combinations

∑
w aww

with aw ∈ R, w ∈ 〈X〉 of words in the n letters X which we call nc polynomials. The set of all
nc polynomials is actually a free algebra, which we denote by R〈X〉. An element of the form
aw where a ∈ R \ {0} and w ∈ 〈X〉 is called a monomial and a its coefficient. The length of
the longest word in an nc polynomial f ∈ R〈X〉 is the degree of f and is denoted by deg f . The
set of all nc polynomials of degree ≤ d will be denoted by R〈X〉≤d. The length of the shortest
word appearing in f ∈ R〈X〉 is called the min-degree of f and denoted by mindeg f . Also of
interest is the degree of f in Xi, degi f and the minimum degree of f in Xi, mindegi f . If an
nc polynomial f involves only two variables, we use R〈X,Y 〉 instead of R〈X1, X2〉.

We equip R〈X〉 with the involution ∗ that fixes R∪{X} pointwise and thus reverses words,
e.g. (X1X

2
2X3 − 2X3

3 )∗ = X3X
2
2X1 − 2X3

3 . Hence R〈X〉 is the ∗-algebra freely generated by n
symmetric letters. The involution extends naturally to matrices (in particular, to vectors) over
R〈X〉. For instance, if V = (vi) is a (column) vector of nc polynomials vi ∈ R〈X〉, then V ∗ is
the row vector with components v∗i . We use V t to denote the row vector with components vi.

2.2. Sum of hermitian squares and commutators. Let SymR〈X〉 denote the set of all
symmetric elements, that is,

SymR〈X〉 := {f ∈ R〈X〉 | f = f∗}.

An nc polynomial of the form g∗g is called a hermitian square and the set of all sums of
hermitian squares will be denoted by Σ2. Clearly, Σ2 ( SymR〈X〉.

Example 2.1. The nc polynomial f = X2 − X2Y − Y X2 + Y X2Y + XY 2X is a sum of
hermitian squares, in fact, f = (X −XY )∗(X −XY ) + (Y X)∗(Y X). In particular, f(A,B)
is positive semidefinite for all symmetric matrices A,B. For a concrete example, with A =−1 0 0

0 1 −2
0 −2 1

 and B =

1 0 1
0 −2 −1
1 −1 1

, we have

f(A,B) = A2 −A2B −BA2 +BA2B +AB2A =

 7 12 0
12 39 0
0 0 25

 � 0.

The next notation we need is cyclic equivalence [KS08a] whose definition is motivated by
the fact that we are interested in the trace of a given nc polynomial under matrix evaluations.

Definition 2.2. An element of the form [p, q] := pq − qp, where p, q are polynomials from

R〈X〉, is a commutator. Polynomials f, g ∈ R〈X〉 are called cyclically equivalent (f
cyc∼ g) if

http://ncsostools.fis.unm.si/
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f − g is a sum of commutators:

f − g =
k∑
i=1

[pi, qi] =
k∑
i=1

(piqi − qipi) for some k ∈ N and pi, qi ∈ R〈X〉.

It is clear that
cyc∼ is an equivalence relation. The following remark shows how to test if

given nc polynomials are cyclically equivalent.

Remark 2.3.

(a) For v, w ∈ 〈X〉, we have v
cyc∼ w if and only if there are v1, v2 ∈ 〈X〉 such that v = v1v2

and w = v2v1. That is, v
cyc∼ w if and only if w is a cyclic permutation of v.

(b) Polynomials f =
∑

w∈〈X〉 aww and g =
∑

w∈〈X〉 bww (aw, bw ∈ R) are cyclically equivalent

if and only if for each v ∈ 〈X〉, ∑
w∈〈X〉

w
cyc
∼ v

aw =
∑
w∈〈X〉

w
cyc
∼ v

bw. (1)

Example 2.4. We have 2X2Y 2X3 +XY 2X2 +XY 2X4 cyc∼ 3Y X5Y + Y X3Y as

2X2Y 2X3 +XY 2X2 +XY 2X4 − (3Y X5Y + Y X3Y ) =

= [2X2Y, Y X3] + [XY, Y X4] + [XY, Y X2].

Definition 2.5. Let

Θ2 := {f ∈ R〈X〉 | ∃g ∈ Σ2 : f
cyc∼ g}

denote the convex cone of all nc polynomials cyclically equivalent to a sum of hermitian squares.
By definition, the elements in Θ2 are exactly the nc polynomials which can be written as sums
of hermitian squares and commutators.

Example 2.6. Consider f = X2Y 2+XY 2X+XYXY +Y X2Y +Y XY X+Y 2X2 ∈ R〈X,Y 〉.
This nc polynomial is of the form

f = (XYXY + Y XY X +XY 2X + Y X2Y ) + 2XY 2X + (sum of commutators)

= (XY + Y X)∗(XY + Y X) + 2(Y X)∗(Y X) + (sum of commutators),

hence we have f ∈ Θ2 taking the nc polynomials g1 = (XY + Y X) and g2 =
√

2Y X in
the Θ2-certificate. In particular, tr(f(A,B)) ≥ 0 for all symmetric matrices A,B but in

general f(A,B) is not positive semidefinite. For a concrete example, with A =

[
1 0
0 −2

]
and

B =

[
0 1
1 2

]
, we have

f(A,B) =

[
3 18
18 105

]
6� 0

and tr(f(A,B)) = 108 > 0.

Definition 2.7. An nc polynomial f ∈ R〈X〉 is called trace-positive if

tr(f(A)) ≥ 0 for all tuples of symmetric matrices A of the same size. (2)

Clearly, every nc polynomial cyclically equivalent to a sum of hermitian squares is trace-
positive. But there are trace-positive nc polynomials which are not members of Θ2. The
easiest example is the noncommutative Motzkin polynomial, f = XY 4X+Y X4Y −3XY 2X+1
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[KS08a, Example 4.4]. We also refer the reader to [KS08b, Example 3.5] for more sophisticated
examples obtained by considering the BMV conjecture. Nevertheless, the obvious Θ2-certificate
for trace-positivity turns out to be very useful in optimization.

3. Implementation and computational algorithms

In this section we discuss an algorithm based on the Gram matrix method for testing
the membership in Θ2 and present an improvement using the tracial version of the Newton
polytope which we call the Newton cyclic chip method (Section 3.2). The implementation with
the aid of semidefinite programming is presented in Sections 3.3 and 3.4.

3.1. The tracial Gram matrix method. Testing whether a given f ∈ R〈X〉 is an element of
Σ2 or Θ2 can be done efficiently by using semidefinite programming as first observed in [KS08b,
Section 3], see also [KP10, BCKP]. The method behind it is a variant of the Gram matrix
method and is based on the following proposition, which is a natural extension of the results
for sums of hermitian squares (cf. [Hel02, Section 2.2] or [KP10, Theorem 3.1 and Algorithm
1]), which are in turn variants of the classical result for polynomials in commuting variables
due to Choi, Lam and Reznick ([CLR95, Section 2]; see also [Par03]).

Proposition 3.1. Let W be the vector of all words w ∈ 〈X〉 satisfying 2 deg(w) ≤ deg(f),
where f ∈ R〈X〉. Then

(a) f ∈ Σ2 if and only if there exists a positive semidefinite matrix G such that

f = W ∗GW ; (3)

(b) f ∈ Θ2 if and only if there exists a positive semidefinite matrix G such that

f
cyc∼ W ∗GW ; (4)

Moreover, given a positive semidefinite matrix G of rank r satisfying (3) or (4), respectively,
one can construct nc polynomials g1, . . . , gr ∈ R〈X〉 such that

f =

r∑
i=1

g∗i gi (5)

or

f
cyc∼

r∑
i=1

g∗i gi, (6)

respectively.

Definition 3.2. A (not necessarily positive semidefinite) matrix G satisfying (3) is called a
Gram matrix for f , while a matrix G satisfying (4) is called a tracial Gram matrix for f .

The proof of Proposition 3.1 is straightforward as in the commutative case. We will present
a modification of this proposition including improvements using a noncommutative analog of
the Newton polytope in Proposition 3.7, so we omit the proof here.

For an nc polynomial f ∈ R〈X〉 the Gram matrix and the tracial Gram matrix are in
general not unique, hence determining whether f ∈ Σ2 (or f ∈ Θ2) amounts to finding a
positive semidefinite (tracial) Gram matrix from the affine set of all (tracial) Gram matrices
for f . Problems like this can in theory be solved exactly using quantifier elimination. However,
this only works for problems of small size, so a numerical approach is needed in practice. Thus
we turn to semidefinite programming, which has become a standard tool in the mathematical
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optimization area in the last two decades. The readers not familiar with this topic are referred
to [WSV00, Tod01, VB96].

3.2. The Newton cyclic chip method. In this subsection we present a tracial version of
the classical Newton polytope used to reduce the size of the Gram matrix needed for a sum of
hermitian squares decomposition.

We will need to consider the free monoid [x] in commuting variables x := (x1, . . . , xn)
and its semigroup algebra R[x] of polynomials in commuting variables. There is a natural
mapping 〈X〉 → [x]. For a given word w ∈ 〈X〉 its image under this mapping is called the
commutative collapse of w and we use cc(w) to denote it. If needed, we write cc(w) = xdw

where xd = xd11 · · ·xdnn for di = degi(w) ∈ Nn0 . Similarly, we introduce the commutative collapse
of a set of words V ⊆ R〈X〉. For f =

∑
w aww ∈ R〈X〉 we define

cc(f) := {cc(w) ∈ [x] | aw 6= 0}.

Note that the commutative collapse of an nc polynomial is a set of words in commuting
variables. As an example, cc(XY − Y X) = {xy}.

We generalize the degree of an nc polynomial as follows: given α = (α1, . . . , αn) ∈ Rn we
define the α-degree degα of a word w ∈ 〈X〉 as the standard scalar product between α and the

exponent of the commutative collapse of w, i.e., if cc(w) = xd = xd11 · · ·xdnn , then the α-degree
of w is

degαw :=
n∑
i=1

αidi = 〈α, d〉. (7)

We also set degα 0 := −∞. Note that for all α ∈ Rn, we have

u
cyc∼ v ⇒ degα u = degα v, (8)

degα(uv) = degα u+ degα v. (9)

This notion extends naturally to the α-degree and α-min-degree of an nc polynomial f =∑
w aww ∈ R〈X〉:

degα f := max
aw 6=0

degαw, mindegα f := min
aw 6=0

degαw. (10)

As special cases, note that the (total) degree corresponds to the α with all ones and the
individual i-degrees degi correspond to the standard unit vectors ei.

Two cyclically equivalent nc polynomials in general do not have the same α-degree. We
therefore modify the definition to obtain the more robust cyclic-α-degree cdegα and cyclic-α-
min-degree mincdegα :

cdegα f := min
g
cyc∼ f

degα g, mincdegα f := max
g
cyc∼ f

mindegα g. (11)

For instance, for f = X2
1X

2
2X

2
1 +X4

2X
4
3 −X4

3X
4
2 +X1X2 −X2X1

cyc∼ X4
1X

2
2 we have

deg(1,1,3) f = 16, mindeg(1,1,3) f = 2, cdeg(1,1,3) f = 6, mincdeg(1,1,3) f = 6.

Definition 3.3. Let w ∈ R〈X〉. The canonical representative [w] of w is the first with
respect to the lexicographic order among words cyclically equivalent to w. For f =

∑
w aww ∈

SymR〈X〉 we define the canonical representative [f ] of f as follows:

[f ] :=
∑
[w]

a[w][w] ∈ R〈X〉.
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That is, [f ] contains only canonical representatives of words from f with coefficients

a[w] :=
∑
u
cyc∼ w

au.

For example, if f = 2Y 2X2 −XY 2X +XY − Y X, then [f ] = X2Y 2.

Proposition 3.4.

(1) If f =
∑

w aww
cyc∼ g =

∑
w bww, then a[w] = b[w] for all w ∈ 〈X〉.

(2) For all α ∈ Rn and f ∈ R〈X〉 we have cdegα f = degα[f ] and mincdegα f = mindegα[f ].

Proof. Property (1) is obvious. Let us consider (2). Since f
cyc∼ [f ], cdegα f ≤ degα[f ].

Suppose there exists g
cyc∼ f with degα0

g < degα0
[f ] for some α0 ∈ Rn. There is a word [w]

with degα0
[w] = degα0

[f ], and the coefficient of [w] in [f ] is non-zero. But by the first part of

the proposition the same is true for g, hence degα0
g ≥ degα0

[f ], which is a contradiction. The

second part of property (2) follows using the same line of reasoning.

Lemma 3.5. If f
cyc∼ g =

∑
i g
∗
i gi, then cdegα f = degα g and mincdegα f = mindegα g for all

α ∈ Rn.

Proof. If g = 0 then lemma is true for trivial reasons. Otherwise, by definition, cdegα f ≤
degα g for all α ∈ Rn. Suppose there exists α0 ∈ Rn with cdegα0

f < degα0
g. For [f ]

cyc∼ f we

have cdegα0
f = degα0

[f ] < degα0
g =: 2∆ 6= 0. Let pi be the homogeneous part of gi with

α0-degree equal to ∆ and ri = gi − pi. Then degα0
(ri) < ∆ and

[f ]
cyc∼
∑

g∗i gi =
∑

(pi + ri)
∗(pi + ri) =

∑
p∗i pi +

∑
p∗i ri +

∑
r∗i pi +

∑
r∗i ri. (12)

Since each word w in p∗i ri, r
∗
i pi and r∗i ri has degα0

w < 2∆ (by (9)), none of these can be
cyclically equivalent to a nontrivial word in p∗i pi, because each nontrivial word in p∗i pi has

α0-degree equal to 2∆ 6= 0 (note that for each i, p∗i pi 6
cyc∼ 0 or pi = 0 due to [KS08b, Lemma

3.2]). Similarly, by assumption there is no word in [f ] with α0-degree equal to 2∆. Thus

0
cyc∼
∑

p∗i pi, [f ]
cyc∼
∑

p∗i ri +
∑

r∗i pi +
∑

r∗i ri.

However, [KS08b, Lemma 3.2] implies pi = 0 for all i contradicting degα0
g = 2∆. Likewise we

prove the second statement mincdegα f = mindegα g.

Lemma 3.6. Let f ∈ R〈X〉 and w ∈ 〈X〉. Then

mincdegα(f) ≤ 2 degα(w) for all α ∈ Rn ⇔ 2 degα(w) ≤ cdegα(f) for all α ∈ Rn. (13)

Proof. This is a straightforward consequence of the fact that for all α ∈ Rn and for all g ∈ R〈X〉
we have mindegα g ≤ 2 degαw if and only if deg−α g ≥ 2 deg−αw.

The next proposition is the desired improvement of Proposition 3.1 and is the basis for
our Newton cyclic chip method.

Proposition 3.7. Suppose f ∈ R〈X〉. Then f ∈ Θ2 if and only if there exists a positive
semidefinite matrix G such that

f
cyc∼ W ∗GW, (14)

where W is a vector consisting of all words w ∈ 〈X〉 satisfying

mincdegα(f) ≤ 2 degα(w) ≤ cdegα(f) for all α ∈ Rn. (15)
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Conversely, given such a positive semidefinite matrix G of rank r, one can construct nc poly-

nomials g1, . . . , gr ∈ R〈X〉 with f
cyc∼
∑r

i=1 g
∗
i gi.

Proof. If f
cyc∼ g =

∑
i g
∗
i gi ∈ Σ2, then degα g = cdegα f for all α ∈ Rn, as follows from Lemma

3.5. Therefore, 2 degα gi ≤ degα g = cdegα f for all i and for all α ∈ Rn, hence gi contains only

words satisfying (15). We only verified the right hand side of (15), which suffices by Lemma
3.6. Write gi = GtiW, where Gti is the (row) vector consisting of the coefficients of gi. Then
g∗i gi = W tGiG

t
iW and, by setting G :=

∑
iGiG

t
i, property (14) clearly holds. The inverse of

this claim is obvious.

Given a positive semidefinite G ∈ RN×N of rank r satisfying (14), write G =
∑r

i=1GiG
t
i

for Gi ∈ RN×1. Defining gi := GtiW yields f
cyc∼
∑r

i=1 g
∗
i gi.

Given a polynomial f ∈ R[x] (in commuting variables) the Newton polytope N(f) consists
of all integer lattice points in the convex hull of the degrees d = (d1, . . . , dn) of words appearing
in f , considered as vectors in Rn (see e.g. [Rez78] for details). That is, for f =

∑
d adx

d ∈ R[x],

N(f) := Zn ∩ conv
(
{d ∈ Zn | ad 6= 0}

)
.

We will also refer to the set

1

2
N(f) := {d ∈ Zn | 2d ∈ N(f)}.

Similarly, N(S) and 1
2N(S) are defined, where S is a set of words in commuting variables.

Lemma 3.8. Let f ∈ R〈X〉 be an nc polynomial and W be the vector constructed in Proposition
3.7. Then

cc(W ) =
{
xd | d ∈ 1

2
N(cc([f ]))

}
.

Proof. Suppose first that d ∈ 1
2N(cc([f ])). We have to prove that xd ∈ cc(W ). Recall that

cc(W ) = {cc(w) ∈ [x] | w satisfies (15)}. By Lemma 3.6 and since degα(w) = degα(cc(w)),

we need to show that 2 degα(xd) ≤ cdegα(f) for all α ∈ Rn. Since 2d =
∑

w∈cc([f ]) λwdw for

dw ∈ N(cc([f ])), where λw ≥ 0 and
∑

w∈cc([f ]) λw = 1, it follows that

2 degα(xd) = 〈α, 2d〉 =
∑

w∈cc([f ])

λw〈α, dw〉 =
∑

w∈cc([f ])

λw degαw

≤
∑

w∈cc([f ])

λw degα([f ]) = degα([f ]) = cdegα(f).

To prove the converse implication suppose that 2d0 ∈ Nn0 and 2d0 6∈ N(cc([f ])). By
the Hahn-Banach separation theorem there exists a separation vector α0 ∈ Rn such that
〈α0, 2d0〉 > 〈α0, d〉 for all d ∈ N(cc([f ])). This implies in particular that 〈α0, 2d0〉 > 〈α0, dw〉
for all w ∈ cc([f ]), hence 2 degα0

(xd0) > cdegα0
(f) and xd0 6∈ cc(W ).

Example 3.9. Let f = 1 +XY − Y X + 2X2 − 4Y 5 ∈ R〈X,Y 〉. Then [f ] = 1 + 2X2 − 4Y 5,

cc(f) = {1, x2, xy, y5} ⊆ [x, y], cc([f ]) = {1, x2, y5} ⊆ [x, y],

N(cc([f ])) = Z2 ∩ conv
(
{(0, 0), (2, 0), (0, 5)}

)
=
{

(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 0), (1, 1), (1, 2), (2, 0)
}
.
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x

y

1 2

1

2

3

4

5

Figure 1. The Newton polytope of f = 1 +XY − Y X + 2X2 − 4Y 5

We note
1

2
N(cc([f ])) =

{
(0, 0), (0, 1), (0, 2), (1, 0)

}
.

The reader will easily verify that W =
[
1 Y Y 2 X

]t
and hence

cc(W ) = {xd | d ∈ 1

2
N(cc([f ]))}.

3.3. Sums of hermitian squares and commutators and semidefinite programming.
In this subsection we present a conceptual algorithm based on semidefinite programming for
checking whether an nc polynomial of degree ≤ 2d is cyclically equivalent to a sum of her-
mitian squares. Following Proposition 3.7 we must determine whether there exists a positive

semidefinite matrix G such that f
cyc∼ W ∗GW . This is a semidefinite feasibility problem in the

matrix variable G, where the constraints 〈Ai, G〉 = bi are essentially equations (1). Note that

since w∗ 6cyc∼ w in general, these constraints (i.e., the matrices Ai) need not be symmetric, as
we can see from the following example.

Example 3.10. Let

f = 2XY 2XYX + 4XYX2Y X +XY 4X + 2Y XY 2X2

= (Y 2X + 2XYX)∗(Y 2X + 2XYX)− 2XYXY 2X + 2Y XY 2X2

cyc∼ (Y 2X + 2XYX)∗(Y 2X + 2XYX).

If we take W =
[
XYX Y 2X

]t
, then a tracial Gram matrix G for f is, e.g., obtained as a

solution of the following semidefinite program (SDP):

inf 〈C,G〉
s. t.

XYX2Y X : G1,1 = 4
XYXY 2X : G1,2 = 2
XY 2XYX : G2,1 = 2

XY 4X : G2,2 = 1

G � 0.
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Remark 3.11. The matrix C in Example 3.10 is arbitrary. One can use C = I, a commonly
used heuristic for matrix rank minimization [RFP10]. Often, however, a solution of high-rank
is desired (cf. Section 4). Then C = 0 is used, since under a strict feasibility assumption the
interior point methods yield solutions in the relative interior of the optimal face, which is in our
case the whole feasibility set. If strict complementarity is additionally provided, the interior
point methods lead to the analytic center of the feasibility set [HdKR02]. Even though these
assumptions do not always hold for the instances of SDPs we construct, in our computational
experiments the choice C = 0 in the objective function almost always gave a solution of higher
rank than the choice C = I.

Remark 3.12. As we restrict our attention to nc polynomials which are cyclically equivalent
to symmetric nc polynomials (the others are clearly not in Θ2), we may always merge the
equations corresponding to a particular word and its involution, e.g. in Example 3.10 we can
replace the second and the third equation with a single constraint G1,2 +G2,1 = 4.

We formalize the lesson from Remark 3.12 as follows:

Lemma 3.13. If f =
∑

w aww ∈ Θ2, then for every v ∈ 〈X〉∑
w

cyc∼ v

aw =
∑
w

cyc∼ v∗

aw. (16)

Proof. Using Proposition 3.7 we have∑
w

cyc∼ v

aw =
∑
p,q∈W
p∗q

cyc
∼ v

Gp,q =
∑
p,q∈W
p∗q

cyc
∼ v

Gq,p =
∑
p,q∈W
q∗p

cyc
∼ v

Gp,q =
∑
w

cyc∼ v∗

aw.

Corollary 3.14. Given f ∈ R〈X〉 we have:

(1) If f does not satisfy (16), then f 6∈ Θ2.
(2) If f satisfies (16), then we can determine whether f ∈ Θ2 by solving the following SDP

with only symmetric constraints:

inf 〈C,G〉
s. t.

∑
p,q, p∗q

cyc
∼ v

∨ p∗q
cyc
∼ v∗

Gp,q =
∑
w

cyc∼ v

(aw + aw∗), ∀v ∈W

G � 0.

(CSOHSSDP)

The constraints in (CSOHSSDP) are 〈Av, G〉 = bv, where bv =
∑

w
cyc∼ v

(aw + aw∗) and
Av = Av∗ is the symmetric matrix defined by

(Av)p,q =


2; if p∗q

cyc∼ v & p∗q
cyc∼ v∗,

1; if p∗q
cyc∼ v & p∗q 6cyc∼ v∗,

0; otherwise.

The conceptual algorithm to determine whether a given nc polynomial is cyclically equivalent to
a sum of hermitian squares (the tracial Gram matrix method) is now as described in Algorithm
1:

Note that in Step 5 we can take different decompositions. For example we can compute
a Cholesky decomposition (which is not unique if G is not positive definite), the eigenvalue
decomposition etc.
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Input: f ∈ R〈X〉 with f =
∑

w∈〈X〉 aww, where aw ∈ R.

Step 1: If f does not satisfy (16), then f 6∈ Θ2. Stop.
Step 2: Construct W .
Step 3: Construct data Av, bv, C corresponding to (CSOHSSDP).
Step 4: Solve (CSOHSSDP) to obtain G. If it is not feasible, then f 6∈ Θ2.

Stop.
Step 5: Compute a decomposition G = RtR.

Output: Sum of hermitian squares cyclically equivalent to f : f
cyc∼
∑

i g
∗
i gi,

where gi denotes the i-th component of RW .

Algorithm 1: The tracial Gram matrix method for finding Θ2-certificates.

We next focus on the implementation of Step 2 of the Gram matrix method. That is, we
construct the vector W containing all words from 〈X〉 satisfying (15). This is a (noncommu-
tative) analogue of the Newton polytope method for the commutative case [Rez78]. Indeed,
let f =

∑
aww ∈ R〈X〉 of degree ≤ 2d be given and u ∈ 〈X〉 be a word which is a candidate

for inclusion in W . Then the following is true:

2 degα u ≤ cdegα f for all α ∈ Rn

⇔ 2 degα u ≤ degα[f ] for all α ∈ Rn

⇔ 2〈α, du〉 ≤ maxw∈cc([f ]){〈α, dw〉} for all α ∈ Rn
⇔ 0 ≤ infα∈Rn maxw∈cc([f ]){〈α, dw − 2du〉}
⇔ 0 ≤ inf{t | 〈α, dw − 2du〉 ≤ t, w ∈ cc([f ]), α ∈ Rn}.

Verifying the last inequality amounts to solving a linear program in n + 1 variables with
card (cc([f ])) linear inequalities. Solving such linear programs can be done easily for the
problems we are interested in (note that due to other limitations we are considering only
nc polynomials f with n + d ≤ 50). If f is an nc polynomial in 2 variables and has 10000
monomials, then we obtain a linear program (LP) in 3 variables with at most 10000 constraints.
Nowadays LP solvers solve such problems easily (within a second); see [Mit03] for a comparison
of the state-of-the-art LP solvers.

Algorithm 2 below (the Newton cyclic chip method) is the implementation of Step 2 of
Algorithm 1.

Input: f ∈ R〈X〉 with deg f ≤ 2d, f =
∑

w∈〈X〉 aww, where aw ∈ R.

Step 1: Let Vd be the vector of all words in [x] with degree ≤ d.
Step 2: W := ∅.
Step 3: For every v ∈ Vd: if v satisfies (15), then

W = W ∪ {all (noncommutative) permutations of v}.
Output: W .

Algorithm 2: The Newton cyclic chip method

Remark 3.15. The vector Vd from Step 1 in Algorithm 2 has length dimR[x]d =
(
n+d
d

)
, hence

we need to solve this number of linear programs in Step 3. For each word v feasible for (15)
we add at most d! words to W in Step 3. The length of the constructed W is usually much
smaller than the number of all words w ∈ 〈X〉 of degree ≤ d. On the other hand, it is often
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much larger than the vector of words obtained by the Newton chip method [KP10] developed
for the sum of hermitian squares decomposition.

3.4. Software implementation. Implementing the tracial Gram matrix method together
with the Newton cyclic chip method should be done carefully due to several potential bot-
tlenecks. Obviously the most expensive part of the Gram matrix method is Step 4 (solving
CSOHSSDP). Its complexity is determined by the order of the matrix variable G and the num-
ber of linear equations. Both parameters are strongly related to the vector W from Step 2.
Indeed, the order of G is exactly the length |W | and the number of linear equations is at least

|W |2
(d+1)(2d−1)! . This follows from the fact that for each product u∗v, u, v ∈W there are at most

d+ 1 pairs ui, vi such that u∗i vi = u∗v and at most (2d− 1)! cyclically equivalent products.

The vector W constructed by the Newton cyclic chip method is in general the best possible
and is the default procedure used by NCcycSos in our package NCSOStools [CKP11]. NCcycSos
takes an nc polynomial as input and returns the answer if it is a member of Θ2. It might be
time consuming, as we have already pointed out in Remark 3.15. However, if we know in
advance that it is enough to consider products u∗v for some V and u, v ∈ V (⊆ W ), then we
can add this V as an input to NCcycSos and skip Step 2 in the Gram matrix method.

Remark 3.16. In a special case we can construct a shorter vector W . Namely, if we know that

for a representation f
cyc∼ g ∈ Σ2 we have that

∑
w

cyc∼ v∗v
gw 6= 0 for all hermitian squares v∗v

appearing in g, then we can construct W by a slight generalization of the Newton chip method
from [KP10]. In this case we take the right chips satisfying (15) of all hermitian squares which
are cyclically equivalent to words from f instead of all words w ∈ 〈X〉 satisfying (15). This
works e.g. for the BMV polynomials (see Subsection 4.2) but does not work for the following
nc polynomial

f = 1− 4XYX + 2X2 +X2Y 4X2 cyc∼ 2(XY −X)(Y X −X) + (X2Y 2 − 1)(Y 2X2 − 1).

In fact, the hermitian square 2XY 2X cancels with −X2Y 2 and −Y 2X2 and we don’t get the
necessary words XY and Y X in W by applying the Newton chip method.

We point out that in general the semidefinite program (CSOHSSDP) might have no strictly
feasible points. Absence of (primal) strictly feasible points might cause numerical difficulties
while solving (CSOHSSDP). However, as in [KP10], we can enforce strong duality which is
crucial for all SDP solvers by setting the matrix C in (CSOHSSDP) equal to I (actually any
full rank matrix will do); see [KP10, Section 4.1] for details. Another source of numerical
problems is the infeasibility of (CSOHSSDP), which is the case when f 6∈ Θ2. We point out
that SDP solvers which are supported by NCSOStools have easily overcome these difficulties
on all tested instances.

Our implementation of the Newton cyclic chip method is augmented by an additional test
used to further reduce the length of W . Indeed, if w ∈W satisfies the following properties:

(a) if u∗v
cyc∼ w∗w for some u, v ∈ W , then u = v (i.e., any product cyclically equivalent to

w∗w is a hermitian square);
(b) neither w∗w nor any other product cyclically equivalent to w∗w appears in f ,

then we can delete w from W , and also all u with u∗u
cyc∼ w∗w. This test is implemented

in NCcycSos and is run before solving (CSOHSSDP). It amounts to finding (iteratively) all
equations of the type 〈Aw, G〉 = 0 with Aw diagonal.

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
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4. Rational sums of hermitian squares and the BMV conjecture

In this section particular emphasis is given to the extraction of rational certificates if the
input data is rational. We present several examples illustrating our results, e.g. concerning the
BMV conjecture from statistical physics (Subsection 4.2).

4.1. Rational sums of hermitian squares. Consider a feasibility SDP in primal form

G � 0
s. t. 〈Ai, G〉 = bi, i = 1, . . . ,m

(FSDP)

and assume the input data Ai, bi is rational for i = 1, . . . ,m. If the problem is feasible, does
there exist a rational solution? If so, can one use a combination of numerical and symbolic
computation to produce one?

Example 4.1. Some caution is necessary, as a feasible SDP of the form (FSDP) need not
admit a rational solution. For a concrete example, note that[

2 x
x 1

]
⊕

x 1 0
1 x 1
0 1 x

 � 0 ⇔ x =
√

2.

On the other hand, if (FSDP) admits a feasible positive definite solution, then it admits
a (positive definite) rational solution. More exactly, we have the following:

Theorem 4.2 (Peyrl & Parrilo [PP08]). If an approximate feasible point G0 for (FSDP)
satisfies

δ := min(eig(G0)) > ‖(〈Ai, G0〉 − bi)i‖ =: ε, (17)

then a (positive definite) rational feasible point G exists. It can be obtained from G0 in the
following two steps (cf. Figure 2):

(1) compute a rational approximation G̃ of G0 with τ := ‖G̃−G0‖ satisfying τ2 + ε2 < δ2;

(2) project G̃ onto the affine subspace L given by the equations 〈Ai, G〉 = bi to obtain G.

δ

τG̃

G

PsD

L

ε
G0

Figure 2. Rounding and projecting to obtain a rational solution
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Note that the results in [PP08] are stated for SDPs arising from sum of squares problems,
but their results carry over verbatim to the setting of (the seemingly more) general SDPs.
The rationalization scheme based on this Peyrl-Parrilo technique has been implemented in
NCSOStools; see Example 4.4 for a demonstration.

4.2. BMV conjecture. In their 2004 paper [LS04], Lieb and Seiringer gave the following
purely algebraic reformulation of the Bessis-Moussa-Villani (BMV) conjecture [BMV75] from
quantum statistical physics:

Conjecture 4.3. For all positive semidefinite matrices A and B and all m ∈ N, the polynomial
p(t) := tr((A+ tB)m) ∈ R[t] has only nonnegative coefficients.

The coefficient of tk in p(t) for a given m is the trace of Sm,k(A,B), where Sm,k(A,B) is
the sum of all words of length m in the letters A and B in which B appears exactly k times.
For example, S4,2(A,B) = A2B2 + ABAB + AB2A + BABA + B2A2 + BA2B. Sm,k(X,Y )
is thus an nc polynomial; it is the sum of all words in two variables X,Y of degree m with
cdeg(0,1) f = deg(0,1) f = k (and therefore cdeg(1,0) f = deg(1,0) f = m− k).

In the last few years there has been much activity around the following question: which
pairs (m, k) does Sm,k(X

2, Y 2) ∈ Θ2 or Sm,k(X,Y ) ∈ Θ2 hold for? An affirmative answer
(for all m, k) to the former would suffice for the BMV conjecture to hold; this question has
been resolved completely (see e.g. [KS08b, CDTA10, CKP10]), however only finitely many
nontrivial Sm,k(X

2, Y 2) admit a Θ2-certificate. Adding to the current state of knowledge
(nicely summarized in [CDTA10]), we shall use our computer algebra system NCSOStools to
establish S8,2(X,Y ) ∈ Θ2, S12,4(X,Y ) ∈ Θ2, and S14,6(X,Y ) 6∈ Θ2.

Example 4.4. Consider the nc polynomial f = S8,2(X,Y ). To prove that f ∈ Θ2 with the
aid of NCSOStools, proceed as follows:

(1) Define two noncommuting variables:

>> NCvars x y

(2) Our nc polynomial f is constructed using BMV(8,2). For a numerical test whether f ∈ Θ2,
run

>> params.obj = 0;

>> [IsCycEq,G0,W,sohs,g,SDP_data] = NCcycSos(BMV(8,2), params);

This yields a floating point Gram matrix G0

G0 =


3.9135 2.0912 −0.1590 0.9430
2.0912 4.4341 1.0570 −0.1298
−0.1590 1.0570 4.1435 1.9088
0.9430 −0.1298 1.9088 4.0865


for the word vector

W =
[
X3Y X2Y X XYX2 Y X3

]t
.

The rest of the output: IsCycEq = 1 since f is (numerically) an element of Θ2; sohs

is a vector of nc polynomials gi with f
cyc∼
∑

i g
∗
i gi = g; SDP data is the SDP data for

(CSOHSSDP) constructed from f .
(3) To round and project the obtained floating point solution G0, feed G0 and SDP data into

RprojRldlt:

>> [G,L,D,P,err]=RprojRldlt(G0,SDP_data,true)

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
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This produces a rational Gram matrix G for f with respect to W and its LDU decomposi-
tion PLDLtP t, where P is a permutation matrix, L lower unitriangular, and D a diagonal
matrix with positive entries. We caution the reader that L,D, and G are cells, each contain-
ing numerators and denominators separately as a matrix. Finally, the obtained rational
sum of hermitian squares certificate for f = S8,2(X,Y ) is

f
cyc∼

4∑
i=1

λig
∗
i gi

for

g1 = X3Y +
1

2
X2Y X +

1

4
Y X3

g2 = X2Y X +
1

3
XYX2 − 1

6
Y X3

g3 = XYX2 +
13

22
Y X3

g4 = Y X3

and

λ1 = 4, λ2 = 3, λ3 =
11

3
, λ4 =

105

44
.

Not all is lost, however, if the SDP solver gives a singular feasible point G0 for (FSDP).
Suppose that z is a rational null vector for G0. Let P be a change of basis matrix containing
z as a first column and a (rational) orthogonal basis for the orthogonal complement {z}⊥ as
its remaining columns. Then

P tG0P =

[
0 0

0 Ĝ0

]
,

i.e.,

G0 = P−t
[
0 0

0 Ĝ0

]
P−1

for some symmetric Ĝ0. Hence

bi = 〈Ai, G0〉 = tr(AiG0) = tr

(
AiP

−t
[
0 0

0 Ĝ0

]
P−1

)
= tr

(
P−1AiP

−t
[
0 0

0 Ĝ0

])
.

So if

P−1AiP
−t =

[
ai cti
ci Âi

]
then Âi is a symmetric matrix with rational entries and

bi = tr

([
ai cti
ci Âi

] [
0 0

0 Ĝ0

])
= tr(ÂiĜ0) = 〈Âi, Ĝ0〉.

We have established a variant of the facial reduction [BW81] which applies whenever the
original SDP is given by rational data and has a singular feasible point with a rational null
vector:

Theorem 4.5. Let (FSDP), G0 and Âi be as above. Consider the feasibility SDP

Ĝ � 0

s. t. 〈Âi, Ĝ〉 = bi, i = 1, . . . ,m
(FSDP’)

(1) (FSDP’) is feasible if and only if (FSDP) is feasible.
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(2) (FSDP’) admits a rational solution if and only if (FSDP) does.

Let us demonstrate this procedure:

Example 4.6. Consider f = S12,4(X,Y ). To prove that f ∈ Θ2 with the aid of NCSOStools,
proceed as follows:

(1) Define two noncommuting variables:

>> NCvars x y

(2) Our nc polynomial f is constructed using BMV(12,4). For a numerical test whether f ∈ Θ2,
run

>> [IsCycEq,G0,W,sohs,g,SDP_data] = NCcycSos(BMV(12,4));

This yields a floating point Gram matrix G0 that is singular.
(3) Try to round and project the obtained floating point solution G0, feed G0 and SDP data

into RprojRldlt:

>> [G,L,D,P,err]=RprojRldlt(G0,SDP_data)

This exits with an error, since unlike in Example 4.4, the rounding and projecting alone
does not yield a rational feasible point.

(4) Instead, let us reexamine G0. A quick view at the matrix reveals its first and second
column coincide. Likewise the last two columns are the same. We thus run our interactive
procedure which aids the computer in reducing the size of the SDP as in Theorem 4.5.

>> [G,SDP_data]=fac_reduct(BMV(12,4))

This leads the computer to return a floating point feasible point G0 ∈ R15×15 and the data
for this SDP, SDP data. It also stays in interactive mode and the user can inspect the
matrix and enter the null vector z to be used in the dimension reduction. In fact, as the
first two and the last two columns of G0 are the same, we feed in two null vectors (as a
matrix of two columns):

K>> z=[1 0;-1 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 1;0 -1];

return

Inside the interactive routine this enables the computer to produce a positive definite
feasible Ĝ0 ∈ R13×13. Hence we exit the interactive routine.

K>> stop=1;return

Now, NCSOStools uses Ĝ0 to produce a rational positive semidefinite Gram matrix G for
f , which proves f = S12,4(X,Y ) ∈ Θ2. Like in the previous example, the solution G is
a cell containing two matrices with numerators and denominators of the rational entries
of G. The reader can verify that f = W ∗GW exactly by doing rational arithmetic or
approximately by computing floating point approximation for G and using floating point
arithmetic.

Example 4.7. We conclude this presentation by showing S14,6(X,Y ) 6∈ Θ2. We define two
noncommuting variables and run NCcycSos as in the previous examples:

>> NCvars x y

>> [IsCycEq,G0,V,sohs,g,SDP_data] = NCcycSos(BMV(14,6));

However, this seems to be an infeasible problem. In fact, we shall use the generated data
SDP data to prove it is strongly infeasible by computing a rational hyperplane separating Θ2

and S14,6(X,Y ). Let P be the set of all nc polynomials p with deg(1,0) p = mindeg(1,0) p = 8

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
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and deg(0,1) p = mindeg(0,1) p = 6. Obviously, S14,6(X,Y ) ∈ P. Each p ∈ P can be represented
by a 35× 35 Gram matrix using the basis V from our SDP. An important observation is that

p ∈ Θ2 if and only if there is a positive semidefinite G satisfying p
cyc∼ V ∗GV , cf. [KS08b,

Section 3] or [CKP10, Section 2.2].

Let L : P → R be a linear ∗-map nonnegative on Θ2 ∩ P. It can be represented as
p 7→ 〈M,Gp〉 for a symmetric 35 × 35 matrix M , where Gp is a Gram matrix for p. Since

L(Σ2) ⊆ [0,∞), the matrix M is positive semidefinite. The fact that L(f) = 0 for all f
cyc∼ 0,

can be modeled with constraints 〈M,H〉 = 0 for all H ∈ A⊥, cf. [CKP10, Section 2.2]. Here,
A⊥ is the orthogonal complement of the span of the Av from Section 3.3 in the set of symmetric
matrices. Clearly, it suffices to consider H from a linearly independent generating subset C of
A⊥.

To express L(S14,6(X,Y )) < 0, we first compute a Gram matrix for S14,6(X,Y ). The
matrix A = SDP data.A and vector b = SDP data.b model the linear constraints 〈Av, G〉 = bv
for v ∈ 〈X,Y 〉 with deg(1,0) v = 8, deg(0,1) v = 6. Hence a symmetrized solution of the linear
system

>> SDP_data.A\SDP_data.b

will be a Gram matrix G for S14,6(X,Y ). Now consider the feasibility SDP

M � 0
s. t. 〈M,G〉 = −35, ∀H ∈ C : 〈M,H〉 = 0.

(Here, −35 is just a convenient scaling factor.) Every feasible point induces a hyperplane
separating Θ2 and S14,6(X,Y ). Solving this SDP with SeDuMi (using the trivial objective
function C = 0) yields a floating point solution M0 in the relative interior of the optimal face,
see Remark 3.11, with minimal eigenvalue δ = 0.3426 and residual norm ε = 6.8 · 10−9. Thus
we can find a rational feasible solution M as explained in Theorem 4.2, using RprojRldlt. This
proves S14,6(X,Y ) 6∈ Θ2.

5. Conclusions

In this paper we considered polynomials in noncommuting variables which can be decom-
posed as a sum of hermitian squares and commutators. We presented a systematic way of
finding such a decomposition using our open source computer algebra system NCSOStools,
freely available at http://ncsostools.fis.unm.si/.

The main part of the method – a variant of the classical Gram matrix method – is given
by the construction of a semidefinite program. Its solution (if it exists) yields a numerical cer-
tificate for the decomposition. The presented Newton cyclic chip method is used to reduce the
size of the underlying semidefinite program. Moreover, we also apply an algorithm which under
a strict feasibility assumption theoretically and practically yields an exact rational certificate if
the input is rational. Finally, in the absence of strict feasibility, a variant of the facial reduction
is proposed to reduce the size of the semidefinite program and enforce the existence of Slater
points. These results are illustrated by numerous examples also providing demonstrations of
how to use the proposed algorithm with our computer algebra system NCSOStools.

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
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