Trace positive binary quartics

S. Burgdorf

Advanced Course on Optimization: Theory, Methods and Applications

July 23, 2009

Universität Konstanz

psd = sos ?

Motivation

psd = sos ?

Theorem (Hilbert)
Let $f \in \mathbb{R}[X, Y]$, $\operatorname{deg} f \leq 4$ and $f \geq 0$ on \mathbb{R}^{2}. Then $f=\sum_{i} g_{i}^{2}$.

psd = sos ?

Theorem (Hilbert)
Let $f \in \mathbb{R}[X, Y]$, $\operatorname{deg} f \leq 4$ and $f \geq 0$ on \mathbb{R}^{2}. Then $f=\sum_{i} g_{i}^{2}$.

- What does hold in the non-commutative case?

Matrix-positive polynomials

- $\mathbb{R}\langle X, Y\rangle$ polynomial ring in non-commuting variables X, Y

Definition

$f \in \mathbb{R}\langle X, Y\rangle$ is called matrix-positive $(f \succeq 0)$ if

$$
f(A, B) \succeq 0 \text { for all } A, B \in \mathrm{~S} \mathbb{R}^{t \times t}, t \in \mathbb{N}
$$

Matrix-positive polynomials

- $\mathbb{R}\langle X, Y\rangle$ polynomial ring in non-commuting variables X, Y

Definition
$f \in \mathbb{R}\langle X, Y\rangle$ is called matrix-positive ($f \succeq 0$) if

$$
f(A, B) \succeq 0 \text { for all } A, B \in \mathrm{~S} \mathbb{R}^{t \times t}, t \in \mathbb{N} .
$$

- non-commutative sum of squares:
- A^{2} is not psd for all $A \in \mathrm{~S} \mathbb{R}^{t \times t}$
- but $A^{*} A$

Matrix-positive polynomials

- $\mathbb{R}\langle X, Y\rangle$ polynomial ring in non-commuting variables X, Y

Definition
$f \in \mathbb{R}\langle X, Y\rangle$ is called matrix-positive ($f \succeq 0$) if

$$
f(A, B) \succeq 0 \text { for all } A, B \in \mathrm{~S} \mathbb{R}^{t \times t}, t \in \mathbb{N} .
$$

- non-commutative sum of squares:
- A^{2} is not psd for all $A \in \mathrm{~S} \mathbb{R}^{t \times t}$
- but $A^{*} A$
- $\sum g_{i}^{2}$ replaced by $\sum g_{i}^{*} g_{i}$
- Involution $*$: fixes $\mathbb{R} \cup\{X, Y\}$ pointwise, $\left(X Y X^{2}\right)^{*}=X^{2} Y X$

psd=sos?

Theorem (Hilbert)
Let $f \in \mathbb{R}[X, Y]$, $\operatorname{deg} f \leq 4$ and $f \geq 0$ on \mathbb{R}^{2}. Then $f=\sum_{i} g_{i}^{2}$.
Theorem (Helton)
Let $f \in \mathbb{R}\langle X, Y\rangle, f \succeq 0$. Then $f=\sum_{i} g_{i}^{*} g_{i}$.

Trace-positive polynomials

Definition

$f \in \mathbb{R}\langle X, Y\rangle$ is called trace-positive $(\operatorname{tr}(f) \geq 0)$ if

$$
\operatorname{tr}(f(A, B)) \geq 0 \text { for all } A, B \in \mathbb{S}^{t \times t}, t \in \mathbb{N}
$$

Further structure

${ }^{\nabla} \operatorname{tr}(A B)=\operatorname{tr}(B A)$ for all $A, B \in \mathrm{~S} \mathbb{R}^{t \times t}$

$$
v \stackrel{\text { cyc }}{\sim} w \Leftrightarrow \exists u_{1}, u_{2}: v=u_{1} u_{2}, w=u_{2} u_{1}
$$

$\Rightarrow \operatorname{tr}([A, B])=0$

$$
v \stackrel{\text { cyc }}{\sim} w \Leftrightarrow v-w=\left[u_{1}, u_{2}\right]=u_{1} u_{2}-u_{2} u_{1}
$$

\Rightarrow trace is linear

$$
\vee f \stackrel{\text { cyc }}{\sim} g \Leftrightarrow f-g=\sum_{i}\left[u_{i}, u_{i}^{\prime}\right]
$$

$$
v, w \in\langle X, Y\rangle, f, g \in \mathbb{R}\langle X, Y\rangle
$$

psd=sos?

Theorem (Hilbert)
 Let $f \in \mathbb{R}[X, Y]$, $\operatorname{deg} f \leq 4$ and $f \geq 0$ on \mathbb{R}^{2}. Then $f=\sum_{i} g_{i}^{2}$.

Theorem (Helton)
Let $f \in \mathbb{R}\langle X, Y\rangle, f \succeq 0$. Then $f=\sum_{i} g_{i}^{*} g_{i}$.

Theorem

Let $f \in \mathbb{R}\langle X, Y\rangle$ homogenous of $\operatorname{deg} f \leq 4, \operatorname{tr}(f) \geq 0$. Then

$$
f \stackrel{\mathrm{cyc}}{\sim} \sum_{i} g_{i}^{*} g_{i} .
$$

Relation to semidefinite programming (SDP)

Gram matrix

Theorem (commutative case)
Let $f \in \mathbb{R}[X, Y], \operatorname{deg} f \leq 2 d$ and v a monomial vector of $\operatorname{deg} \leq d$. Then

$$
\exists G \in \mathbb{S} \mathbb{R}^{s \times s}: f=v^{*} G v .
$$

Gram matrix

Theorem (commutative case)

Let $f \in \mathbb{R}[X, Y], \operatorname{deg} f \leq 2 d$ and v a monomial vector of $\operatorname{deg} \leq d$. Then

$$
\exists G \in S \mathbb{R}^{s \times s}: f=v^{*} G v
$$

Theorem (non-commutative case)

Let $f \in \mathbb{R}\langle X, Y\rangle, f=f^{*}, \operatorname{deg} f \leq 2 d$ and v a monomial vector of $\operatorname{deg} \leq d$. Then

$$
\exists G \in S \mathbb{R}^{s \times s}: f=v^{*} G v .
$$

Gram matrix

Theorem (commutative case)

Let $f \in \mathbb{R}[X, Y], \operatorname{deg} f \leq 2 d$ and v a monomial vector of $\operatorname{deg} \leq d$. Then

$$
\exists G \in \mathrm{~S} \mathbb{R}^{s \times s}: f=v^{*} G v .
$$

Theorem (trace case)

Let $f \in \mathbb{R}\langle X, Y\rangle, f \stackrel{\text { cyc }}{\sim} f^{*}, \operatorname{deg} f \leq 2 d$ and v a monomial vector of $\operatorname{deg} \leq d$. Then

$$
\exists G \in \mathrm{~S} \mathbb{R}^{s \times s}: f \stackrel{\mathrm{cyc}}{\sim} v^{*} G v .
$$

Gram matrix

Theorem (commutative case)

Let $f \in \mathbb{R}[X, Y], \operatorname{deg} f \leq 2 d$ and v a monomial vector of $\operatorname{deg} \leq d$. Then

$$
\exists G \in \mathbb{S} \mathbb{R}^{s \times s}: f=v^{*} G v .
$$

Theorem (trace case)
Let $f \in \mathbb{R}\langle X, Y\rangle, f \stackrel{\text { cyc }}{\sim} f^{*}, \operatorname{deg} f \leq 2 d$ and v a monomial vector of $\operatorname{deg} \leq d$. Then

$$
\exists G \in \mathrm{~S} \mathbb{R}^{s \times s}: f \stackrel{\text { cyc }}{\sim} v^{*} G v .
$$

Useful fact

$$
f \text { is sos } \Leftrightarrow \exists \text { Gram matrix } G \succeq 0 \text {. }
$$

Example

$$
f=X^{2} Y^{2}+Y^{2} X^{2}
$$

$$
v=\left(\begin{array}{l}
X^{2} \\
X Y \\
Y X \\
Y^{2}
\end{array}\right) \quad \Longrightarrow \quad\left(\begin{array}{cccc}
X^{4} & X^{3} Y & X^{2} Y X & X^{2} Y^{2} \\
Y X^{3} & Y X^{2} Y & Y X Y X & Y X Y^{2} \\
X Y X^{2} & X Y X Y & X Y^{2} X & X Y^{3} \\
Y^{2} X^{2} & Y^{2} X Y & Y^{3} X & Y^{4}
\end{array}\right)
$$

Example

$$
f=X^{2} Y^{2}+Y^{2} X^{2}
$$

$$
v=\left(\begin{array}{l}
X^{2} \\
X Y \\
Y X \\
Y^{2}
\end{array}\right) \quad \Longrightarrow \quad\left(\begin{array}{cccc}
X^{4} & X^{3} Y & X^{2} Y X & X^{2} Y^{2} \\
Y X^{3} & Y X^{2} Y & Y X Y X & Y X Y^{2} \\
X Y X^{2} & X Y X Y & X Y^{2} X & X Y^{3} \\
Y^{2} X^{2} & Y^{2} X Y & Y^{3} X & Y^{4}
\end{array}\right)
$$

- $G_{n c}=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right) \nsucceq 0 \Longrightarrow f$ is not sos

Example

$$
f=X^{2} Y^{2}+Y^{2} X^{2}
$$

$$
v=\left(\begin{array}{l}
X^{2} \\
X Y \\
Y X \\
Y^{2}
\end{array}\right) \quad \Longrightarrow \quad\left(\begin{array}{cccc}
X^{4} & X^{3} Y & X^{2} Y X & X^{2} Y^{2} \\
Y X^{3} & Y X^{2} Y & Y X Y X & Y X Y^{2} \\
X Y X^{2} & X Y X Y & X Y^{2} X & X Y^{3} \\
Y^{2} X^{2} & Y^{2} X Y & Y^{3} X & Y^{4}
\end{array}\right)
$$

$$
\text { - } G_{n c}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \nsucceq 0 \Longrightarrow f \text { is not sos }
$$

Example

$f=X^{2} Y^{2}+Y^{2} X^{2}$
$v=\left(\begin{array}{l}X^{2} \\ X Y \\ Y X \\ Y^{2}\end{array}\right) \quad \Longrightarrow\left(\begin{array}{cccc}X^{4} & X^{3} Y & X^{2} Y X & X^{2} Y^{2} \\ Y X^{3} & Y X^{2} Y & Y X Y X & Y X Y^{2} \\ X Y X^{2} & X Y X Y & X Y^{2} X & X Y^{3} \\ Y^{2} X^{2} & Y^{2} X Y & Y^{3} X & Y^{4}\end{array}\right)$

- $G_{n c}=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right) \nsucceq 0 \Longrightarrow f$ is not sos
- $G_{\sim}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \succeq 0 \Longrightarrow f \stackrel{\text { cyc }}{\sim}(X Y)^{*}(X Y)+(Y X)^{*}(Y X)$

Relation to SDP

Theorem

Let $f \in \mathbb{R}\langle X, Y\rangle, \operatorname{deg} f=2 d, v$ monomial vector of $\operatorname{deg} \leq d$ and G_{0} a fixed Gram matrix of f. Then the following is equivalent:
$11 \stackrel{\text { cyc }}{\sim} \sum g_{i}^{*} g_{i}$
(2) mintr G s.t. $f \stackrel{\text { cyc }}{\sim} v^{*} G v ; G \succeq 0$ is feasible

Relation to SDP

Theorem

Let $f \in \mathbb{R}\langle X, Y\rangle$, $\operatorname{deg} f=2 d, v$ monomial vector of $\operatorname{deg} \leq d$ and G_{0} a fixed Gram matrix of f. Then the following is equivalent:
$11 \stackrel{\text { cyc }}{\sim} \sum g_{i}^{*} g_{i}$
(2) mintr G s.t. $f \stackrel{\text { cyc }}{\sim} v^{*} G v ; G \succeq 0$ is feasible
(3) $G=G_{0}+M \succeq 0$ for some $M \in \mathcal{M}$

$$
\mathcal{M}:=\left\{A \in S \mathbb{R}^{s \times s} \mid v^{*} A v \stackrel{\text { cyc }}{\sim} 0\right\} .
$$

Dual problem

$\langle A, B\rangle:=\operatorname{tr}\left(B^{*} A\right)$ on $S \mathbb{R}^{s \times s}$

$$
\begin{aligned}
\Longrightarrow \mathcal{M}^{\perp} & =\left\{A \in \mathrm{~S} \mathbb{R}^{s \times s} \mid \operatorname{tr}(A M)=0 \forall M \in \mathcal{M}\right\} \\
& =\left\{A \in \mathbb{S} \mathbb{R}^{s \times s} \mid A_{i j}=A_{k l} \text { if } v_{i}^{*} v_{j} \stackrel{\text { cyc }}{\sim} v_{k}^{*} v_{l}\right\} .
\end{aligned}
$$

Dual problem

${ }^{-}\langle A, B\rangle:=\operatorname{tr}\left(B^{*} A\right)$ on $S \mathbb{R}^{s \times s}$

$$
\begin{aligned}
\Longrightarrow \mathcal{M}^{\perp} & =\left\{A \in \mathrm{~S} \mathbb{R}^{s \times s} \mid \operatorname{tr}(A M)=0 \forall M \in \mathcal{M}\right\} \\
& =\left\{A \in S \mathbb{R}^{s \times s} \mid A_{i j}=A_{k l} \text { if } v_{i}^{*} v_{j} \stackrel{\text { cyc }}{\sim} v_{k}^{*} v_{l}\right\} .
\end{aligned}
$$

\triangleright Linear functional $\ell_{f}: \mathcal{M}^{\perp} \longrightarrow \mathbb{R}, \ell_{f}(M)=\operatorname{tr} G_{0} M$.

Theorem

Assuming $\left(\mathcal{M}^{\perp}\right)^{+}$contains a positive definite matrix. Then

$$
f \stackrel{\mathrm{cyc}}{\sim} \sum g_{i}^{*} g_{i} \Leftrightarrow \ell_{f} \geq 0 \text { on }\left(\mathcal{M}^{\perp}\right)^{+}
$$

Theorem

Assuming $\left(\mathcal{M}^{\perp}\right)^{+}$contains a positive definite matrix. Then

$$
f \stackrel{\text { cyc }}{\sim} \sum g_{i}^{*} g_{i} \Leftrightarrow \ell_{f} \geq 0 \text { on }\left(\mathcal{M}^{\perp}\right)^{+}
$$

primal problem

primal proof:
Find $G \succeq 0$ with $f \stackrel{\text { cyc }}{\sim} v^{*} G v$
strict solution
dual proof: Show $\ell_{f} \geq 0$ on $\left(\mathcal{M}^{\perp}\right)^{+}$

Primal proof

$$
f=X^{4}+a Y^{4}+2 b X^{2} Y^{2}+2 c X Y X Y+2 d X Y^{3}
$$

Primal proof

$$
\begin{aligned}
& f=X^{4}+a Y^{4}+2 b X^{2} Y^{2}+2 c X Y X Y+2 d X Y^{3} \\
& v=\left(X^{2}, X Y, Y X, Y^{2}\right)
\end{aligned}
$$

$$
G_{\lambda}=\left(\begin{array}{cccc}
1 & 0 & 0 & \lambda \\
0 & b-\lambda & c & d / 2 \\
0 & c & b-\lambda & d / 2 \\
\lambda & d / 2 & d / 2 & a
\end{array}\right)
$$

- $c \leq 0: \quad \lambda=\lambda_{\text {comm }}$
- $c \geq 0, b \leq c, a \leq b^{2}+5 c^{2}-6 b c: \quad \lambda=b-c$
- $c \geq 0, c \leq b$ or $c \geq 0, b \leq c, a \geq b^{2}+5 c^{2}-6 b c$:

$$
\lambda=\frac{b+c}{3}-\frac{1}{3} \sqrt{3 a+(b+c)^{2}}
$$

Dual proof

$$
\begin{aligned}
& \left(\mathcal{M}^{\perp}\right)^{+}=\left\{M \in \mathrm{~S} \mathbb{R}^{4 \times 4} \mid M_{i j}=M_{k l} \text { for } v_{i}^{*} v_{j} \text { cccc }_{\sim}^{v} v_{k}^{*} v_{l}, M \succeq 0\right\} \\
& \quad=\left\{T \mid T=\left(\operatorname{tr}\left(v_{i}^{*}(A, B) v_{j}(A, B)\right)\right)_{i, j} \text { for some } A, B \in \mathrm{~S} \mathbb{R}^{14 \times 14}\right\}
\end{aligned}
$$

Dual proof

$$
\begin{aligned}
& \left(\mathcal{M}^{\perp}\right)^{+}=\left\{M \in \mathrm{~S} \mathbb{R}^{4 \times 4} \mid M_{i j}=M_{k l} \text { for } v_{i}^{*} v_{j} \stackrel{\text { cyc }}{\sim} v_{k}^{*} v_{l}, M \succeq 0\right\} \\
& \quad=\left\{T \mid T=\left(\operatorname{tr}\left(v_{i}^{*}(A, B) v_{j}(A, B)\right)\right)_{i, j} \text { for some } A, B \in \mathrm{~S} \mathbb{R}^{14 \times 14}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\ell_{f}(M) & =\operatorname{tr}\left(G_{0} M\right) \\
& =\operatorname{tr}\left(G_{0}\left(\operatorname{tr}\left(v_{i}^{*}(A, B) v_{j}(A, B)\right)\right)_{i, j}\right) \\
& =\operatorname{tr}\left(v^{*}(A, B) G_{0} v(A, B)\right)=\operatorname{tr}(f(A, B)) \geq 0
\end{aligned}
$$

Conclusion

primal proof

+ constructive
- difficult to generalize
dual proof
- non constructive
+ more general

