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nc polynomials

» R(X) free algebra on X = (X1,...,X,)
» Polynomials in the non-commuting variables Xi, ..., X,
s f=3, fuw, we (X),f, R

» R(X)k ={f e R(X) | deg f < k}
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R(X) free algebra on X = (X1,...,X,)

Polynomials in the non-commuting variables Xi, ..., X,
f=>,fww we(X),f,eR

R(X)kx = {f e R(X) | deg f < k}

Evaluation in symmetric matrices A = (Ay,...,A,) € (SR***)"
f(A) = Als + i, AL+ fx, Ao + ... + fX12X3X23A%A3Ag +
Sn — U (SRSXS)”

seN

What is the minimal trace a polynomial f € R(X) can attain?

Can we find a relaxation to compute a bound via an SDP?

— Sums of hermitian squares and commutators



Sums of hermitian squares

» Involution * : R(X) — R(X) compatible with transposition ':

f*(A) = f(A)T forall Ac S"
Definition

T2 :={f eR(X) | f =) g"gifor some g € R(X), r € No}
i=1




Sums of hermitian squares

» Involution * : R(X) — R(X) compatible with transposition ':

f*(A) = f(A)T forall Ac S"
Definition

T2 :={f eR(X) | f =) g"gifor some g € R(X), r € No}
i=1

Fact 1
If f € 2, then f(A) is positive semidefinite for all A € S”.




Involution * : R(X) — R(X) compatible with transposition :

F(A) = F(A)T for all Ac S

Y2 ={feRX)|f= Zg,-*g,- for some g; € R(X),r € No}
i=1

If f € 2, then f(A) is positive semidefinite for all A € S”.

For all p,q € R(X): Tr((pg — gp)(A)) =0 for all A€ S".

We call [p, q] = pq — gp for p, g € R(X) a commutator.



my Cyclic equivalence

Definition

f,g € R(X) are cyclically equivalent (f T g) if

.
= = Z[p;, qi] for some r € No, pi, gi € R(X).
i=1




Cyclic equivalence

Definition

f,g € R(X) are cyclically equivalent (f 2L g)if

r
f—g= Z[p,-, qi] for some r € Ny, p;, gi € R(X).
i=1

Example
F=2XY2X — Y2X2 1 2YXY ¥ g = X2Y2 + 2XY2:

f—g=[XY? X]+[X, Y2X] +2[Y, XY].

Fact 2’
If f X g, then Tr(f(A)) = Tr(g(A)) for all A 5"




Sums of hermitian squares and commutators

Recall: 2 = {f e R(X) | f =, &g for some g; € R(X)}

Definition
2. —{feR(X)|f X g for some g € 2}

Example
f=X2Y2 - XYXY:

f X l(XYzX + YX?Y — XYXY — YXYX)

= §(XY — YX)*(XY — YX) € X2




Sums of hermitian squares and commutators

Recall: 2 = {f e R(X) | f =, &g for some g; € R(X)}

Definition
2. —{feR(X)|f X g for some g € 2}

Example

f=X2Y2 - XYXY:
f X l(XY2X + YX?Y — XYXY — YXYX)

= 5(XY — YX)*(XY — YX) € X2

Fact 1 4+ Fact 2’
If f € ©2, then Tr(f(A)) >0 forall Ac S".




Trace optimization

Let f € R(X).

» Optimization problem




my [race optimization

Let £ € R(X).

» Optimization problem

» "SOS" -Relaxation




Let f € R(X). Then f € ©2 if and only if there is a G = 0 such that
f L v*Gy,
where v is a vector consisting of all words w € (X) with
mindeg(f) < 2deg(w) < deg(f).

Given such a G = 0 of rank r, one can construct gy, ..., g € R(X)

such that
zg, .

and vice versa.




Let f € R(X). Then f € ©2 if and only if there is a G > 0 such that
f L v*Gy,
where v is a vector consisting of all words w € (X) with
mindeg(f) < 2deg(w) < deg(f).

Given such a G = 0 of rank r, one can construct gy, ..., g € R(X)

such that
zg, .

and vice versa.

The degree bound can be improved using a tracial version of the
Newton polytope.



- f = X2Y2 - XYXY
- v = [X2 XY, YX, YT

X4
yx3
XYX?
Y2X?2

Vi = [X2, YX, XY, Y?]

X3y
Yx2y
XYXY
Y2XY

X2YX
YXYX
XY?X

Y3X

X2Y?
YXY?2
XY3
Y4



f=X2Y2 - XYXY
v =[X2, XY, ¥X, YT Vi = [X2, YX, XY, Y?]

v

v

X+ X3y X?vX X?y?
YX3 YX2Y YXYX YXY?

Y4

VV=1 Xyx2 XYxy Xvy2x — Xy?
Y2X2 y2xy @ y3Xx
» F L v Gy

0 0 00
1o 1 -1 0

== -

G=510 1 10]2%0
0 0 00

v

L LXY — YX)* (XY — YX)
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Back to trace optimization

- Let f € R(X)

» Problem:
f. =inf{Tr (f(A)) |AcS"}

» SOS relaxation:

7‘;osz sup a
s.t. f—ac©2

» Formulation as SDP

féos = sup ﬁ - <E117 G>
s. t. f—h XL VT(G — gllEll)V
G = 0.




Back to trace optimization

- Let f € R(X)

» Problem:

» SOS relaxation:

» Formulation as

f.=inf{Tr (f(4)) | A€ S}

Fact
Let f € R(X). Then f,

f;os = sup a
s.t. f—ac©?
SDP
féos = sup ﬁ - <E117 G>
s. t. f—h XL VT(G — g]_lE]_l)V
G = 0.
s < F.




~ Let f € R(X)oqg

» SOS relaxation:

» Dual SDP

7':sos: sup a
s.t. f—a€c©2

fSOS —

inf

s. t.

L(f)
L:R(X)2qg — R is a linear *-map
L(1)=1

L(p) >0 for all p € @2 NR(X)2q.




~ Let f € R(X)oqg

» SOS relaxation:

7':sos: sup a
s.t. f—a€c©2

» Dual SDP

55 = inf  L(f)
s.t. L:R(X)2g — R is a linear x-map
L(1)=1
L(p) >0 for all p € @2 NR(X)2q.

Theorem
We have strong duality, i.e. 55 = f.




my Optimality

» In general f,os might be different from f,

» Let
f=X2Xs + XPXF —3XZXZ +1,

then f, = 0 but £,s = —c.



Optimality

» In general f,os might be different from f,

» Let
f=X2Xs + XPXF —3XZXZ +1,

then f, = 0 but £,s = —c.

Question J

When is the relaxation optimal, i.e. fios = £.7




The truncated tracial moment problem

f'SOS —

inf
s. t.

L(f)
L:R(X)2g — R is a linear x-map
L(1)=1

L(p) > 0 for all p € @2 NR(X)og.




The truncated tracial moment problem

f'SOS —

inf
s. t.

L(f)
L:R(X)2g — R is a linear x-map
L(1)=1

L(p) > 0 for all p € @2 NR(X)sq.

» Lis tracial, i.e. L(pg — gp) =0 for all p,q € R(X)2q.




fsos = inf  L(f)
s.t. L:R(X)2g — Ris a linear x-map
L(1)=1
L(p) >0 forall p € ©2NR(X)2y

L is tracial, i.e. L(pg — gp) =0 for all p,q € R(X)24.

For which tracial linear functionals L € (R({X)24)* exist some s € N
and a probability measure p on (SR***)", such that for all
g € R(X)2q:

L) = [ Trg(4) du(ay?

s = 1: Classical moment problem

1 can be chosen to be finitely atomic



Optimality criterion

55 = inf  L(f)
s.t. L:R(X)2y — Ris a linear x-map
L(1)=1
L(p) > 0 for all p € @2 NR(X)sq.

» Let £5°° be attained and let L5°° denote the optimizing L



Let /5°° be attained and let [5°® denote the optimizing L

If [5°% has a representation

1°(g) = / Tr(g(A)) du(A) (g € R(X)20)

for some s € N and a probability measure i on (SR**®)", then the
SOS relaxation is exact: fyos = 5% = f,.




Let /5°° be attained and let [5°® denote the optimizing L

If [5°% has a representation

Eww—/ﬂwm»MM)@emmm)

for some s € N and a probability measure i on (SR**®)", then the
SOS relaxation is exact: fyos = 5% = f,.

JAi € Ry, with ;A\ =1, and Al) ¢ (SR**%)" such that

(s =)F" = L5(F) = 3 X TH(F(AD)).



Let /5°° be attained and let [5°® denote the optimizing L

If [5°% has a representation

Eww—/ﬂwm»MM)@emmm)

for some s € N and a probability measure i on (SR**®)", then the
SOS relaxation is exact: fyos = 5% = f,.

JAi € Ry, with ;A\ =1, and Al) ¢ (SR**%)" such that

(s =)F" = L5(F) = 3 X TH(F(AD)).

Since Tr(f(A()) > £ for each i, we get

f. < Tr(F(AD)) = fios < fo.



Tracial Hankel matrix

» Associate to a tracial L € (R(X)24)* the bilinear form

BL:R(X)q x R(X)q,(f, &) = L(f"g).

Definition
The tracial Hankel matrix My (L) of order k, indexed by u,v € (X)y, is
given by

My (L) == [L(u"V)]u,v-




Associate to a tracial L € (R(X)24)* the bilinear form

BL:R(X)a x R(X)q, (f,8) = L(f"g).

The tracial Hankel matrix My (L) of order k, indexed by u,v € (X)x, is
given by
My (L) :== [L(u*V)]u,v-

Let L € (R(X)24)* be tracial with
Mgy(L) =0
rank My (L) = rank My_1(L) = s.

Then L has a representing measure on (SR**%)".




Optimality condition

Theorem

Let f € R(X)2q and let £5°% be attained. If the optimizer L5°° satisfies
My(L%) = 0
rank My (L5%%) = rank My_1(L5°®%),

then the SOS relaxation is exact.
Furthermore, one can construct tracial optimizers.




Let f € R(X)24 and let £5°° be attained. If the optimizer L5 satisfies
Md(Lsos) =0
rank My (L5°%) = rank My_1 (L),

then the SOS relaxation is exact.
Furthermore, one can construct tracial optimizers.

"finite GNS construction"

L = [5°% induces a positive definite bilinear form on E = ran My.
Let X; be the right multiplication with X; on E
X; is well defined and symmetric — A; € SRs**°

Artin-Wedderburn block decomposition of B(A1, ..., Ap)
unitary U such that UTA;U = EB;AJ(-i)
each A() = (A(li), . ,AS,")) is a trace optimizer
Implemented in NCSOStools (http://ncsostools.fis.unm.si)



f=3+XP+2X2+2XH+ X2 —aX{Xo + XF X3 +AXE X +2XEXE —2X3 X3
+2X2Xo — XEXF 48X Xo X1 Xo + 2X2 X3 — 4X1 Xo + 4X, X3
+6X1 X5 — 2Xo + X3 — 4X3 +2X3 +2X8.



f=3+XZ+2X2+2X] + X2 —4X{ Xo + X X3 +4XE Xo +2XP X5 —2X2 X5
+2XEXo — XPXF 48X  Xo X1 X + 2XP X5 — 4X1 Xo + 4X1 X5
+6X1 X5 — 2Xo + X3 — 4X3 +2X5 +2X8.

The trace-minimum f, of f is 0.2842:

Tracial Hankel matrix M3(L3°%) is of rank 4 and satisfies the optimality
condition.

A

X; is given by 4 x 4 matrices:

A

0.1802 —0.3393 —0.1920 0.0428
X1

0.5107 —0.1920 0.5094 0.0600

—1.0761 0.1802 0.5107 0.2590
[ } ’
0.2590 0.9428 0.0600 —0.3020

0.7108 0.7328 0.1043 0.4415
)"< _ 0.7328 —0.3706 0.4757 —0.2147
2 = 0.1043 0.4757 0.0776 —0.9102

0.4415 —0.2147 —0.9102 0.1393



Artin-Wedderburn block decomposition of X1, X5

0 —1.1843 0.3705 0.2095
—0.2095 0.3705 0.5803 0
0.3705 0.2095 0 0.5803

|: —0.1743 0 0.4851 —0.8577 :|

—1.1843 0 —0.2095 0.3705

0 —0.1743 —0.8577 —0.4851
0.4851 —0.8577 0.4529 0
—0.8577 —0.4851 0 0.4529

Ay =



Artin-Wedderburn block decomposition of X1, X5

0 —1.1843 0.3705 0.2095
—0.2095 0.3705 0.5803 0
0.3705 0.2095 0 0.5803

|: —0.1743 0 0.4851 —0.8577 :|

—1.1843 0 —0.2095 0.3705

0 —0.1743 —0.8577 —0.4851
0.4851 —0.8577 0.4529 0
—0.8577 —0.4851 0 0.4529

Ay =

Unitary change gives real trace optimizers

A = [0.674861 0.0731923] I [0.0705101 —1.03179}
1 — [0.0731923 —1.27886 | » 2 — | —1.03179 0.20809

Tr(F(A}, Ab)) = 0.2842



SOS relaxation for trace optimization

Based on sums of hermitian squares and commutators

Optimality criterion
Based on the truncated tracial moment problem
Rank condition on the bilinear form induced by optimizing linear

form of dual SDP
Allows to extract trace optimizers



SOS relaxation for trace optimization

Based on sums of hermitian squares and commutators

Optimality criterion

Based on the truncated tracial moment problem
Rank condition on the bilinear form induced by optimizing linear

form of dual SDP
Allows to extract trace optimizers

Outline
Rational SOS certificates using Peyrl/Parrilo

SOS relaxation for trace optimization on semialgebraic sets

Asymptotic convergence ?
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