Trace optimization of nc polynomials

Sabine Burgdorf (joint work with K. Cafuta, I. Klep, J. Povh)

SIAM Conference on Optimization 2011 Algebraic Geometry and Optimization

Universität Konstanz

- $ightharpoons \mathbb{R}\langle \underline{X}
 angle$ free algebra on $\underline{X} = (X_1, \dots, X_n)$
- ightharpoonup Polynomials in the non-commuting variables X_1,\ldots,X_n

•
$$f = \sum_{w} f_{w} w, w \in \langle \underline{X} \rangle, f_{w} \in \mathbb{R}$$

- $ightharpoons \mathbb{R}\langle \underline{X}
 angle$ free algebra on $\underline{X} = (X_1, \dots, X_n)$
- ightharpoonup Polynomials in the non-commuting variables X_1,\ldots,X_n
 - $f = \sum_{w} f_{w} w, \ w \in \langle \underline{X} \rangle, f_{w} \in \mathbb{R}$
- ▶ Evaluation in symmetric matrices $\underline{A} = (A_1, ..., A_n) \in (S\mathbb{R}^{s \times s})^n$
 - $f(\underline{A}) = f_1 \mathbf{1}_s + f_{X_1} A_1 + f_{X_2} A_2 + \dots + f_{X_1^2 X_3 X_2^3} A_1^2 A_3 A_2^3 + \dots$
- $\mathcal{S}^n := \bigcup_{s \in \mathbb{N}} (\mathcal{S}\mathbb{R}^{s imes s})^n$

- $ightharpoons \mathbb{R}\langle \underline{X}
 angle$ free algebra on $\underline{X} = (X_1, \dots, X_n)$
- ightharpoonup Polynomials in the non-commuting variables X_1,\ldots,X_n
 - $f = \sum_{w} f_{w} w, \ w \in \langle \underline{X} \rangle, f_{w} \in \mathbb{R}$
- ▶ Evaluation in symmetric matrices $\underline{A} = (A_1, ..., A_n) \in (S\mathbb{R}^{s \times s})^n$
 - $f(\underline{A}) = f_1 \mathbf{1}_s + f_{X_1} A_1 + f_{X_2} A_2 + \dots + f_{X_1^2 X_3 X_2^3} A_1^2 A_3 A_2^3 + \dots$
- $\mathcal{S}^n := \bigcup_{s \in \mathbb{N}} (\mathcal{S}\mathbb{R}^{s imes s})^n$

Questions

■ What is the minimal trace a polynomial $f \in \mathbb{R}\langle \underline{X} \rangle$ can attain?

- ightharpoons $\mathbb{R}\langle \underline{X}
 angle$ free algebra on $\underline{X}=(X_1,\ldots,X_n)$
- ightharpoonup Polynomials in the non-commuting variables X_1,\ldots,X_n

$$f = \sum_{w} f_{w} w, \ w \in \langle \underline{X} \rangle, f_{w} \in \mathbb{R}$$

- ▶ Evaluation in symmetric matrices $\underline{A} = (A_1, ..., A_n) \in (S\mathbb{R}^{s \times s})^n$

$$f(\underline{A}) = f_1 \mathbf{1}_s + f_{X_1} A_1 + f_{X_2} A_2 + \dots + f_{X_1^2 X_3 X_2^3} A_1^2 A_3 A_2^3 + \dots$$

$$ullet \mathcal{S}^n := igcup_{s \in \mathbb{N}} (\mathcal{S}\mathbb{R}^{s imes s})^n$$

Questions

- What is the minimal trace a polynomial $f \in \mathbb{R}\langle \underline{X} \rangle$ can attain?
- 2 Can we find a relaxation to compute a bound via an SDP?
- \rightarrow Sums of hermitian squares and commutators

Sums of hermitian squares

Involution * : $\mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}\langle \underline{X} \rangle$ compatible with transposition T :

$$f^*(\underline{A}) = f(\underline{A})^T$$
 for all $\underline{A} \in \mathcal{S}^n$

Definition

$$\Sigma^2 := \{ f \in \mathbb{R}\langle \underline{X} \rangle \mid f = \sum_{i=1}^r g_i^* g_i \text{ for some } g_i \in \mathbb{R}\langle \underline{X} \rangle, r \in \mathbb{N}_0 \}$$

Sums of hermitian squares

▶ Involution * : $\mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}\langle \underline{X} \rangle$ compatible with transposition T :

$$f^*(\underline{A}) = f(\underline{A})^T$$
 for all $\underline{A} \in \mathcal{S}^n$

Definition

$$\Sigma^2 := \{ f \in \mathbb{R}\langle \underline{X} \rangle \mid f = \sum_{i=1}^r g_i^* g_i \text{ for some } g_i \in \mathbb{R}\langle \underline{X} \rangle, r \in \mathbb{N}_0 \}$$

Fact 1

If $f \in \Sigma^2$, then $f(\underline{A})$ is positive semidefinite for all $\underline{A} \in S^n$.

Sums of hermitian squares

▶ Involution * : $\mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}\langle \underline{X} \rangle$ compatible with transposition T :

$$f^*(\underline{A}) = f(\underline{A})^T$$
 for all $\underline{A} \in \mathcal{S}^n$

Definition

$$\Sigma^2 := \{ f \in \mathbb{R}\langle \underline{X} \rangle \mid f = \sum_{i=1}^r g_i^* g_i \text{ for some } g_i \in \mathbb{R}\langle \underline{X} \rangle, r \in \mathbb{N}_0 \}$$

Fact 1

If $f \in \Sigma^2$, then $f(\underline{A})$ is positive semidefinite for all $\underline{A} \in S^n$.

Fact 2

For all $p, q \in \mathbb{R}\langle \underline{X} \rangle$: $\mathsf{Tr}((pq - qp)(\underline{A})) = 0$ for all $\underline{A} \in \mathcal{S}^n$.

▶ We call [p,q] = pq - qp for $p,q \in \mathbb{R}\langle \underline{X} \rangle$ a commutator.

Cyclic equivalence

Definition

$$f,g \in \mathbb{R}\langle \underline{X} \rangle$$
 are cyclically equivalent $(f \overset{\operatorname{cyc}}{\sim} g)$ if $f - g = \sum_{i=1}^r [p_i,q_i]$ for some $r \in \mathbb{N}_0, p_i, q_i \in \mathbb{R}\langle \underline{X} \rangle$.

Cyclic equivalence

Definition

$$f,g \in \mathbb{R}\langle \underline{X} \rangle$$
 are cyclically equivalent $(f \overset{\operatorname{cyc}}{\sim} g)$ if

$$f-g=\sum_{i=1}^r [p_i,q_i]$$
 for some $r\in\mathbb{N}_0,p_i,q_i\in\mathbb{R}\langle\underline{X}
angle.$

Example

$$f = 2XY^2X - Y^2X^2 + 2YXY \stackrel{\text{cyc}}{\sim} g = X^2Y^2 + 2XY^2$$
:

$$f - g = [XY^2, X] + [X, Y^2X] + 2[Y, XY].$$

Fact 2'

If
$$f \stackrel{\text{cyc}}{\sim} g$$
, then $\text{Tr}(f(\underline{A})) = \text{Tr}(g(\underline{A}))$ for all $\underline{A} \in \mathcal{S}^n$.

Sums of hermitian squares and commutators

Recall:
$$\Sigma^2 = \{ f \in \mathbb{R}\langle \underline{X} \rangle \mid f = \sum_i g_i^* g_i \text{ for some } g_i \in \mathbb{R}\langle \underline{X} \rangle \}$$

Definition

$$\Theta^2 := \{ f \in \mathbb{R} \langle \underline{X} \rangle \mid f \overset{\operatorname{cyc}}{\sim} g \text{ for some } g \in \Sigma^2 \}$$

Example

$$f = X^2Y^2 - XYXY$$
:

$$f \stackrel{\text{cyc}}{\sim} \frac{1}{2} (XY^2X + YX^2Y - XYXY - YXYX)$$

= $\frac{1}{2} (XY - YX)^* (XY - YX) \in \Sigma^2$

Sums of hermitian squares and commutators

Recall:
$$\Sigma^2 = \{ f \in \mathbb{R}\langle \underline{X} \rangle \mid f = \sum_i g_i^* g_i \text{ for some } g_i \in \mathbb{R}\langle \underline{X} \rangle \}$$

Definition

$$\Theta^2 := \{ f \in \mathbb{R} \langle \underline{X} \rangle \mid f \overset{\operatorname{cyc}}{\sim} g \text{ for some } g \in \Sigma^2 \}$$

Example

$$f = X^2Y^2 - XYXY$$
:

$$f \stackrel{\text{cyc}}{\sim} \frac{1}{2} (XY^2X + YX^2Y - XYXY - YXYX)$$
$$= \frac{1}{2} (XY - YX)^* (XY - YX) \in \Sigma^2$$

Fact 1 + Fact 2'

If $f \in \Theta^2$, then $Tr(f(\underline{A})) \geq 0$ for all $\underline{A} \in S^n$.

Trace optimizatior

Let $f \in \mathbb{R}\langle \underline{X} \rangle$.

Optimization problem

$$f_* := \inf\{\operatorname{Tr}\left(f(\underline{A})\right) \mid \underline{A} \in \mathcal{S}^n\}.$$

Trace optimizatior

Let $f \in \mathbb{R}\langle \underline{X} \rangle$.

Optimization problem

$$f_* := \inf\{\operatorname{Tr}\left(f(\underline{A})\right) \mid \underline{A} \in \mathcal{S}^n\}.$$

"SOS" -Relaxation

$$f_{\mathrm{sos}} := \sup\{a \in \mathbb{R} \mid f - a \in \Theta^2\}.$$

Tracial Gram matrix method

Proposition (Klep, Schweighofer)

Let $f \in \mathbb{R}\langle \underline{X} \rangle$. Then $f \in \Theta^2$ if and only if there is a $G \succeq 0$ such that

$$f \stackrel{\text{cyc}}{\sim} \mathbf{v}^* G \mathbf{v},$$

where ${\bf v}$ is a vector consisting of all words $w \in \langle \underline{X} \rangle$ with

$$mindeg(f) \le 2 \deg(w) \le \deg(f)$$
.

Given such a $G \succeq 0$ of rank r, one can construct $g_1, \ldots, g_r \in \mathbb{R}\langle \underline{X} \rangle$ such that

$$f \stackrel{\text{cyc}}{\sim} \sum_{i=1}^{r} g_i^* g_i$$

and vice versa.

Tracial Gram matrix method

Proposition (Klep, Schweighofer)

Let $f \in \mathbb{R}\langle \underline{X} \rangle$. Then $f \in \Theta^2$ if and only if there is a $G \succeq 0$ such that

$$f \stackrel{\text{cyc}}{\sim} \mathbf{v}^* G \mathbf{v},$$

where ${\bf v}$ is a vector consisting of all words $w \in \langle \underline{X} \rangle$ with

$$mindeg(f) \le 2 \deg(w) \le \deg(f)$$
.

Given such a $G \succeq 0$ of rank r, one can construct $g_1, \ldots, g_r \in \mathbb{R}\langle \underline{X} \rangle$ such that

$$f \stackrel{\text{cyc}}{\sim} \sum_{i=1}^{r} g_i^* g_i$$

and vice versa.

The degree bound can be improved using a tracial version of the Newton polytope.

Example

$$f = X^2Y^2 - XYXY$$

$$\mathbf{v} = [X^2, XY, YX, Y^2]^T$$
 $\mathbf{v}^* = [X^2, YX, XY, Y^2]$

$$\mathbf{v}^*\mathbf{v} = \begin{bmatrix} X^4 & X^3Y & X^2YX & X^2Y^2 \\ YX^3 & YX^2Y & YXYX & YXY^2 \\ XYX^2 & XYXY & XY^2X & XY^3 \\ Y^2X^2 & Y^2XY & Y^3X & Y^4 \end{bmatrix}$$

Example

$$f = X^2Y^2 - XYXY$$

$$\mathbf{v} = [X^2, XY, YX, Y^2]^T$$
 $\mathbf{v}^* = [X^2, YX, XY, Y^2]$

$$\mathbf{v}^*\mathbf{v} = \begin{bmatrix} X^4 & X^3Y & X^2YX & X^2Y^2 \\ YX^3 & YX^2Y & YXYX & YXY^2 \\ XYX^2 & XYXY & XY^2X & XY^3 \\ Y^2X^2 & Y^2XY & Y^3X & Y^4 \end{bmatrix}$$

$$ightharpoonup f \overset{\operatorname{cyc}}{\sim} \mathbf{v}^* G \mathbf{v}$$

$$G=rac{1}{2}\left[egin{array}{cccc} 0 & 0 & 0 & 0 \ 0 & 1 & -1 & 0 \ 0 & -1 & 1 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight]\succeq 0$$

$$f \stackrel{\text{cyc}}{\sim} \frac{1}{2} (XY - YX)^* (XY - YX)$$

Back to trace optimization

- ▶ Let $f \in \mathbb{R}\langle \underline{X} \rangle$
 - Problem:

$$f_* = \inf\{\operatorname{Tr}\left(f(\underline{A})\right) \mid \underline{A} \in \mathcal{S}^n\}$$

Back to trace optimizatio

- ▶ Let $f \in \mathbb{R}\langle \underline{X} \rangle$
 - Problem:

$$f_* = \inf\{\operatorname{Tr}\left(f(\underline{A})\right) \mid \underline{A} \in \mathcal{S}^n\}$$

SOS relaxation:

$$f_{\rm sos} = \sup_{
m s.t.} a \ s.t. \ f-a \in \Theta^2.$$

Formulation as SDP

$$f_{\mathrm{sos}} = \sup_{\mathbf{s.t.}} f_{1} - \langle E_{11}, G \rangle$$

 $\mathbf{s.t.}$ $f - f_{1} \overset{\mathrm{cyc}}{\sim} \mathbf{v}^{\mathsf{T}} (G - g_{11}E_{11})\mathbf{v}$
 $G \succeq 0.$

Back to trace optimization

- ▶ Let $f \in \mathbb{R}\langle \underline{X} \rangle$
 - Problem:

$$f_* = \inf\{\operatorname{Tr}\left(f(\underline{A})\right) \mid \underline{A} \in \mathcal{S}^n\}$$

SOS relaxation:

$$f_{\rm sos} = \sup_{{\sf s.t.}} a \ {\sf s.t.} \ f-a \in \Theta^2.$$

Formulation as SDP

Fact

Let $f \in \mathbb{R}\langle X \rangle$. Then $f_{\text{sos}} \leq f_*$.

- ~
- Let $f \in \mathbb{R}\langle \underline{X} \rangle_{2d}$
 - SOS relaxation:

$$f_{\rm sos} = \sup_{{
m s.t.}} a \ {
m s.t.} \ f-a \in \Theta^2.$$

Dual SDP

$$f^{\mathrm{sos}} = \inf_{\mathsf{S.t.}} \ L(f)$$

s. t. $L: \mathbb{R}\langle \underline{X}
angle_{2d} o \mathbb{R}$ is a linear *-map $L(1) = 1$
 $L(p) \geq 0$ for all $p \in \Theta^2 \cap \mathbb{R}\langle \underline{X}
angle_{2d}$.

- Let $f \in \mathbb{R}\langle \underline{X} \rangle_{2d}$
 - SOS relaxation:

$$f_{
m sos} = \sup_{
m s.t.} a \ f-a \in \Theta^2.$$

Dual SDP

$$f^{\mathrm{sos}} = \inf egin{array}{ll} L(f) \ &\mathrm{s.\,t.} & L: \mathbb{R}\langle \underline{X}
angle_{2d}
ightarrow \mathbb{R} ext{ is a linear *-map} \ &L(1) = 1 \ &L(p) \geq 0 ext{ for all } p \in \Theta^2 \cap \mathbb{R}\langle \underline{X}
angle_{2d}. \end{array}$$

Theorem

We have strong duality, i.e. $f^{sos} = f_{sos}$.

- In general f_{sos} might be different from f_*
 - Let

$$f = X_1^2 X_2^4 + X_1^4 X_2^2 - 3X_1^2 X_2^2 + 1,$$

then $f_* = 0$ but $f_{\rm sos} = -\infty$.

- In general $f_{\rm sos}$ might be different from f_*
 - Let

$$f = X_1^2 X_2^4 + X_1^4 X_2^2 - 3X_1^2 X_2^2 + 1,$$

then $f_* = 0$ but $f_{\rm sos} = -\infty$.

Question

When is the relaxation optimal, i.e. $f_{sos} = f_*$?

The truncated tracial moment problem

$$f^{\mathrm{sos}} = \inf \quad L(f)$$

s.t. $L : \mathbb{R}\langle \underline{X} \rangle_{2d} \to \mathbb{R}$ is a linear *-map $L(1) = 1$
 $L(p) \geq 0$ for all $p \in \Theta^2 \cap \mathbb{R}\langle \underline{X} \rangle_{2d}$.

N_

The truncated tracial moment problem

$$f^{\mathrm{sos}} = \inf \ L(f)$$

s.t. $L : \mathbb{R}\langle \underline{X} \rangle_{2d} \to \mathbb{R}$ is a linear *-map $L(1) = 1$
 $L(p) \ge 0$ for all $p \in \Theta^2 \cap \mathbb{R}\langle \underline{X} \rangle_{2d}$.

▶ L is tracial, i.e. L(pq - qp) = 0 for all $p, q \in \mathbb{R}\langle \underline{X} \rangle_{2d}$.

The truncated tracial moment problen

$$f^{\mathrm{sos}} = \inf \ \ \, L(f)$$
 s.t. $L: \mathbb{R}\langle \underline{X}
angle_{2d} o \mathbb{R}$ is a linear *-map $L(1) = 1$ $L(p) \geq 0$ for all $p \in \Theta^2 \cap \mathbb{R}\langle \underline{X}
angle_{2d}$.

▶ L is tracial, i.e. L(pq - qp) = 0 for all $p, q \in \mathbb{R}\langle \underline{X} \rangle_{2d}$.

Definition (Truncated tracial moment problem)

For which tracial linear functionals $L \in (\mathbb{R}\langle \underline{X} \rangle_{2d})^*$ exist some $s \in \mathbb{N}$ and a probability measure μ on $(\mathcal{S}\mathbb{R}^{s \times s})^n$, such that for all $g \in \mathbb{R}\langle \underline{X} \rangle_{2d}$:

$$L(g) = \int \operatorname{Tr}(g(\underline{A})) d\mu(\underline{A})$$
?

- ightharpoonup s = 1: Classical moment problem
- $\triangleright \mu$ can be chosen to be finitely atomic

$$f^{\mathrm{sos}} = \inf \quad \mathcal{L}(f)$$

s.t. $\mathcal{L}: \mathbb{R}\langle \underline{X}
angle_{2d} o \mathbb{R}$ is a linear *-map $\mathcal{L}(1) = 1$
 $\mathcal{L}(p) \geq 0$ for all $p \in \Theta^2 \cap \mathbb{R}\langle \underline{X}
angle_{2d}$.

lacksquare Let $f^{
m sos}$ be attained and let $L^{
m sos}$ denote the optimizing L

Optimality criterior

Let f^{sos} be attained and let L^{sos} denote the optimizing L

Theorem

If L^{\cos} has a representation

$$L^{\mathrm{sos}}(g) = \int \mathsf{Tr}(g(\underline{A})) \, d\mu(\underline{A}) \quad (g \in \mathbb{R}\langle \underline{X} \rangle_{2d})$$

for some $s \in \mathbb{N}$ and a probability measure μ on $(S\mathbb{R}^{s \times s})^n$, then the SOS relaxation is exact: $f_{sos} = f^{sos} = f_*$.

Optimality criterior

Let $f^{\rm sos}$ be attained and let $L^{\rm sos}$ denote the optimizing L

Theorem

If L^{\cos} has a representation

$$L^{\mathrm{sos}}(g) = \int \mathsf{Tr}(g(\underline{A})) \, d\mu(\underline{A}) \quad (g \in \mathbb{R}\langle \underline{X}
angle_{2d})$$

for some $s \in \mathbb{N}$ and a probability measure μ on $(S\mathbb{R}^{s \times s})^n$, then the SOS relaxation is exact: $f_{sos} = f^{sos} = f_*$.

lacksquare $\exists \lambda_i \in \mathbb{R}_{>0}$, with $\sum_i \lambda_i = 1$, and $\underline{A}^{(i)} \in (\mathcal{S}\mathbb{R}^{s \times s})^n$, such that

$$(f_{\text{sos}} =) f^{\text{sos}} = L^{\text{sos}}(f) = \sum_{i} \lambda_{i} \operatorname{Tr}(f(\underline{A}^{(i)})).$$

Optimality criterior

Let $f^{\rm sos}$ be attained and let $L^{\rm sos}$ denote the optimizing L

Theorem

If L^{\cos} has a representation

$$L^{\mathrm{sos}}(g) = \int \mathsf{Tr}(g(\underline{A})) \, d\mu(\underline{A}) \quad (g \in \mathbb{R}\langle \underline{X} \rangle_{2d})$$

for some $s \in \mathbb{N}$ and a probability measure μ on $(S\mathbb{R}^{s \times s})^n$, then the SOS relaxation is exact: $f_{sos} = f^{sos} = f_*$.

lacksquare $\exists \lambda_i \in \mathbb{R}_{>0}$, with $\sum_i \lambda_i = 1$, and $\underline{A}^{(i)} \in (\mathcal{S}\mathbb{R}^{s imes s})^n$, such that

$$(f_{\text{sos}} =) f^{\text{sos}} = L^{\text{sos}}(f) = \sum_{i} \lambda_{i} \operatorname{Tr}(f(\underline{A}^{(i)})).$$

▶ Since $Tr(f(\underline{A}^{(i)})) \ge f_{SOS}$ for each i, we get

$$f_* \leq \operatorname{Tr}(f(\underline{A}^{(i)})) = f_{sos} \leq f_*.$$

Tracial Hankel matrix

lacktriangle Associate to a tracial $L \in (\mathbb{R}\langle \underline{X}
angle_{2d})^*$ the bilinear form

$$B_L: \mathbb{R}\langle \underline{X} \rangle_d \times \mathbb{R}\langle \underline{X} \rangle_d, (f,g) \mapsto L(f^*g).$$

Definition

The tracial Hankel matrix $M_k(L)$ of order k, indexed by $u, v \in \langle \underline{X} \rangle_k$, is given by

$$M_k(L) := [L(u^*v)]_{u,v}.$$

Tracial Hanke

Associate to a tracial $L \in (\mathbb{R}\langle \underline{X} \rangle_{2d})^*$ the bilinear form

$$B_L: \mathbb{R}\langle \underline{X} \rangle_d \times \mathbb{R}\langle \underline{X} \rangle_d, (f,g) \mapsto L(f^*g).$$

Definition

The tracial Hankel matrix $M_k(L)$ of order k, indexed by $u, v \in \langle \underline{X} \rangle_k$, is given by

$$M_k(L) := [L(u^*v)]_{u,v}.$$

Theorem (B., Klep)

Let $L \in (\mathbb{R}\langle \underline{X} \rangle_{2d})^*$ be tracial with

- $M_d(L) \succeq 0$
- 2 rank $M_d(L) = \operatorname{rank} M_{d-1}(L) =: s$.

Then L has a representing measure on $(S\mathbb{R}^{s\times s})^n$.

Optimality condition

Theorem

Let $f \in \mathbb{R}\langle \underline{X}
angle_{2d}$ and let f^{sos} be attained. If the optimizer L^{sos} satisfies

- $M_d(L^{\rm sos}) \succeq 0$

then the SOS relaxation is exact.

Furthermore, one can construct tracial optimizers.

Optimality conditior

Theorem

Let $f \in \mathbb{R}\langle \underline{X} \rangle_{2d}$ and let f^{sos} be attained. If the optimizer L^{sos} satisfies

- $M_d(L^{sos}) \succeq 0$

then the SOS relaxation is exact.

Furthermore, one can construct tracial optimizers.

- "finite GNS construction"
 - $L = L^{sos}$ induces a positive definite bilinear form on $E = ran M_d$.
 - Let \hat{X}_i be the right multiplication with X_i on E
 - \hat{X}_i is well defined and symmetric $o A_i \in \mathcal{S}\mathbb{R}^{s imes s}$
- Artin-Wedderburn block decomposition of $B(A_1, \ldots, A_n)$
 - unitary U such that $U^T A_i U = \bigoplus_i A_i^{(i)}$
 - each $A^{(i)} = (A_1^{(i)}, \dots, A_n^{(i)})$ is a trace optimizer
- ▶ Implemented in NCSOStools (http://ncsostools.fis.unm.si)

$$\begin{split} f &= 3 + X_1^2 + 2X_1^3 + 2X_1^4 + X_1^6 - 4X_1^4X_2 + X_1^4X_2^2 + 4X_1^3X_2 + 2X_1^3X_2^2 - 2X_1^3X_2^3 \\ &\quad + 2X_1^2X_2 - X_1^2X_2^2 + 8X_1X_2X_1X_2 + 2X_1^2X_2^3 - 4X_1X_2 + 4X_1X_2^2 \\ &\quad + 6X_1X_2^4 - 2X_2 + X_2^2 - 4X_2^3 + 2X_2^4 + 2X_2^6. \end{split}$$

$$\begin{split} f &= 3 + X_1^2 + 2X_1^3 + 2X_1^4 + X_1^6 - 4X_1^4X_2 + X_1^4X_2^2 + 4X_1^3X_2 + 2X_1^3X_2^2 - 2X_1^3X_2^3 \\ &\quad + 2X_1^2X_2 - X_1^2X_2^2 + 8X_1X_2X_1X_2 + 2X_1^2X_2^3 - 4X_1X_2 + 4X_1X_2^2 \\ &\quad + 6X_1X_2^4 - 2X_2 + X_2^2 - 4X_2^3 + 2X_2^4 + 2X_2^6. \end{split}$$

- The trace-minimum f_* of f is 0.2842:
- ▶ Tracial Hankel matrix $M_3(L^{sos})$ is of rank 4 and satisfies the optimality condition.
- \hat{X}_i is given by 4 × 4 matrices:

$$\hat{X}_1 \ = \ \begin{bmatrix} -1.0761 & 0.1802 & 0.5107 & 0.2590 \\ 0.1802 & -0.3393 & -0.1920 & 0.9428 \\ 0.5107 & -0.1920 & 0.5094 & 0.0600 \\ 0.2590 & 0.9428 & 0.0600 & -0.3020 \end{bmatrix}$$

$$\hat{X}_2 \ = \ \begin{bmatrix} 0.7108 & 0.7328 & 0.1043 & 0.4415 \\ 0.7328 & -0.3706 & 0.4757 & -0.2147 \\ 0.1043 & 0.4757 & 0.0776 & -0.9102 \\ 0.4415 & -0.2147 & -0.9102 & 0.1393 \end{bmatrix} .$$

~

lacktriangle Artin-Wedderburn block decomposition of \hat{X}_1,\hat{X}_2

$$\begin{array}{lll} A_1 & = & \left[\begin{smallmatrix} -1.1843 & 0 & -0.2095 & 0.3705 \\ 0 & -1.1843 & 0.3705 & 0.2095 \\ -0.2095 & 0.3705 & 0.5803 & 0 \\ 0.3705 & 0.2095 & 0 & 0.5803 \end{smallmatrix} \right], \\ A_2 & = & \left[\begin{smallmatrix} -0.1743 & 0 & 0.4851 & -0.8577 \\ 0 & -0.1743 & -0.8577 & -0.4851 \\ 0.4851 & -0.8577 & 0.4529 & 0 \\ -0.8577 & -0.4851 & 0 & 0.4529 \end{smallmatrix} \right]. \end{array}$$

Example – continue

lacktriangle Artin-Wedderburn block decomposition of \hat{X}_1,\hat{X}_2

$$\begin{array}{lll} A_1 & = & \left[\begin{smallmatrix} -1.1843 & 0 & -0.2095 & 0.3705 \\ 0 & -1.1843 & 0.3705 & 0.2095 \\ -0.2095 & 0.3705 & 0.5803 & 0 \\ 0.3705 & 0.2095 & 0 & 0.5803 \end{smallmatrix} \right], \\ A_2 & = & \left[\begin{smallmatrix} -0.1743 & 0 & 0.4851 & -0.8577 \\ 0 & -0.1743 & -0.8577 & -0.4851 \\ 0.4851 & -0.8577 & 0.4529 & 0 \\ -0.8577 & -0.4851 & 0 & 0.4529 \end{smallmatrix} \right]. \end{array}$$

Unitary change gives real trace optimizers

$$A_1' = \left[\begin{smallmatrix} 0.674861 & 0.0731923 \\ 0.0731923 & -1.27886 \end{smallmatrix} \right], \quad A_2' = \left[\begin{smallmatrix} 0.0705101 & -1.03179 \\ -1.03179 & 0.20809 \end{smallmatrix} \right].$$

$$ightharpoonup Tr(f(A'_1, A'_2)) = 0.2842$$

Conclusion

- SOS relaxation for trace optimization
 - Based on sums of hermitian squares and commutators
- Optimality criterion
 - Based on the truncated tracial moment problem
 - Rank condition on the bilinear form induced by optimizing linear form of dual SDP
 - Allows to extract trace optimizers

Conclusion

- SOS relaxation for trace optimization
 - Based on sums of hermitian squares and commutators
- Optimality criterion
 - Based on the truncated tracial moment problem
 - Rank condition on the bilinear form induced by optimizing linear form of dual SDP
 - Allows to extract trace optimizers

Outline

- Rational SOS certificates using Peyrl/Parrilo
- ▶ SOS relaxation for trace optimization on semialgebraic sets
- Asymptotic convergence ?