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Motivation

psd = sos ?

Theorem (Hilbert)

Let f ∈ R[X ,Y ], deg f ≤ 4 and f ≥ 0 on R2. Then f =
∑

i g2
i .

I What does hold in the non-commutative case?



2

Motivation

psd = sos ?

Theorem (Hilbert)

Let f ∈ R[X ,Y ], deg f ≤ 4 and f ≥ 0 on R2. Then f =
∑

i g2
i .

I What does hold in the non-commutative case?



2

Motivation

psd = sos ?

Theorem (Hilbert)

Let f ∈ R[X ,Y ], deg f ≤ 4 and f ≥ 0 on R2. Then f =
∑

i g2
i .

I What does hold in the non-commutative case?



3

Matrix-positive polynomials

I R〈X ,Y 〉 polynomial ring in non-commuting variables X ,Y

Definition
f ∈ R〈X ,Y 〉 is called matrix-positive (f � 0) if

f (A,B) � 0 for all A,B ∈ SRt×t , t ∈ N.

I non-commutative sum of squares:

I A2 is not psd for all A ∈ SRt×t

I but A∗A

I
∑

g2
i replaced by

∑
g∗i gi

I Involution ∗: fixes R ∪ {X ,Y} pointwise, (XYX 2)∗ = X 2YX
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psd=sos?

Theorem (Hilbert)

Let f ∈ R[X ,Y ], deg f ≤ 4 and f ≥ 0 on R2. Then f =
∑

i g2
i .

Theorem (Helton)
Let f ∈ R〈X ,Y 〉, f � 0. Then f =

∑
i g∗i gi .
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Trace-positive polynomials

Definition
f ∈ R〈X ,Y 〉 is called trace-positive (tr(f ) ≥ 0) if

tr(f (A,B)) ≥ 0 for all A,B ∈ SRt×t , t ∈ N.

Further structure

I tr(AB) = tr(BA) for all A,B ∈ SRt×t

I v
cyc∼ w ⇔ ∃u1,u2 : v = u1u2,w = u2u1

I tr([A,B]) = 0
I v

cyc∼ w ⇔ v − w = [u1,u2] = u1u2 − u2u1

I trace is linear
I f

cyc∼ g ⇔ f − g =
∑

i [ui ,u′i ]

v ,w ∈ 〈X ,Y 〉, f ,g ∈ R〈X ,Y 〉
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psd=sos?

Theorem (Hilbert)

Let f ∈ R[X ,Y ], deg f ≤ 4 and f ≥ 0 on R2. Then f =
∑

i g2
i .

Theorem (Helton)
Let f ∈ R〈X ,Y 〉, f � 0. Then f =

∑
i g∗i gi .

Theorem
Let f ∈ R〈X ,Y 〉 homogenous of deg f ≤ 4, tr(f ) ≥ 0. Then

f
cyc∼

∑
i

g∗i gi .
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Relation to semidefinite
programming (SDP)
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Gram matrix

Theorem (commutative case)
Let f ∈ R[X ,Y ], deg f ≤ 2d and v a monomial vector of deg ≤ d .
Then

∃G ∈ SRs×s : f = v∗Gv .

Theorem (trace case)

Let f ∈ R〈X ,Y 〉, f
cyc∼ f ∗, deg f ≤ 2d and v a monomial vector of

deg ≤ d . Then
∃G ∈ SRs×s : f

cyc∼ v∗Gv .

Useful fact

f is sos ⇔ ∃ Gram matrix G � 0.
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Example

f = X 2Y 2 + Y 2X 2

v =


X 2

XY
YX
Y 2

 =⇒


X 4 X 3Y X 2YX X 2Y 2

YX 3 YX 2Y YXYX YXY 2

XYX 2 XYXY XY 2X XY 3

Y 2X 2 Y 2XY Y 3X Y 4



I Gnc =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 � 0 =⇒ f is not sos

I G∼ =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 � 0 =⇒ f
cyc∼ (XY )∗(XY ) + (YX )∗(YX )
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Relation to SDP

Theorem
Let f ∈ R〈X ,Y 〉, deg f = 2d , v monomial vector of deg ≤ d and G0
a fixed Gram matrix of f . Then the following is equivalent:

1 f
cyc∼

∑
g∗i gi

2 min tr G s.t . f
cyc∼ v∗Gv ; G � 0 is feasible

3 G = G0 + M � 0 for some M ∈M

M := {A ∈ SRs×s | v∗Av
cyc∼ 0}.
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Dual problem

I 〈A,B〉 := tr(B∗A) on SRs×s

=⇒ M⊥ = {A ∈ SRs×s | tr(AM) = 0 ∀M ∈M}

= {A ∈ SRs×s | Aij = Akl if v∗i vj
cyc∼ v∗k vl}.

I Linear functional `f : M⊥ −→ R, `f (M) = tr G0M.

Theorem
Assuming (M⊥)+ contains a positive definite matrix. Then

f
cyc∼

∑
g∗i gi ⇔ `f ≥ 0 on (M⊥)+
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xx

Theorem
Assuming (M⊥)+ contains a positive definite matrix. Then

f
cyc∼

∑
g∗i gi ⇔ `f ≥ 0 on (M⊥)+

primal problem strict solution←→ dual problem

primal proof:
Find G � 0 with f

cyc∼ v∗Gv
dual proof:
Show `f ≥ 0 on (M⊥)+
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Primal proof

f = X 4 + aY 4 + 2bX 2Y 2 + 2cXYXY + 2dXY 3

v = (X 2,XY ,YX ,Y 2)

Gλ =


1 0 0 λ
0 b − λ c d/2
0 c b − λ d/2
λ d/2 d/2 a


I c ≤ 0: λ = λcomm

I c ≥ 0,b ≤ c,a ≤ b2 + 5c2 − 6bc: λ = b − c
I c ≥ 0, c ≤ b or c ≥ 0,b ≤ c,a ≥ b2 + 5c2 − 6bc:

λ =
b + c

3
− 1

3

√
3a + (b + c)2
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Dual proof

(M⊥)+ = {M ∈ SR4×4 | Mij = Mkl for v∗i vj
cyc∼ v∗k vl ,M � 0}

= {T | T = (tr(v∗i (A,B)vj(A,B)))i,j for some A,B ∈ SR14×14}

`f (M) = tr(G0M)

= tr(G0(tr(v∗i (A,B)vj(A,B)))i,j)

= tr(v∗(A,B)G0v(A,B)) = tr(f (A,B)) ≥ 0.
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Conclusion

primal proof

+ constructive
– difficult to generalize

dual proof

– non constructive
+ more general


