Trace optimization of nc polynomials

Sabine Burgdorf
(joint work with K. Cafuta, I. Klep, J. Povh)

SIAM Conference on Optimization 2011
Algebraic Geometry and Optimization

Universität
Konstanz

nc polynomials

- $\mathbb{R}\langle\underline{X}\rangle$ free algebra on $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$
- Polynomials in the non-commuting variables X_{1}, \ldots, X_{n}

$$
f=\sum_{w} f_{w} w, w \in\langle\underline{X}\rangle, f_{w} \in \mathbb{R}
$$

- $\mathbb{R}\langle\underline{X}\rangle_{k}=\{f \in \mathbb{R}\langle\underline{X}\rangle \mid \operatorname{deg} f \leq k\}$
- $\mathbb{R}\langle\underline{X}\rangle$ free algebra on $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$
- Polynomials in the non-commuting variables X_{1}, \ldots, X_{n}

$$
f=\sum_{w} f_{w} w, w \in\langle\underline{X}\rangle, f_{w} \in \mathbb{R}
$$

- $\mathbb{R}\langle\underline{X}\rangle_{k}=\{f \in \mathbb{R}\langle\underline{X}\rangle \mid \operatorname{deg} f \leq k\}$
- Evaluation in symmetric matrices $\underline{A}=\left(A_{1}, \ldots, A_{n}\right) \in\left(\mathcal{S} \mathbb{R}^{s \times s}\right)^{n}$

$$
f(\underline{A})=f_{1} 1_{s}+f_{X_{1}} A_{1}+f_{X_{2}} A_{2}+\ldots+f_{X_{1}^{2} X_{3} X_{2}^{3}} A_{1}^{2} A_{3} A_{2}^{3}+\ldots
$$

- $\mathcal{S}^{n}:=\bigcup_{s \in \mathbb{N}}\left(\mathcal{S} \mathbb{R}^{s \times s}\right)^{n}$
- $\mathbb{R}\langle\underline{X}\rangle$ free algebra on $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$
- Polynomials in the non-commuting variables X_{1}, \ldots, X_{n}

$$
f=\sum_{w} f_{w} w, w \in\langle\underline{X}\rangle, f_{w} \in \mathbb{R}
$$

- $\mathbb{R}\langle\underline{X}\rangle_{k}=\{f \in \mathbb{R}\langle\underline{X}\rangle \mid \operatorname{deg} f \leq k\}$
- Evaluation in symmetric matrices $\underline{A}=\left(A_{1}, \ldots, A_{n}\right) \in\left(\mathcal{S} \mathbb{R}^{s \times s}\right)^{n}$

$$
f(\underline{A})=f_{1} \mathbf{1}_{s}+f_{X_{1}} A_{1}+f_{X_{2}} A_{2}+\ldots+f_{X_{1}^{2} X_{3} X_{2}^{3}} A_{1}^{2} A_{3} A_{2}^{3}+\ldots
$$

- $\mathcal{S}^{n}:=\bigcup_{s \in \mathbb{N}}\left(\mathcal{S} \mathbb{R}^{s \times s}\right)^{n}$

Questions

11 What is the minimal trace a polynomial $f \in \mathbb{R}\langle\underline{X}\rangle$ can attain?

- $\mathbb{R}\langle\underline{X}\rangle$ free algebra on $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$
- Polynomials in the non-commuting variables X_{1}, \ldots, X_{n}

$$
f=\sum_{w} f_{w} w, w \in\langle\underline{X}\rangle, f_{w} \in \mathbb{R}
$$

- $\mathbb{R}\langle\underline{X}\rangle_{k}=\{f \in \mathbb{R}\langle\underline{X}\rangle \mid \operatorname{deg} f \leq k\}$
- Evaluation in symmetric matrices $\underline{A}=\left(A_{1}, \ldots, A_{n}\right) \in\left(\mathcal{S} \mathbb{R}^{s \times s}\right)^{n}$

$$
f(\underline{A})=f_{1} \mathbf{1}_{s}+f_{X_{1}} A_{1}+f_{X_{2}} A_{2}+\ldots+f_{X_{1}^{2} X_{3} X_{2}^{3}} A_{1}^{2} A_{3} A_{2}^{3}+\ldots
$$

- $\mathcal{S}^{n}:=\bigcup_{s \in \mathbb{N}}\left(\mathcal{S} \mathbb{R}^{s \times s}\right)^{n}$

Questions

11 What is the minimal trace a polynomial $f \in \mathbb{R}\langle\underline{X}\rangle$ can attain?
12 Can we find a relaxation to compute a bound via an SDP?
\rightarrow Sums of hermitian squares and commutators

Sums of hermitian squares

- Involution ${ }^{*}: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}\langle\underline{X}\rangle$ compatible with transposition ${ }^{T}$:

$$
f^{*}(\underline{A})=f(\underline{A})^{T} \text { for all } \underline{A} \in \mathcal{S}^{n}
$$

Definition

$$
\Sigma^{2}:=\left\{f \in \mathbb{R}\langle\underline{X}\rangle \mid f=\sum_{i=1}^{r} g_{i}{ }^{*} g_{i} \text { for some } g_{i} \in \mathbb{R}\langle\underline{X}\rangle, r \in \mathbb{N}_{0}\right\}
$$

Sums of hermitian squares

- Involution ${ }^{*}: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}\langle\underline{X}\rangle$ compatible with transposition ${ }^{T}$:

$$
f^{*}(\underline{A})=f(\underline{A})^{T} \text { for all } \underline{A} \in \mathcal{S}^{n}
$$

Definition

$$
\Sigma^{2}:=\left\{f \in \mathbb{R}\langle\underline{X}\rangle \mid f=\sum_{i=1}^{r} g_{i}{ }^{*} g_{i} \text { for some } g_{i} \in \mathbb{R}\langle\underline{X}\rangle, r \in \mathbb{N}_{0}\right\}
$$

Fact 1
If $f \in \Sigma^{2}$, then $f(\underline{A})$ is positive semidefinite for all $A \in \mathcal{S}^{n}$.

Sums of hermitian squares

- Involution ${ }^{*}: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}\langle\underline{X}\rangle$ compatible with transposition ${ }^{T}$:

$$
f^{*}(\underline{A})=f(\underline{A})^{T} \text { for all } \underline{A} \in \mathcal{S}^{n}
$$

Definition

$$
\Sigma^{2}:=\left\{f \in \mathbb{R}\langle\underline{X}\rangle \mid f=\sum_{i=1}^{r} g_{i}^{*} g_{i} \text { for some } g_{i} \in \mathbb{R}\langle\underline{X}\rangle, r \in \mathbb{N}_{0}\right\}
$$

Fact 1
If $f \in \Sigma^{2}$, then $f(\underline{A})$ is positive semidefinite for all $\underline{A} \in \mathcal{S}^{n}$.

Fact 2
For all $p, q \in \mathbb{R}\langle\underline{X}\rangle: \operatorname{Tr}((p q-q p)(\underline{A}))=0$ for all $\underline{A} \in \mathcal{S}^{n}$.

- We call $[p, q]=p q-q p$ for $p, q \in \mathbb{R}\langle\underline{X}\rangle$ a commutator.

Cyclic equivalence

Definition

$f, g \in \mathbb{R}\langle\underline{X}\rangle$ are cyclically equivalent ($f \stackrel{\text { cyc }}{\sim} g$) if

$$
f-g=\sum_{i=1}^{r}\left[p_{i}, q_{i}\right] \text { for some } r \in \mathbb{N}_{0}, p_{i}, q_{i} \in \mathbb{R}\langle\underline{X}\rangle .
$$

Cyclic equivalence

Definition

$f, g \in \mathbb{R}\langle\underline{X}\rangle$ are cyclically equivalent ($f \stackrel{\text { cyc }}{\sim} g$) if

$$
f-g=\sum_{i=1}^{r}\left[p_{i}, q_{i}\right] \text { for some } r \in \mathbb{N}_{0}, p_{i}, q_{i} \in \mathbb{R}\langle\underline{X}\rangle
$$

Example
$f=2 X Y^{2} X-Y^{2} X^{2}+2 Y X Y \stackrel{\text { cyc }}{\sim} g=X^{2} Y^{2}+2 X Y^{2}:$

$$
f-g=\left[X Y^{2}, X\right]+\left[X, Y^{2} X\right]+2[Y, X Y]
$$

Fact 2'
If $f \stackrel{\text { cyc }}{\sim} g$, then $\operatorname{Tr}(f(\underline{A}))=\operatorname{Tr}(g(\underline{A}))$ for all $\underline{A} \in \mathcal{S}^{n}$.

Sums of hermitian squares and commutators

Recall: $\Sigma^{2}=\left\{f \in \mathbb{R}\langle\underline{X}\rangle \mid f=\sum_{i} g_{i}{ }^{*} g_{i}\right.$ for some $\left.g_{i} \in \mathbb{R}\langle\underline{X}\rangle\right\}$
Definition

$$
\Theta^{2}:=\left\{f \in \mathbb{R}\langle\underline{X}\rangle \mid f \stackrel{\text { cyc }}{\sim} g \text { for some } g \in \Sigma^{2}\right\}
$$

Example
$f=X^{2} Y^{2}-X Y X Y:$

$$
\begin{gathered}
f \stackrel{\text { cyc }}{\sim} \frac{1}{2}\left(X Y^{2} X+Y X^{2} Y-X Y X Y-Y X Y X\right) \\
=\frac{1}{2}(X Y-Y X)^{*}(X Y-Y X) \in \Sigma^{2}
\end{gathered}
$$

Sums of hermitian squares and commutators

Recall: $\Sigma^{2}=\left\{f \in \mathbb{R}\langle\underline{X}\rangle \mid f=\sum_{i} g_{i}{ }^{*} g_{i}\right.$ for some $\left.g_{i} \in \mathbb{R}\langle\underline{X}\rangle\right\}$
Definition

$$
\Theta^{2}:=\left\{f \in \mathbb{R}\langle\underline{X}\rangle \mid f \stackrel{\text { cyc }}{\sim} g \text { for some } g \in \Sigma^{2}\right\}
$$

Example
$f=X^{2} Y^{2}-X Y X Y:$

$$
\begin{gathered}
f \stackrel{\text { cyc }}{\sim} \frac{1}{2}\left(X Y^{2} X+Y X^{2} Y-X Y X Y-Y X Y X\right) \\
=\frac{1}{2}(X Y-Y X)^{*}(X Y-Y X) \in \Sigma^{2}
\end{gathered}
$$

Fact $1+$ Fact 2^{\prime}
If $f \in \Theta^{2}$, then $\operatorname{Tr}(f(\underline{A})) \geq 0$ for all $\underline{A} \in \mathcal{S}^{n}$.

Trace optimization

Let $f \in \mathbb{R}\langle\underline{X}\rangle$.

- Optimization problem

$$
f_{*}:=\inf \left\{\operatorname{Tr}(f(\underline{A})) \mid \underline{A} \in \mathcal{S}^{n}\right\} .
$$

Trace optimization

Let $f \in \mathbb{R}\langle\underline{X}\rangle$.

- Optimization problem

$$
f_{*}:=\inf \left\{\operatorname{Tr}(f(\underline{A})) \mid \underline{A} \in \mathcal{S}^{n}\right\} .
$$

- "SOS" -Relaxation

$$
f_{\mathrm{sos}}:=\sup \left\{a \in \mathbb{R} \mid f-a \in \Theta^{2}\right\} .
$$

Proposition (Klep, Schweighofer)

Let $f \in \mathbb{R}\langle\underline{X}\rangle$. Then $f \in \Theta^{2}$ if and only if there is a $G \succeq 0$ such that

$$
f \stackrel{\text { cyc }}{\sim} \mathbf{v}^{*} G \mathbf{v},
$$

where \mathbf{v} is a vector consisting of all words $w \in\langle\underline{X}\rangle$ with

$$
\operatorname{mindeg}(f) \leq 2 \operatorname{deg}(w) \leq \operatorname{deg}(f)
$$

Given such a $G \succeq 0$ of rank r, one can construct $g_{1}, \ldots, g_{r} \in \mathbb{R}\langle\underline{X}\rangle$ such that

$$
f \stackrel{\mathrm{cyc}}{\sim} \sum_{i=1}^{r} g_{i}^{*} g_{i}
$$

and vice versa.

Proposition (Klep, Schweighofer)

Let $f \in \mathbb{R}\langle\underline{X}\rangle$. Then $f \in \Theta^{2}$ if and only if there is a $G \succeq 0$ such that

$$
f \stackrel{\text { cyc }}{\sim} \mathbf{v}^{*} G \mathbf{v},
$$

where \mathbf{v} is a vector consisting of all words $w \in\langle\underline{X}\rangle$ with

$$
\operatorname{mindeg}(f) \leq 2 \operatorname{deg}(w) \leq \operatorname{deg}(f)
$$

Given such a $G \succeq 0$ of rank r, one can construct $g_{1}, \ldots, g_{r} \in \mathbb{R}\langle\underline{X}\rangle$ such that

$$
f \stackrel{\mathrm{cyc}}{\sim} \sum_{i=1}^{r} g_{i}^{*} g_{i}
$$

and vice versa.
The degree bound can be improved using a tracial version of the Newton polytope.

Example

- $f=X^{2} Y^{2}-X Y X Y$
$\vee \mathbf{v}=\left[X^{2}, X Y, Y X, Y^{2}\right]^{T}$

$$
\mathbf{v}^{*}=\left[X^{2}, Y X, X Y, Y^{2}\right]
$$

$$
\mathbf{v}^{*} \mathbf{v}=\left[\begin{array}{rrrr}
X^{4} & X^{3} Y & X^{2} Y X & X^{2} Y^{2} \\
Y X^{3} & Y X^{2} Y & Y X Y X & Y X Y^{2} \\
X Y X^{2} & X Y X Y & X Y^{2} X & X Y^{3} \\
Y^{2} X^{2} & Y^{2} X Y & Y^{3} X & Y^{4}
\end{array}\right]
$$

Example

- $f=X^{2} Y^{2}-X Y X Y$
$\vee \mathbf{v}=\left[X^{2}, X Y, Y X, Y^{2}\right]^{T}$

$$
\mathbf{v}^{*}=\left[X^{2}, Y X, X Y, Y^{2}\right]
$$

$$
\mathbf{v}^{*} \mathbf{v}=\left[\begin{array}{rrrr}
X^{4} & X^{3} Y & X^{2} Y X & X^{2} Y^{2} \\
Y X^{3} & Y X^{2} Y & Y X Y X & Y X Y^{2} \\
X Y X^{2} & X Y X Y & X Y^{2} X & X Y^{3} \\
Y^{2} X^{2} & Y^{2} X Y & Y^{3} X & Y^{4}
\end{array}\right]
$$

- $f \stackrel{\text { cyc }}{\sim} v^{*} G v$

$$
G=\frac{1}{2}\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \succeq 0
$$

- $f \stackrel{\text { cyc }}{\sim} \frac{1}{2}(X Y-Y X)^{*}(X Y-Y X)$

Back to trace optimization

- Let $f \in \mathbb{R}\langle\underline{X}\rangle$
- Problem:

$$
f_{*}=\inf \left\{\operatorname{Tr}(f(\underline{A})) \mid \underline{A} \in \mathcal{S}^{n}\right\}
$$

Back to trace optimization

- Let $f \in \mathbb{R}\langle\underline{X}\rangle$
- Problem:

$$
f_{*}=\inf \left\{\operatorname{Tr}(f(\underline{A})) \mid \underline{A} \in \mathcal{S}^{n}\right\}
$$

- SOS relaxation:

$$
f_{\text {sos }}=\begin{array}{ll}
\text { sup } & a \\
\text { s. t. } & f-a \in \Theta^{2} .
\end{array}
$$

- Formulation as SDP

$$
\begin{array}{rrrl}
\hline f_{\text {sos }}= & \sup & f_{1}-\left\langle E_{11}, G\right\rangle \\
\text { s.t. } & f-f_{1} & & \\
& G & \mathbf{v}^{\top}\left(G-g_{11} E_{11}\right) \mathbf{v} \\
& \ddots & 0 .
\end{array}
$$

Back to trace optimization

- Let $f \in \mathbb{R}\langle\underline{X}\rangle$
- Problem:

$$
f_{*}=\inf \left\{\operatorname{Tr}(f(\underline{A})) \mid \underline{A} \in \mathcal{S}^{n}\right\}
$$

- SOS relaxation:

$$
f_{\text {sos }}=\begin{array}{ll}
\text { sup } & a \\
\text { s. t. } & f-a \in \Theta^{2} .
\end{array}
$$

- Formulation as SDP

$$
\begin{array}{rrrl}
\hline f_{\text {sos }}= & \sup & f_{1}-\left\langle E_{11}, G\right\rangle & \\
\text { s.t. } & f-f_{1} & & \\
& G & \mathbf{v}^{\top}\left(G-g_{11} E_{11}\right) \mathbf{v} \\
& & 0 .
\end{array}
$$

Fact
Let $f \in \mathbb{R}\langle\underline{X}\rangle$. Then $f_{\text {sos }} \leq f_{*}$.

Duality

- Let $f \in \mathbb{R}\langle\underline{X}\rangle_{2 d}$
- SOS relaxation:

$$
\begin{aligned}
f_{\text {sos }}= & \sup \\
& a \\
\text { s.t. } & f-a \in \Theta^{2} .
\end{aligned}
$$

- Dual SDP

$$
\begin{array}{ll}
f^{\text {sos }}=\inf & L(f) \\
\text { s.t. } & L: \mathbb{R}\langle\underline{X}\rangle_{2 d} \rightarrow \mathbb{R} \text { is a linear } * \text {-map } \\
& L(1)=1 \\
& L(p) \geq 0 \text { for all } p \in \Theta^{2} \cap \mathbb{R}\langle\underline{X}\rangle_{2 d} .
\end{array}
$$

Duality

- Let $f \in \mathbb{R}\langle\underline{X}\rangle_{2 d}$
- SOS relaxation:

$$
\begin{array}{ll}
f_{\text {sos }}= & \text { sup } \\
\text { s.t. } & f-a \in \Theta^{2} .
\end{array}
$$

- Dual SDP

$$
\begin{array}{ll}
f^{\text {sos }}=\inf & L(f) \\
\text { s. t. } & L: \mathbb{R}\langle\underline{X}\rangle_{2 d} \rightarrow \mathbb{R} \text { is a linear } * \text {-map } \\
& L(1)=1 \\
& L(p) \geq 0 \text { for all } p \in \Theta^{2} \cap \mathbb{R}\langle\underline{X}\rangle_{2 d} .
\end{array}
$$

Theorem
We have strong duality, i.e. $f^{\text {sos }}=f_{\text {sos }}$.

Optimality

- In general $f_{\text {sos }}$ might be different from f_{*}
- Let

$$
f=X_{1}^{2} X_{2}^{4}+X_{1}^{4} X_{2}^{2}-3 X_{1}^{2} X_{2}^{2}+1,
$$

then $f_{*}=0$ but $f_{\text {sos }}=-\infty$.

Optimality

- In general $f_{\text {sos }}$ might be different from f_{*}
- Let

$$
f=X_{1}^{2} X_{2}^{4}+X_{1}^{4} X_{2}^{2}-3 X_{1}^{2} X_{2}^{2}+1,
$$

then $f_{*}=0$ but $f_{\text {sos }}=-\infty$.

Question

When is the relaxation optimal, i.e. $f_{\text {sos }}=f_{*}$?

The truncated tracial moment problem

$$
\begin{array}{lll}
f^{\mathrm{sos}}=\inf & L(f) \\
\text { s. t. } & L: \mathbb{R}\langle\underline{X}\rangle_{2 d} \rightarrow \mathbb{R} \text { is a linear } * \text {-map } \\
& L(1)=1 \\
& L(p) \geq 0 \text { for all } p \in \Theta^{2} \cap \mathbb{R}\langle\underline{X}\rangle_{2 d} .
\end{array}
$$

The truncated tracial moment problem

$$
\begin{array}{lll}
f^{\mathrm{sos}}=\inf & L(f) \\
\text { s.t. } & L: \mathbb{R}\langle\underline{X}\rangle_{2 d} \rightarrow \mathbb{R} \text { is a linear } * \text {-map } \\
& L(1)=1 \\
& L(p) \geq 0 \text { for all } p \in \Theta^{2} \cap \mathbb{R}\langle\underline{X}\rangle_{2 d} .
\end{array}
$$

- L is tracial, i.e. $L(p q-q p)=0$ for all $p, q \in \mathbb{R}\langle\underline{X}\rangle_{2 d}$.

$$
\begin{aligned}
f^{\text {sos }}=\inf & L(f) \\
\text { s.t. } & L: \mathbb{R}\langle\underline{X}\rangle_{2 d} \rightarrow \mathbb{R} \text { is a linear } * \text {-map } \\
& L(1)=1 \\
& L(p) \geq 0 \text { for all } p \in \Theta^{2} \cap \mathbb{R}\langle\underline{X}\rangle_{2 d} .
\end{aligned}
$$

$\downarrow L$ is tracial, i.e. $L(p q-q p)=0$ for all $p, q \in \mathbb{R}\langle\underline{X}\rangle_{2 d}$.

Definition (Truncated tracial moment problem)

For which tracial linear functionals $L \in\left(\mathbb{R}\langle\underline{X}\rangle_{2 d}\right)^{*}$ exist some $s \in \mathbb{N}$ and a probability measure μ on $\left(\mathcal{S} \mathbb{R}^{s \times s}\right)^{n}$, such that for all $g \in \mathbb{R}\langle\underline{X}\rangle_{2 d}:$

$$
L(g)=\int \operatorname{Tr}(g(\underline{A})) d \mu(\underline{A}) ?
$$

- $s=1$: Classical moment problem
- μ can be chosen to be finitely atomic

Optimality criterion

$$
\begin{array}{ll}
f^{\mathrm{sos}}=\inf & L(f) \\
\text { s.t. } & L: \mathbb{R}\langle\underline{X}\rangle_{2 d} \rightarrow \mathbb{R} \text { is a linear } * \text {-map } \\
& L(1)=1 \\
& L(p) \geq 0 \text { for all } p \in \Theta^{2} \cap \mathbb{R}\langle\underline{X}\rangle_{2 d}
\end{array}
$$

- Let $f^{\text {sos }}$ be attained and let $L^{\text {sos }}$ denote the optimizing L

Optimality criterion

- Let $f^{\text {sos }}$ be attained and let $L^{\text {sos }}$ denote the optimizing L

Theorem
If $L^{\text {sos }}$ has a representation

$$
L^{\mathrm{sos}}(g)=\int \operatorname{Tr}(g(\underline{A})) d \mu(\underline{A}) \quad\left(g \in \mathbb{R}\langle\underline{X}\rangle_{2 d}\right)
$$

for some $s \in \mathbb{N}$ and a probability measure μ on $\left(\mathcal{S} \mathbb{R}^{s \times s}\right)^{n}$, then the SOS relaxation is exact: $f_{\text {sos }}=f^{\text {sos }}=f_{*}$.

Optimality criterion

- Let $f^{\text {sos }}$ be attained and let $L^{\text {sos }}$ denote the optimizing L

Theorem
If $L^{\text {sos }}$ has a representation

$$
L^{\mathrm{sos}}(g)=\int \operatorname{Tr}(g(\underline{A})) d \mu(\underline{A}) \quad\left(g \in \mathbb{R}\langle\underline{X}\rangle_{2 d}\right)
$$

for some $s \in \mathbb{N}$ and a probability measure μ on $\left(\mathcal{S} \mathbb{R}^{s \times s}\right)^{n}$, then the SOS relaxation is exact: $f_{\mathrm{sos}}=f^{\mathrm{sos}}=f_{*}$.

- $\exists \lambda_{i} \in \mathbb{R}_{>0}$, with $\sum_{i} \lambda_{i}=1$, and $\underline{A}^{(i)} \in\left(\mathcal{S} \mathbb{R}^{s \times s}\right)^{n}$, such that

$$
\left(f_{\mathrm{sos}}=\right) f^{\mathrm{sos}}=L^{\mathrm{sos}}(f)=\sum_{i} \lambda_{i} \operatorname{Tr}\left(f\left(\underline{A}^{(i)}\right)\right)
$$

Optimality criterion

- Let $f^{\text {sos }}$ be attained and let $L^{\text {sos }}$ denote the optimizing L

Theorem
If $L^{\text {sos }}$ has a representation

$$
L^{\mathrm{sos}}(g)=\int \operatorname{Tr}(g(\underline{A})) d \mu(\underline{A}) \quad\left(g \in \mathbb{R}\langle\underline{X}\rangle_{2 d}\right)
$$

for some $s \in \mathbb{N}$ and a probability measure μ on $\left(\mathcal{S} \mathbb{R}^{s \times s}\right)^{n}$, then the SOS relaxation is exact: $f_{\mathrm{sos}}=f^{\mathrm{sos}}=f_{*}$.
$\triangleright \exists \lambda_{i} \in \mathbb{R}_{>0}$, with $\sum_{i} \lambda_{i}=1$, and $\underline{A}^{(i)} \in\left(\mathcal{S} \mathbb{R}^{s \times s}\right)^{n}$, such that

$$
\left(f_{\mathrm{sos}}=\right) f^{\mathrm{sos}}=L^{\mathrm{sos}}(f)=\sum_{i} \lambda_{i} \operatorname{Tr}\left(f\left(\underline{A}^{(i)}\right)\right)
$$

- Since $\operatorname{Tr}\left(f\left(\underline{A}^{(i)}\right)\right) \geq f_{\text {sos }}$ for each i, we get

$$
f_{*} \leq \operatorname{Tr}\left(f\left(\underline{A}^{(i)}\right)\right)=f_{\text {sos }} \leq f_{*} .
$$

- Associate to a tracial $L \in\left(\mathbb{R}\langle\underline{X}\rangle_{2 d}\right)^{*}$ the bilinear form

$$
B_{L}: \mathbb{R}\langle\underline{X}\rangle_{d} \times \mathbb{R}\langle\underline{X}\rangle_{d},(f, g) \mapsto L\left(f^{*} g\right)
$$

Definition

The tracial Hankel matrix $M_{k}(L)$ of order k, indexed by $u, v \in\langle\underline{X}\rangle_{k}$, is given by

$$
M_{k}(L):=\left[L\left(u^{*} v\right)\right]_{u, v} .
$$

- Associate to a tracial $L \in\left(\mathbb{R}\langle\underline{X}\rangle_{2 d}\right)^{*}$ the bilinear form

$$
B_{L}: \mathbb{R}\langle\underline{X}\rangle_{d} \times \mathbb{R}\langle\underline{X}\rangle_{d},(f, g) \mapsto L\left(f^{*} g\right)
$$

Definition

The tracial Hankel matrix $M_{k}(L)$ of order k, indexed by $u, v \in\langle\underline{X}\rangle_{k}$, is given by

$$
M_{k}(L):=\left[L\left(u^{*} v\right)\right]_{u, v} .
$$

Theorem (B.,Klep)
Let $L \in\left(\mathbb{R}\langle\underline{X}\rangle_{2 d}\right)^{*}$ be tracial with
$11 M_{d}(L) \succeq 0$
2 rank $M_{d}(L)=$ rank $M_{d-1}(L)=$: s.
Then L has a representing measure on $\left(\mathcal{S} \mathbb{R}^{s \times s}\right)^{n}$.

Optimality condition

Theorem
Let $f \in \mathbb{R}\langle\underline{X}\rangle_{2 d}$ and let $f^{\text {sos }}$ be attained. If the optimizer $L^{\text {sos }}$ satisfies
$1 M_{d}\left(L^{\text {sos }}\right) \succeq 0$
$2 \operatorname{rank} M_{d}\left(L^{\mathrm{sos}}\right)=\operatorname{rank} M_{d-1}\left(L^{\mathrm{sos}}\right)$,
then the SOS relaxation is exact.
Furthermore, one can construct tracial optimizers.

Theorem

Let $f \in \mathbb{R}\langle\underline{X}\rangle_{2 d}$ and let $f^{\text {sos }}$ be attained. If the optimizer $L^{\text {sos }}$ satisfies
$11 M_{d}\left(L^{\mathrm{sos}}\right) \succeq 0$
¿ $\operatorname{rank} M_{d}\left(L^{\mathrm{sos}}\right)=\operatorname{rank} M_{d-1}\left(L^{\mathrm{sos}}\right)$,
then the SOS relaxation is exact.
Furthermore, one can construct tracial optimizers.

- "finite GNS construction"
$\downarrow L=L^{\text {sos }}$ induces a positive definite bilinear form on $E=\operatorname{ran} M_{d}$.
- Let \hat{X}_{i} be the right multiplication with X_{i} on E
$\triangleright \hat{X}_{i}$ is well defined and symmetric $\rightarrow A_{i} \in \mathcal{S} \mathbb{R}^{s \times s}$
- Artin-Wedderburn block decomposition of $B\left(A_{1}, \ldots, A_{n}\right)$
- unitary U such that $U^{T} A_{j} U=\oplus_{i} A_{j}^{(i)}$
- each $A^{(i)}=\left(A_{1}^{(i)}, \ldots, A_{n}^{(i)}\right)$ is a trace optimizer
- Implemented in NCSOStools (http://ncsostools.fis.unm.si)

Example

$$
\begin{array}{r}
f=3+X_{1}^{2}+2 X_{1}^{3}+2 X_{1}^{4}+X_{1}^{6}-4 X_{1}^{4} X_{2}+X_{1}^{4} X_{2}^{2}+4 X_{1}^{3} X_{2}+2 X_{1}^{3} X_{2}^{2}-2 X_{1}^{3} X_{2}^{3} \\
+2 X_{1}^{2} X_{2}-X_{1}^{2} X_{2}^{2}+8 X_{1} X_{2} X_{1} X_{2}+2 X_{1}^{2} X_{2}^{3}-4 X_{1} X_{2}+4 X_{1} X_{2}^{2} \\
+6 X_{1} X_{2}^{4}-2 X_{2}+X_{2}^{2}-4 X_{2}^{3}+2 X_{2}^{4}+2 X_{2}^{6} .
\end{array}
$$

$$
\begin{gathered}
f=3+X_{1}^{2}+2 X_{1}^{3}+2 X_{1}^{4}+X_{1}^{6}-4 X_{1}^{4} X_{2}+X_{1}^{4} X_{2}^{2}+4 X_{1}^{3} X_{2}+2 X_{1}^{3} X_{2}^{2}-2 X_{1}^{3} X_{2}^{3} \\
+2 X_{1}^{2} X_{2}-X_{1}^{2} X_{2}^{2}+8 X_{1} X_{2} X_{1} X_{2}+2 X_{1}^{2} X_{2}^{3}-4 X_{1} X_{2}+4 X_{1} X_{2}^{2} \\
+6 X_{1} X_{2}^{4}-2 X_{2}+X_{2}^{2}-4 X_{2}^{3}+2 X_{2}^{4}+2 X_{2}^{6} .
\end{gathered}
$$

- The trace-minimum f_{*} of f is 0.2842 :
- Tracial Hankel matrix $M_{3}\left(L^{\text {sos }}\right)$ is of rank 4 and satisfies the optimality condition.
- \hat{X}_{i} is given by 4×4 matrices:

$$
\begin{aligned}
& \hat{X}_{1}=\left[\begin{array}{cccc}
-1.0761 & 0.1802 & 0.5107 & 0.2590 \\
0.1802 & -0.3393 & -0.1920 & 0.9428 \\
0.5107 & -0.1920 & 0.5094 & 0.0600 \\
0.2590 & 0.9428 & 0.0600 & -0.3020
\end{array}\right], \\
& \hat{X}_{2}=\left[\begin{array}{cccc}
0.7108 & 0.7328 & 0.1043 & 0.4415 \\
0.7328 & -0.3706 & 0.4757 & -0.2147 \\
0.1043 & 0.4757 & 0.0776 & -0.9102 \\
0.4415 & -0.2147 & -0.9102 & 0.1393
\end{array}\right] .
\end{aligned}
$$

Example - continued

- Artin-Wedderburn block decomposition of \hat{X}_{1}, \hat{X}_{2}

$$
\begin{aligned}
A_{1} & =\left[\begin{array}{cccc}
-1.1843 & 0 & -0.2095 & 0.3705 \\
0 & -1.1843 & 0.3705 & 0.2095 \\
-0.2095 & 0.3705 & 0.5803 & 0 \\
0.3705 & 0.2095 & 0 & 0.5803
\end{array}\right], \\
A_{2} & =\left[\begin{array}{cccc}
-0.1743 & 0 & 0.4851 & -0.8577 \\
0 & -0.1743 & -0.8577 & -0.4851 \\
0.4851 & -0.8577 & 0.4529 & 0 \\
-0.8577 & -0.4851 & 0 & 0.4529
\end{array}\right] .
\end{aligned}
$$

\checkmark Artin-Wedderburn block decomposition of \hat{X}_{1}, \hat{X}_{2}

$$
\begin{aligned}
A_{1} & =\left[\begin{array}{cccc}
-1.1843 & 0 & -0.2095 & 0.3705 \\
0 & -1.1843 & 0.3705 & 0.2095 \\
-0.2095 & 0.3705 & 0.5803 & 0 \\
0.3705 & 0.2095 & 0 & 0.5803
\end{array}\right] \\
A_{2} & =\left[\begin{array}{cccc}
-0.1743 & 0 & 0.4851 & -0.8577 \\
0 & -0.1743 & -0.8577 & -0.4851 \\
0.4851 & -0.8577 & 0.4529 & 0 \\
-0.8577 & -0.4851 & 0 & 0.4529
\end{array}\right] .
\end{aligned}
$$

- Unitary change gives real trace optimizers

$$
A_{1}^{\prime}=\left[\begin{array}{cc}
0.674861 & 0.0731923 \\
0.0731923 & -1.27886
\end{array}\right], \quad A_{2}^{\prime}=\left[\begin{array}{cc}
0.0705101 & -1.03179 \\
-1.03179 & 0.20809
\end{array}\right]
$$

$-\operatorname{Tr}\left(f\left(A_{1}^{\prime}, A_{2}^{\prime}\right)\right)=0.2842$

Conclusion

- SOS relaxation for trace optimization
- Based on sums of hermitian squares and commutators
- Optimality criterion
- Based on the truncated tracial moment problem
- Rank condition on the bilinear form induced by optimizing linear form of dual SDP
- Allows to extract trace optimizers
- SOS relaxation for trace optimization
- Based on sums of hermitian squares and commutators
- Optimality criterion
- Based on the truncated tracial moment problem
- Rank condition on the bilinear form induced by optimizing linear form of dual SDP
- Allows to extract trace optimizers

Outline

- Rational SOS certificates using Peyrl/Parrilo
- SOS relaxation for trace optimization on semialgebraic sets
- Asymptotic convergence ?

