
Interpreting Naproche – An algorithmic approach to the

derivation-indicator view

Merlin Carl1, Peter Koepke1

Abstract. In [1], Jody Azzouni proposes a derivation indicator

view of mathematical practice and in particular of proofs.

The Naproche Project [5] takes proofs as linguistic entities

whose semantics is given by corresponding formal derivations.

This view is computationally implemented in the Naproche

System where simple natural proof texts are automatically

transformed into derivations, using techniques from

computational linguistics, formal logic and automatic theorem

proving. The development of the system has identified many

ways in which parts of proof texts indicate elements of formal

derivations. The Naproche Project can thus be seen as a support

of the derivation indicator view, and we comment on some of the

critique against derivation indication from this standpoint and

our experience. Doing so, we extend earlier work by the second

author on the relation between natural and formal proofs; since

then, further development has shown the relation of DI to

Naproche to be an interesting field that can (and should) be

elaborated in detail.

1 THE NAPROCHE PROJECT

Naproche is a common project of mathematical logicians from

Bonn, formal linguists from Duisburg/Essen and computer

scientists from Cologne. Its name is derived from "NAtural

language PROof CHEcking" and it aims at studying actual

presentations of mathematical proofs from a logical and

linguistic point of view. Hence, we are for example interested in

questions concerning the underlying inference rules of natural

proving, the role of background knowledge in understanding

mathematical discourse and linguistic specialities of actual proof

texts from mathematical practice.

The Naproche System is both an application and a way of

empirical verification of results of our investigations. In short, it

is a computer system where a mathematical text - consisting of

axioms, definitions, lemmas, theorems and proofs, in a rich but

restricted fragment of English including formulas - can be

entered in a TeXMacs environment for automatic proof-check.

The first step in checking e.g. a proof found in a textbook thus

consists in a reformulation of the given mathematical text in the

Naproche language. A short example of what such a

reformulation looks like is found below; the reader interested in

more material and a description of the current Naproche

language is invited to consider [5]. The Naproche language is

(being) developed to resemble the mathematical vernacular as

close as possible. Therefore, such reformulations are usually

easy to do for the kind of texts we are considering at the

moment. In particular, this can be done in a sentence-by-

sentence fashion, without a preliminary complete understanding

of the proof to be reformulated.

The processing is then continued by applying adapted techniques

from formal linguistics, in particular the discourse representation

theory of Kamp and Reyle [8], to generate a semantic

representation in a nested box structure that we call "proof

representation structures" (see [9] for details). To do so, the text

is seen as a series of triggers for mental acts such as introducing

or retracting an assumption, drawing a conclusion, introducing

and naming an object, applying a proof technique (e.g.

induction), recalling an earlier result, making a statement,

announcing a proof, declaring it finished etc. Linguistic markers

for these 'acts' are automatically recognized and trigger an

appropriate processing. The obtained intermediate format is then

used to deal with several linguistic and logical phenomena such

as anaphorical constructions or the identification of the set of

available assumptions at each part of the proof. From here, a

rather routine algorithm computes a series of queries of the form

'deduce statement A from the set S of available assumptions and

results already proved' in TPTP, a standard input format of

automatic theorem provers. These are then used to check

whether or not the claimed step can be carried out - resembling

a human reader trying to fill in missing steps. As a by-product of

this checking, one gets a formalized version of the text by simply

concatenating the theorem prover's outputs.

Currently, there are various sample texts in the Naproche syntax

available, dealing with group theory, logic, set theory and

analysis. The most advanced is [6], an English reformulation of

the first chapter of Edmund Landaus elementary textbook

"Grundlagen der Analysis" [9].

For an impression of what a text in the current Naproche

language looks like, consider the following short excerpt from

the cited translation, Landaus 6th definition and 28th theorem,

which is accepted by the latest version of the system:

Definition 6: Define ! recursively:

x ! 1 = x.

x ! y! = (x ! y) + x.

Lemma 28a: For all y, 1 ! y = y.

Proof: By definition 6, 1 ! 1 = 1. Suppose 1 ! y = y. Then by

definition 6, 1 ! y! = (1 ! y) + 1 = y + 1 = y!. Thus by

induction, for all y 1 ! y = y. Qed.

This fragment contains already several features such as the

possibility of a recursive definition of a new operator, reference

to a definition and the induction technique. Also, it is quite close

1Mathematical Institute of the University of Bonn

7

Proceedings of the International Symposium on Mathematical Practice and Cognition , Alison Pease, Markus Guhe, and Alan Smaill (Eds.),
at the AISB 2010 convention, 29 March – 1 April 2010, De Montfort University, Leicester, UK

to the German text; it wouldn't look conspicuous if merely

presented as an English version of the original.

Our system has several potential applications. People interested

in this subject may appreciate it as a natural language interface to

formal mathematics. Authors of introductory textbook notes

could use it as a tool for authoring and checking. For first-year

students, it could serve (and has served) as an automatic tutoring

system for learning how to prove. And finally, the generation of

proof texts that are readable for computers and humans alike is

of course a contribution to the field of men-machine-

communication.

To avoid misunderstandings, let us remark on what Naproche is

not: It is not and is not meant to be a tool for understanding

research papers in any advanced area of mathematics. The idea

of e.g. replacing the process of peer review by automatic

checkers is pure science fiction. Also, there are and probably will

always be figures in the vernacular that exceed the abilities of

the system. Therefore, some preparatory work from the user is

required. Checking a completely unadjusted text will usually not

work.

The next goal is a check of an English reformulation of the

whole of Landaus "Grundlagen der Analysis". To achieve this,

the inventory of proof figures, logical features, grammar and

vocabulary is constantly being extended. Furthermore, we plan

broader text corpus studies as a starting point for further

empirically solid research on mathematical reasoning and speech

practice.

2 DERIVATION INDICATION

Another interesting aspect is in how far Naproche can help to

understand the meaning of "understanding" in the context of

proofs. In [11], Jeremy Avigad proposes a notion of

understanding that refers to abilities that someone with

understanding should have. The points he lists include the ability

to formalize, fill in gaps, verify correctness and spot mistakes. In

this context, one might state that Naproche is in a weak sense

capable of understanding elementary mathematical texts.

In [1], Jody Azzouni looks for an explanation for what he calls

the "benign fixation of mathematical practice", i.e. the fact that

mathematics, when seen as a social practice, is remarkably

stable. This particularly applies to questions concerning what

counts as a proof. His claim is that mathematical proofs are

"indicators" of formal derivations, symbolic sequences of some

logical calculus that can be checked mechanically for correctness

and thus cannot be meaningfully disputed any more. Hence,

derivations serve as background certificates for the discursive

stability of a natural proof.

This view bears an obvious analogy with the way computer

scientists deal with algorithms that one might label "Turing

program indicator view": Usually, "algorithms" are identified

with programs for a Turing machine (or one of many equivalent

formal notions, depending on the taste of the author). However,

actual Turing programs virtually never appear in any publication

containing algorithms. Instead, areas as combinatorial

optimization or algorithmic graph theory use natural language

descriptions of recipies to indicate Turing programs. The way

from one to the other is far from trivial: Quite often an actual

implementation remains a challenging problem. Much more is

merely "described" rather than "implemented".

Thus, if Turing programs correspond to formal proofs, and

informal process descriptions to natural proofs, the situations

resemble each other closely and the well-accepted "Turing

program indicator view" becomes the algorithmic counterpart to

the DI-view.

In recursion theory, where algorithms become objects of

consideration of other algorithms more regularly than

mathematical proofs become objects of mathematical proofs,

there is a common practice called "proof by Church-Turing-

Thesis": Given an informal high-level description of a

procedure, the existence of a Turing program for the same

purpose is taken for granted. This step is all-important, even

though one is rarely interested in carrying it out in detail:

Probably nobody wants to see e.g. a Turing program

enumerating two incompatible Turing degrees. Nevertheless, a

Turing program is a good representation for what underlies our

certainty that the algorithm can be carried out in all details, i.e.

made unambiguous.

While the DI-view is an inspiring perspective in our opinion,

Azzouni does not explain the precise meaning of what he means

by "indication", nor does he give a hint how it works. In

particular, it remains to explain how mathematical practice could

be fixed by derivation indication hundreds of years before formal

derivations were introduced in the beginning of the 20th century

by Frege, Russell and others.

In order for the derivation indicator explanation to work, there

must be a clear sense for the process of "indication" - proof

practice would not be fixed by referring to derivations if there

was no generally accepted way how to go from a natural proof to

a derivation. But if there is such a procedure, however

complicated, then by the Church-Turing thesis, it is

algorithmically implementable. It is these algorithms that we are

looking for.

Consider again the excerpt from our reformulation of Landau

cited above. The indicators, or, as we call them, triggers, are easy

to identify: "Definition 6", for example, announces the

introduction of a new notion which is given the number 6 for

further reference. In the proof, "suppose" indicates the

introduction of an assumption, "then" prepares that the following

is deducible from the available assumptions, "by induction"

gives a hint on the proof procedure to be used, while "qed"

marks the end of the proof and hence the claim that at this point,

the proof goal should follow from what has been said so far.

Our expectation is that the language of more advanced textbooks

than [10], though more elaborate and complicated, can be

handled in a similar manner. This is supported by the view many

mathematicians take on proofs and their relation to derivations:

Derivations are seen as representations of discursive limit

objects that would arise if every step of a proof was carried out

in full detail.

Let's have a look at the following quote by Saunders MacLane

[12]:

"As to precision, we have now stated an absolute standard of

rigor: A mathematical proof is rigorous when it is (or could be)

8

Proceedings of the International Symposium on Mathematical Practice and Cognition , Alison Pease, Markus Guhe, and Alan Smaill (Eds.),
at the AISB 2010 convention, 29 March – 1 April 2010, De Montfort University, Leicester, UK

written out in the first-order predicate language L(") as a

sequence of inferences from the axioms ZFC, each inference

made according to one of the stated rules. [...] When a proof is in

doubt, its repair is usually a partial approximation to the fully

formal version."

This gives a hint to view the apparent difference between proofs

and derivations as a matter of granularity. The increasing degree

of detail can be observed through the stages of mathematical

research: From high-level discussions about proof plans to

written sketches, research papers, textbook proofs, explanations

thereof in lectures, elaborations thereof in tutorial classes over

almost gap-free proofs as in Landau to derivations of the kind

Naproche produces.

3 CRITICISM

Since its first publication, several points of criticism have been

raised against the DI-view, see e.g. [3] and [4]. Based on our

experiences with analyzing proofs and the Naproche systems, we

feel that we can substantially react to some of them.

In [3], Yehuda Rav claims that proofs contain an "irreducible

semantic component", by which he means "intentional objects"

that "cannot be formalized but require the active interpretative

participation of the reader". Taken for granted that understanding

is an active process that needs to be carried out, we don't agree

that this can only be done by humans. Even the current Naproche

system generates an interpretation of a text through an active

process involving language processing and automatic reasoning -

one might say that the system questions each proof step, then

tries to find reasons for it. Nevertheless, Naproche is an

algorithmic system in any sense of the word - one which indeed

does "the work of mechanically recognizing the validity of even

an informal proof" ([3], p. 304).

One might object here that the Naproche language, in spite of

resembling the mathematical vernacular, is still by definition

itself a formal language and that the actual formalization is

therefore carried out by the reader who reformulates the text, not

by the system.

We think that even the current stage of Naproche gives a strong

hint that the frontier between formal and natural languages is

rather a question of degree. If the 'formal languages' reach a

degree of resemblance to the vernacular that makes

formalization a question of basic changes of words and

formulations, much more of the work of generating an

interpretation is done by the machine than by the human reader

involved – in this sense, the human reader can be eliminated

from the process of understanding.

Later on, Rav refers to the formalization of Landau in the

Automath language. He claims, citing Feferman, that the fact the

checking of the resulting derivation was successful is no

argument in favour of the correctness of the original text, since a

human reader was needed to understand the text prior to its

formalization, and "understanding subsumes checking". But

where the reading process can be replaced by a mere routine

reformulation – which, based on our experience, appears to be

the case for considerable parts of basic mathematical literature -

this problem is at least heavily reduced.

While a complete formalization of a proof may indeed require a

deep understanding of the original material, possibly even a

deeper one than a usual reader will obtain, a reformulation of

e.g. Landau's proofs in the Naproche syntax requires much less.

It is in fact closer to a translation of a proof into a different

language than to a formalization in, say, predicate calculus.

This does not presuppose understanding to a degree that

'subsumes checking': It is well possible (and has probably

already happened several times) that A, a native German speaker

without knowledge of foreign languages, writes a text that he

considers to be a proof. B, who knows German and English

reads it, considers it correct and, translates it to English, and C,

who knows English, but not German, spots a mistake in the

translated text. The translation done by B cannot have subsumed

checking, otherwise B would have spotted the mistake. So

translation in another natural language does not necessarily

subsume checking.

The question is then whether semi-formal languages can serve

the same purpose at least for some tasks. Based on the first

author's personal experience in writing Naproche texts, even the

basic language of Naproche is already good enough for this. The

translation of, say, the first chapter of Landau, was (on purpose)

mostly done without an actual thought about the content of the

original text, let alone a checking. If there was a mistake in this

chapter, it could well have been discovered by Naproche though

it evaded the person adapting the text.

It is also said that formalizations, even where possible, do not

contain new information, nor do they enhance the rigor or

security of an argument that can easily be seen to be correct by

understanding it. Let us, however, consider again our main

sample text [10]. It contains nothing but fairly elementary

theorems in a fairly elementary area, and its author, Edmund

Landau, was an accomplished mathematician of international

rank and fame. Yet, in the introduction, he mentions that a

colleague spotted a flaw in his supposedly clear and complete

presentation that lead him to reorganize some of the material.

It therefore appears that there is space for an 'epistemic gain'

even in the most basic examples of informal standard

mathematics. Attempts to formalize an argument are a possible

way to obtain a higher degree of certitude. Reformulating texts

in a semi-formal language like that of Naproche is one way to

make this gain cheaper.

Other points referring to the impreciseness of terms like

"algorithmic system", "indication" etc. are, in our view, no

counterarguments but open research fields. Furthermore, it

should be noted that these arguments could also be raised against

"algorithm indication", which nevertheless does not seem to

cause any problems.

4 FUTURE PROSPECTS AND RELATED

WORK

There are also related projects going on at the moment.

9

Proceedings of the International Symposium on Mathematical Practice and Cognition , Alison Pease, Markus Guhe, and Alan Smaill (Eds.),
at the AISB 2010 convention, 29 March – 1 April 2010, De Montfort University, Leicester, UK

While, to the authors' knowledge, there is no other group that

focuses on the connection between informal and formal proofs,

there are already several proof checking systems that also

emphasize the readability of their respective input language.

In the Mizar system, started in 1973 by Trybulec, theorems of

advanced mathematics are formulated and proved by an active

community, and results are published in the journal Formalized

Mathematics.

The developing team of Isabelle is working on a 'human-

readable structured proof language' named Isar.

We are collaborating with the VeriMathDoc project, which

includes the PLATO program. Their goal is to develop a

mathematical assistant system that naturally supports

mathematicians in the development, authoring and

publication of mathematical work.

In his dissertation, Claus Zinn developed a system for processing

mathematical texts [17]. In his work, he also introduces extended

DRSs, called Proof Representation Structures. Despite the

equality of their names, the PRS notions of Naproche and the

work of Zinn are quite different.

The Naproche project itself is still at an early stage of

development. Even though it already reaches its goal

to mediate between easy natural proofs such as the excerpt from

Landau cited above and fully formalized, mechanically

checkable derivations, a lot is still to be done before one can

approach more sophisticated textbooks. On the linguistic side,

grammar and vocabulary are permanently expanded while more

and more linguistic phenomena like resolution of anaphora or

presuppositions are

taken into account. Corpus studies are planned and carried out to

get information about common proof strategies, argumentative

figures and how they are indicated.

Also, we attempt to make the current CNL closer to the actual

natural language; as an example, the current way to trigger the

retraction of an assumption by 'thus' is quite unsatisfying. In

reading mathematical texts, one encounters virtually never a

doubt on what the open assumptions are without such artificial

rules.

How this works is one big question for the time being.

On the logical side, one easily notices that implicit background

knowledge such as spatial imagination or intuitive type systems

play a large role in understanding mathematical discourses. For

example, human readers easily deal with objects such as sets,

sequences, lists etc. without using explicit knowledge on

concatenations, permutations or set theory. Our goal is to model

this by providing the system with a weak set theory. Here, it is

quite a challenge to find the right balance between premises that

are on the one hand strong enough to allow usual references to

sets to be processed, and harmless enough to keep the search

space in control. (E.g., one might try to use ZFC as the

background theory, which is certainly strong enough. But then

the prover would have to deal with infinitely many axioms in

each step, which does not look very promising.)

Talking about complexity issues, these already are a permanent

threat to incautious expansions of the system. When gaps in

natural proofs become too big to be filled in by an ATP in an

acceptable amount of time, the proof check is unsuccessful. One

way to approach this difficulty is to exploit implicit information

and hints on how to proceed given in the proof more efficiently.

Still, if the search space consists of all accessible theorems,

checking of longer texts might soon become unfeasible. This can

be avoided by carefully selecting the premises that are likely to

be useful for the current step. The selecting algorithms are still at

an experimental stage, yet even these result in a enormous

reduction of running times.

We are optimistic that these developments will allow us to check

much more and more advanced texts. For the near future, we

plan a mechanical check of further chapters of Landaus

'Grundlagen der Analysis', including those where set theory

becomes unavoidable, and of Euklids 'Elements'.

5 CONCLUSIONS
We hope to have made plausible that the DI-view on

mathematical practice can lead to interesting research and

concrete, useful technical applications. In our opinion, this view

is rather an inspiring credo, or a "regulative imperative", than a

complete explanation of the stunning stability of mathematical

practice. In the long run, the Naproche project could be a way of

empirically sustaining this perspective. It is our conviction that

enriched formalisms in the spirit of the Naproche language can

provide a bridge between what are called the "two streams in the

philosophy of mathematics" and lead to a notion of proof that

incorporates the advantages of both.

REFERENCES
[1] Azzouni, Jody (2006): Tracking Reason (Oxford University Press)

[2] Azzouni, Jody (2004): The derivation-indicator view of mathematical

practice (Philosophia Mathematica (3) 12, 81-105)

[3] Rav, Yehuda (2007): A Critique of a Formalist-Mechanist Version of

the Justification of Arguments in Mathematician's Proof Practices

(Philosophia Mathematica (III) 15, 291-320)

[4] Carlo Celluci (2008): Why proof? What is a proof? (Deduction,

Computation, Experiment. Exploring the Effectiveness of Proof,

Springer Berlin)

[5] The Naproche homepage: www.naproche.net

[6] Carl M., Cramer M., Kühlwein D.: Landau in Naproche-Syntax

(available at [5])

[7] Koepke, Peter: Mathematical Proofs as Derivation-Indicators: Theory

and Implementation (Talk given in Utrecht 2009)

[8] Kamp/Reyle (1993): From discourse to logic (Dordrecht: Kluwer

Academic)

[9] Nickolay Kolev (2008): Generating Proof Representation Structures

in the Project NAPROCHE (available at [5])

[10] Landau, Edmund (1965): Die Grundlagen der Analysis

(Wissenschaftliche Buchgesellschaft Darmstadt)

[11] Avigad, Jeremy (2008): Understanding Proofs (in: The Philosophy

of Mathematical Practice, Oxford University Press)

[12] MacLane, Saunders (1986): Mathematics, Form and Function

(Springer)

10

Proceedings of the International Symposium on Mathematical Practice and Cognition , Alison Pease, Markus Guhe, and Alan Smaill (Eds.),
at the AISB 2010 convention, 29 March – 1 April 2010, De Montfort University, Leicester, UK

