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Abstract

It is frequently claimed (see e.g. [Rav]) that the formalization of a
mathematical proof requires a quality of understanding that subsumes
all acts necessary for checking the proof and that, consequently, auto-
matic proof checking cannot lead to an epistemic gain about a proof.
We present a project developing what is sometimes called a ‘fortified
formalism’ and argue, taking a phenomenological look at proof un-
derstanding, that proofs can be (and often are) given in a way that
allows a formalization sufficient for producing an automatically check-
able write-up, but does not subsume checking.

1 Introduction
It is a striking consequence of Gödel’s completeness theorem (see e.g. chapter
3 of [Rau]) that, whenever there is a correct mathematical proof of a certain
sentence φ from any fixed set S of axioms stated in first-order predicate cal-
culus, there is also a formal derivation of φ in the sense of a system of formal
deduction.1 It is this force of the completeness theorem that makes the study
of formal proofs relevant to mathematical practice, as it demonstrates a cer-
tain kind of adequacy of formal proofs as a model of normal mathematical
arguments. This adequacy, however, is rather weak: The only guarantee is
that the set of correctly provable assertions coincides with the set of formally
derivable assertions. No claim is made on the relation between mathematical
arguments and formal derivations.

1The reasoning here is roughly this: If φ is not formally derivable from S, then there
is a model of S + ¬φ, i.e. a way to interprete the occuring notions in such a way that S
becomes true, but φ becomes false. In the presence of such an interpretation, no argument
claiming to deduce φ from S can be conclusive. A similar point is made by Kreisel in [Kr].
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There are in fact various reasons to assume that this relation cannot be
too close: For example, Boolos ([Bo]) constructed an example of a state-
ment φ that is easily seen to be derivable in first-order logic from a set S
of premises, but all such derivations are provably of such a vast length that
they cannot possibly be actually ‘written down’ in any sense of the word.
On an even more fundamental level, as most interesting theories like Peano
arithmetic or ZFC set theory are incomplete and there are statements rather
canonically associated with them (i.e. consistency) that might be used in a
natural argument, one might even doubt how far carrying out natural mathe-
matics or even merely particular areas as number theory in a fixed axiomatic
system can work in principle.

On the other hand, there is the program of formal mathematics, where
mathematics is actually carried out in a strictly formal framework. This has
now been done for a huge variety of important and non-trivial theorems,
including e.g. the Gödel completeness theorem (see [FM1]), Brouwer’s fixed
point theorem ([FM2]) and the prime number theorem ([FM3]). There is even
a ‘Journal of Formalized Mathematics’, entirely dedicated to completely for-
mal proofs. Such proofs are usually done by formalization, i.e. a translation
or re-formulation of mathematical arguments in a formal system. The success
of this approach suggests that, in spite of the objections mentioned above
2, formal proofs can be adequate to mathematical arguments in a stronger
sense; namely, that correct arguments can be translated into derivations.
However, this process of translation is often highly nontrivial and in many
cases, the essence of an argument seems to get lost in translation. For any
non-formalist view of mathematics, this seems inevitable: If mathematical
arguments have content and are about ‘objects’, then this essential relation
to ‘objects’ must be lost when one passes to formal derivations, which are
void of content. It is hence a crucial question for the philosophy of mathe-
matics to determine the relation between arguments and derivations.

In [Az1] and [Az2], Jody Azzouni considers this question while he searches
for an explanation for what he calls the ‘benign fixation of mathematical
practice’, namely the fact that mathematics, considered as a social practice,
is remarkably stable when compared to other social practices such as art,
religion, politics, philosophy and even the natural sciences. The notion of

2For example, Boolos’ proof has recently been formalized, see [BB]. The matter appears
to be more a question of the choice of the formal system than one of formal vs. informal
proof or of first-order vs. higher-order logic: When a proof is ‘possibe, but far too long’
in a certain first-order axiomatic system, there are usually natural stronger systems that
allow for the necessary abbreviations.
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a mathematical proof appears to be particularly invariant: While the stan-
dards for what can count as evidence in, say, physics or biology have consid-
erably changed over the last 2000 years, we can still evaluate an argument
from e.g. Euclidean geometry and agree on its correctness. Even where the
practice splits, for example into a classical and an intuitionistic branch, this
agreement is not lost: For the intuitionist mathematician, a valid classical
argument may seem invalid from his standpoint, yet he will usually be able
to distinguish it from a classically invalid argument. Similarly, one doesn’t
need to become an intuitionist to see whether an argument is intuitionisti-
cally valid.
Azzouni’s explanation, which he labels the ‘derivation indicator view’, or DI-
view, or mathematical practice, goes roughly as follows: There is a notion of
proof, namely formal proofs in one or another setup, that allows for a purely
mechanical proof-check. That is, the correctness of a proof given in this form
can be evaluated by simply processing the symbols of which it consists ac-
cording to a certain algorithm. Since any two persons (and, in fact, a trained
monkey or even a computer) applying this algorithm will obtain the same
result, this explains the broad agreement at least for formal proofs.
But proofs as they appear in mathematics are virtually never formal proofs
in a certain proof system. In fact, formal proofs but for the most trivial facts
tend to become incomprehensible to the human reader. What we find in
textbooks are arguments presented in natural language, mixed with formal
expressions, diagrams, pictures etc. Checking those is not a mechanical pro-
cedure; rather, it requires careful concentration in carrying out the indicated
mental steps in one’s mind, while questioning every step, sustaining it if pos-
sible and rejecting it otherwise. The question hence arises how we account
for the broad agreement on proofs presented in this manner.
Azzouni’s answer is that such proofs, while not formal themselves, ‘indicate’,
‘point to’ formal proofs. They are to be considered as recipes for producing
a fully formal version of an argument. This indication is clear to us in the
same way it is, e.g., clear to us how a cooking recipe is to be transformed
into a series of muscle movements in our kitchen. The notion of a formal
proof is here independent from the choice of one or another concrete system
of representation; rather, it is a form of proof in which every step is a single
inference according to some valid deduction rule. This concept is prior to the
development of actual representations for formal proofs and could well have
been intended by mathematicians in the era before formal logic systems were
introduced. In particular, in such a proof, every reference to an imagination
of the concepts used can be put aside. We can see that ‘If all zunks are zonks,
and Jeff is a zunk, then Jeff is a zonk.’ is true without knowing what zunks
and zonks are or who Jeff is. The subjective component of the argument is
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hence eliminated as far as possible (all that remains is observing finite sign
configurations) and this is the reason for the wide agreement.

In [Rav], Yehuda Rav objects to this view with an argument that I want
to summarize as follows: Formal proofs cannot provide a basis for the ex-
planation of our agreement on the correctness of proofs. This agreement is
based on understanding. Once a proof is transformed into a form in which it
is algorithmically checkable, it must be void of content: all contributions of
our understanding must have entered the formalization as additional symbol
strings. To do this, the argument must have been clarified to the last extent.
Hence, at the moment where an algorithmically checkable proof is obtained,
the ‘battle is over’, i.e. the checking is already finished as far as human
understanding is concerned: The interesting work is done exactly along the
way of formalizing the argument, and this process is non-algorithmical. It is
based on an understanding of the occuring concepts, it has an ‘irreducible
semantic content’. Therefore, carrying out the algorithmic checking for the
(formalized) argument will not result in any epistemic gain concerning the
(original informal) argument. In particular, it does not strengthen the po-
sition that the (original) argument is valid. It might show us that we made
some mistake in the ‘exercise’ of rewriting the proof in a formal system, but
that tells us nothing about the proof itself, just as, in programming, an imple-
mentation mistake tells us nothing about the correctness of the algorithm we
had in mind. Concerning the derivation-indicator view, this implies that it
fails to explain the consensus about mathematics: For the consensus about
formal proofs via algorithmic checking procedures is of no help unless we
explain consensus about the relation between the natural argument and its
‘formalization’, for which no algorithmic checking procedure is at hand.

This argument has certainly a good degree of persuasive power. We want
to evaluate this criticism closer. First, an epistemic gain through automatic
proof checking is indeed possible when the latter is used as a means of com-
munication: Even if the inventor of a proof would not learn anything new
about the proof by having it automatically checked, the automatic checking
can serve as a certificate for the correctness of the result for others. An at-
tempt to communicate an otherwise hardly accessible proof by this means is
the work on the formalization of Thomas Hales’ proof of the Kepler conjec-
ture in the Flyspeck project, which was recently announced to be completed
(see e.g. [FS]). Focusing on the inventor of a proof himself, it is clear that
indeed a lot can be learned about a proof through the process of formaliza-
tion; being forced to work according to the outermost standards of precision,
one is more likely to spot mistakes that otherwise evaded one’s attention.



5

But neither of these ways to obtain an epistemic gain from automatic proof
checking concerns the point made by Rav. The question is then, more pre-
cisely: Can the actual process of automatic checking itself (in contrast to the
production of an automatically checkable format) lead to an epistemic gain
about a proof that one already knows (e.g. by being its originator)? This is
what Rav’s criticism is about.
On the surface, we claim that the image of an ‘algorithmic system’ underly-
ing Rav’s argument is too narrow: It falls short of taking into account e.g.
methods for automatic language processing or the possibility of using an au-
tomatic theorem prover for bridging gaps. But our main intention is deeper:
We want to examine when and how an algorithmic system may lead to an
epistemic gain about a natural mathematical argument.
When we talk about gaining trust in a proof, we have obviously left the realm
where one can consider a proof as mere text or string of symbols; we have
to take into account our attitude towards the proof, the way it is given to us
or it presents itself to us. The question concerning the epistemic gain should
then be reformulated as follows: ‘Is there a state of mind towards a proof
that allows the construction of an automatically checkable write-up, but is
undecided about the correctness of the proof?’
This formulation makes it obvious that the question can’t be decided by
merely considering mathematical texts of different degree of formalization.
Rather, the representation of a proof in its reader’s consciousness has to be
taken into account: It will e.g. be relevant whether the reader only briefly
skimmed through it or studied it thoroughly, whether he worked the miss-
ing steps out or merely granted them, whether a cited result is applied with
understanding or merely as a ‘black box’ etc. Such differences are ideal-
ized away in most approaches to logic. One of the rare approaches to logic
which seriously takes into account such aspects is found in Husserl’s ‘Formal
and transcendental logic’ ([Hu1]). This motivates us to chose this work as a
starting point for our investigation.

Our approach here is hence to analyze to a certain (humble) extent the
phenomenology of proof understanding. We will distinguish two qualities of
the way how a proof can be mentally represented, applying the approach of
Husserl’s analysis of judgements, in particular his notions of ‘distinctiveness’
and ‘clarity’, to proofs. We will argue that, if a mental representation of a
proof has both of these qualities to a maximal extent, then Rav is right in
claiming that the ‘battle is over’ and an algorithmic proof check cannot lead
to an epistemic gain. On the other hand, we claim that only distinctiveness
is necessary for putting an argument into a form that can be subjected to an
automatic proof check. Therefore, we obtain a margin in which automatic
proof checking can indeed give substantial information on the correctness
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of an argument: namely if the proof is mentally present in a distinct, but
unclear manner. Considering several examples from the history and the folk-
lore of mathematics, we demonstrate that this tends to occur frequently in
mathematical practice.

To sustain our claims and make them more concrete, we will, in the
course of this paper, refer to Naproche, a system for the automatic checking
of natural mathematical arguments. Its aim is exactly, as in Rav’s words, ‘to
do the work of automatic checking even an informal proof’ and already in
its current form it gives a vivid picture of the surprisingly natural form an
automatically checkable proof can take. We will therefore start by shortly
introducing the Naproche system in the next section.
In section 3, we explain the distinction between distinctiveness and clarity,
using several examples. In section 4, we demonstrate that automatic check-
ing requires the former, but not the latter quality, again giving examples. In
section 5, we argue that clarity and distinciveness correspond in a certain
way to a ‘complete’, ‘gapless’ derivation as they are represented in formats
like natural deduction or the sequent calculus. The goal is to show which
features of a mental representations of a proof are expressed in such a deriva-
tion. In section 6, we analyze a famous historical example of a false proof
in these terms, considering whether or not and how a Naproche-like system
might have helped to spot the mistake. Section 7 contains a critical review
of our account, suggesting various ways in which the use of automatic proof
checking is limited. Finally, we give in section 8 our conclusions and plans
for future considerations on the topic.

2 Naproche
Naproche is an acronym for NAtural language PROof CHEcking, a joint
project of mathematical logicians from Bonn, formal linguists from Duisburg-
Essen and computer scientists from Cologne. It is a study of natural mathe-
matical language with the goal to bridge the gap between formal derivations
and the form in which proofs are usually presented. For this, the expressions
of natural mathematical language are interpreted as indicators for certain
operations, like introducing or retracting an assumption, starting a case dis-
tinction, citing a prior result, making a statement etc. We will describe only
very roughly how this system works, as the details are irrelevant for our
purpose. The interested reader may e.g. consult [CKKS] for a detailed de-
scription. Also, more information and a web interface are available at [NWI].
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In the course of the project, a controlled natural language (CNL) for mathe-
matics is developed, which resembles natural mathematical language and is
constantly expanded to greater resemblance. This Naproche CNL contains
linguistic triggers for common thought figures of mathematical proofs. Texts
written in the Naproche CNL are hence easy to write and usually immedi-
ately understandable for a human reader. If one was presented with a typical
Naproche text without further explanation, one would see a mathematical
text, though one in a somewhat tedious style.
Here is an excerpt from a short text about number theory in the Naproche
CNL, accepted by the current Naproche version 0.47:

Definition 29: Define m to divide n iff there is an l such that n = m · l.

Definition 30: Define m|n iff m divides n.

Lemma DivMin: Let l|m and l|m+ n. Then l|n.
Proof: Assume that l and n are nonzero. There is an i such that m = l · i. Fur-
thermore, there is a j such that m+ n = l · j.
Assume for a contradiction that j < i. Thenm+n = l ·j < l ·i = m. Som ≤ m+n.
It follows that m = m+ n. Hence n = 0, a contradiction. Thus i ≤ j.
Define k to be j− i. Then we have (l · i) + (l · k) = (l · i) +n. Hence n = l · k. Qed.

Via techniques from formal linguistics, namely an adapted version of
discourse representation theory (see [KR]), the content of such texts can
be formally represented in a format that mirrors its linguistical and logical
structure. This format is called a proof representation structure (PRS). In
particular, whenever a statement is made, it can be computed from the PRS
whether this is supposed to be an assumption or a claim and, in the lat-
ter case, under what assumptions this claim is made. In this way, the text
is converted into a series of proof goals, each asking to deduce the current
claim made in the proof from the available assumptions. The Naproche sys-
tem then uses automatic theorem provers to test whether the claim indeed
follows in an obvious way from the available assumptions. This allows the
system to close the gaps that typically appear in natural proofs, one of the
crucial features in which natural proofs differ from formal derivations. In
this way, every claim is checked and either deduced (and accepted) or not,
in which case the checking fails and returns an error message indicating the
first claim where the deduction could not be processed.
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3 Intentions, Fulfillment, Clarity and Distinc-
tiveness

In this section, we introduce Husserl’s notions of the distinctiveness and
clarity of a judgement as a starting point for our transfer of these concepts
to proofs. Crucial for the difference between clarity and distinctiveness is
the notion of ‘fulfillment’ of an intention. We therefore start with a brief
introduction to this notion.

3.1 Fulfilled and unfulfilled intentions

A central notion of phenomenology is the notion of intention, i.e. the direct-
edness towards something. Whatever this something is, it must, according
to Husserl, correspond to a possible way of presenting itself in some kind of
experience. Here, ‘experience’ is taken in a very broad sense, including sen-
sual experience in the usual sense of seeing, hearing etc., but not limited to
it: E.g. remembering, imagining, reading a mathematical proof etc. count as
legitimate forms of experience. The intention towards X is hence associated
with a system of experiences in which X appears. What kind of experience
is relevant for a certain intention depends on - or rather strictly corresponds
to - the type of the intended object: A piece of music will present itself in
hearing, a phantasm will present itself in imagination, a sensual object - say,
a tree - will present itself in organized visual, tactile etc. perception. Ful-
fillment of an intention now simply means that experiences presenting the
intended object are made: The piece is heard, the phantasm imagined, the
tree seen and felt. Fulfillment may be partial, and in fact, for many types
of objects, it will be necessarily so: For example, the intention towards a
tree includes anticipations that it can be seen from all sides, including rough
anticipations what it will look like. Thus, seeing only one side of a tree,
the fulfillment of the intention is only partial: There are anticipations corre-
sponding to the object type that remain unfulfilled. Even if one has walked
completely around the tree, this does not change, as now the backside is not
given in visual or tactile experience, but only in memory thereof. Proceeding
along these lines, it is not hard to see that intentions towards physical objects
are necessarily only partially fulfilled.
In the case of a jugdement, the intention is directed towards a categorical ob-
ject, i.e. the state of affairs expressed by the judgement, i.e. in the case ‘The
rose is red’ the fact that the rose is red. In this case, some of the appearing
partial intentions from which the judgement is build up (e.g. that towards
a rose or towards redness) may be fulfilled while others remain unfulfilled:
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We may e.g. experience a rose, but not its redness (say under bad lighting).
In the case of a work of fiction, we may form a vivid imagination of some of
the described objects, but merely skip over the others, leaving the intention
‘signitive’, merely indicated by a symbol.
We want to apply the concept of fulfillment in the context of mathematical
proofs. Our main concern, then, are intentions towards mathematical objects
and their fulfillment. One might worry at this point that this will force us to
accept some mysterious supernatural faculty for seeing abstract objects, but
this worry falls short of taking into account the flexibility of the phenomeno-
logical treatment described above: Fulfillment of an intention means having
the corresponding experiences. What these experiences are would be the
topic of a phenomenological investigation of mathematical objects. Luckily,
our treatment does not require the prior execution of such a monumental
task, as we will only be concerned with mathematical objects in a very spe-
cial context. Still, we indicate here two examples of possible interpretations
that are hardly ‘mysterious’: The first would be the intuitionistic standpoint,
taken e.g. by Becker and Heyting, according to which the intention towards
a mathematical object is fulfilled by a construction of that object in the sense
of intuitionism. Another interpretation is that of mathematical objects as
‘inference packages’: The intention towards a mathematical object is directed
towards a system of techniques how to deal with inferences that contain this
notion. The fulfillment of such an intention - e.g. in the course of a proof
- would hence be the application of these techniques for the full explication
of a proof step. An account of mathematical objects in this spirit, though
apparently not with Husserl in mind, can be found in [Az3]; the treatment
on p. 106-111 of [Lo] is of a similar spirit.3

This indicates how the notion of fulfillment can be applied to mathemat-
ical proofs. Consider the inferential snippet ‘As 1 < a < p and p is prime,

3Another related perspective is that of Martin-Löf given in [ML2] (in particular on
p. 7): He distinguishes ‘canonical’ from ‘noncanonical’ or ‘indirect’ proofs, where a ‘non-
canonical proof’ is a ‘method’ or a ‘program’ for producing a ‘canonical’ proof; as an
example, an indirect proof that 1235 +5123 = 5123 +1235 would consist in first proving the
general law of commutativity for addition and then instantiating it accordingly rather than
carrying out the constructions described by both sides of the equation and checking that
they actually lead to the same result. In a similar way, we may view an informal high-level
argument as a recipe for obtaining a proof in which every formerly implicit inferential step
is actually carried out. Of course, we don’t need to go along with Martin-Löf’s construc-
tivist approach concerning mathematics here: The checking of non-constructivistic proofs
is - regardless of how one views their epistemological value - a cognitive act which is, along
with the underlying notion of correctness and its relation to automatization, accessible to
a phenomenological analysis.
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a does not divide p’. We can skim through it, leaving the empty intention
to use the primeness of p to see why the result holds. Fulfilling the intention
would amount to actually seeing it, i.e. completing the proof.

3.2 Husserl’s Notions of Distinctiveness and Clarity

In [Hu1] and [Hu2], Husserl offers a phenomenological analysis and founda-
tion for logic. As the notions in question have their systematic place in this
analysis, we give a short recapitulation.
At the beginning, logic is taken in the traditional sense as the study of the
forms of true judgements. It soon becomes apparent that, in the way this is
traditionally done, numerous implicit idealizations are presupposed concern-
ing the judgement and the modus in which it is given. These idealizations are
made explicit. In the course of this explication, logic quite naturally splits
into several subsections depending on the stage of idealization assumed. It
turns out that most of these subsections are not considered by traditional
logic, which is concerned with what finally turn out to be distinctly given
judgements to which we are directed with epistemic interest. Furthermore,
in the study of the abstract forms of judgements, the extra assumption is
made that the referents occuring in the jugdement forms considered are to
be interpreted in a way making the statement meaningful. 4 5

The first subsection is what Husserl calls the purely logical grammar (‘rein
logische Grammatik’), i.e. the mere study of forms that can possibly be a
judgement at all in contrast to arbitrary word sequences like ‘and or write
write’, ignoring all connections with truth. This part will not concern us
further.

A terminological distinction made in various places in Husserl’s work
is that between ‘distinctiveness’ and ‘clarity’. We find it e.g. in chapter
20 of [Hu4] with respect to concepts: While ‘distinctiveness’ means having
explicated what one means with a certain concept, ‘clarity’ brings about an
intuition of the intended object. This is explained on page 101 of [Hu4]:

‘Die Verdeutlichung des Begriffs, des mit dem Wort Gemeinten als solchen,
ist eine Prozedur, die sich innerhalb der bloßen Denksphäre abspielt. Ehe
der mindeste Schritt zur Klärung vollzogen ist, während keine oder eine
ganz unpassende und indirekte Anschauung mit dem Worte eins ist, kann

4E.g. the statement ‘The theory of relativity is green’ is arguably neither true nor false,
which nevertheless doesn’t contradict the principle of the excluded middle.

5See [Lo] for a further discussion of this point.
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überlegt werden, was in der Meinung liegt, z.B. in ‘Dekaeder’: ein Körper,
ein Polyeder, regelmäßig, mit zehn kongruenten Seitenflächen. (...) Bei der
Klärung überschreiten wir die Sphäre der bloßen Wortbedeutungen und des
Bedeutungsdenkens, wir bringen die Bedeutungen zur Deckung mit dem

Noematischen der Anschauung (...)’ 6

A parallel distinction concerning judgements instead of concepts is then
introduced in [Hu1]:
A judgement is given in a distinct manner when its parts and their refer-
ences to each other are made explicit. The intentions indicated by its parts
may remain unfulfilled, but the compositional structure of the partial inten-
tions is apparent. Given a jugdement of the form ‘S is p’, we can, going along
with the formulation, ‘carry out’ the judgement by explicitely setting S and
applying p to it without fulfilling the intentions corresponding to S or p. This
explication shows that certain intentions such as those of the form P ∧ ¬P
are inexecutable in principle. The subdiscipline of logic concerned with this
kind of givenness is ‘consequence logic’ which considers the executability of a
judgement in principle, based on its mere structure, without regard to ‘facts’.
Clarity, on the other hand, is obtained when the indicated intentions are
‘fulfilled’, e.g. the objects under consideration are brought to intuition. This
may still lead to falsity and absurdity, but these are then of a semantic na-
ture, not apparent from the mere form of the judgement. Of course, both
clarity and distinctiveness come in degrees and can be present for certain
parts of a judgement, but not for others.
A crucial point of the analysis is that the inexecutability of intentions in-
dicated by certain distinctively given judgements already makes certain as-
sumptions on the objects under consideration which are tacitly presupposed
in logical considerations (see above).
Our aim is to apply this classification from single judgements to arguments,
particularly mathematical proofs. For example, like single judgements, ar-
guments have a hierarchical intentional structure which can be given in a
vague or in a distinct way and also can be partly or completely fulfilled or
unfulfilled. The everyday experience with the process of understanding math-
ematical arguments suggests that something corresponds to these notions in

6‘Making a concept distinct, i.e. making distinct that which is meant by the word by
itself, is a procedure which takes place within the sphere of pure thinking. Before the
least step of clarification is performed, while no or a completely inadequate intuition is
associated with the word, we can reflect upon that which is meant, i.e. in ‘decahedron’:
a solid, a polyhedron, regular, with ten congruent faces. (...) With a clarification, we
transcend the sphere of mere meanings and thinking concerning meanings, we match the
meanings with the noematic content of intuition.’ [Translation by the author]



12

the realm of such arguments. In particular, the difference between grasp-
ing the mere meaning (‘Vermeinung’) of an argument or actually mentally
following it is probably well-known to readers of mathematical texts.

3.3 Proofs, Arguments and Understanding - a Clarifi-
cation

Is it possible to understand a false proof? Certainly. We can be convinced by
it, explain it to others (and convince them), translate it to another language,
reformulate it, recognize it in its reformulations etc. Even if we know it is
false, this does not necessarily hinder our understanding, and it is even often
possible (and sometimes takes some effort to avoid) to re-enter a state of
mind in which it is still convincing. This for example seems for some people
to be the case with the ‘goat problem’ ([GP]).
Of course, in the usual understanding and despite common manners of speech,
a ‘false proof’ is not a proof. It merely shares some features with a proof on
the surface. Anyway, the word is often used in such a way that a proof can
be false. This use seems to resemble closer the way we internally think of
proofs. We could replace the word ‘proof’ e.g. by ‘argument’ to avoid this
ambiguity, but we prefer to keep it. Hence, we use the word proof in the
sense of a proof attempt. Otherwise, we could never know if something is a
proof, for in principle, we could always have been mistaken in checking it.

In this section, we make a humble approach to the study of the ways how
a proof can appear to us. We take a phenomenological viewpoint: Hence,
instead of asking what proofs might be in themselves - like platonic ideas,
patterns of brain activity, mere sequences of tokens or of thoughts - we focus
on the question how they give themselves when we encounter them in our
mental activity. Mental activities directed towards proofs are e.g. creating
it, searching for it, explaining it, remembering it, checking it etc. In such
acts, we can experience a proof in different qualities. It is these qualities of
proof experience that we consider here, focusing on two, namely clarity and
distinctiveness. These are hence not properties of proof texts, but of our per-
ception of proofs. The only way to point to such qualities is hence to create
the corresponding experience and then naming it. This is what the following
is about. Importantly, we will consider examples of proofs that are likely to
lead to an experience with the quality in question, yet one must keep in mind
that it is the experience, not the proof text, we are talking about, and that
the same text may well be perceived in different ways. The point of this is
to find out what is needed for our perception of a proof to make it checkable
and compare it to what we need to formalize it. By Rav’s claim, the qualities
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necessary for formalization presuppose those necessary for checking. We aim
at demonstrating the contrary.

We now proceed to apply distinctiveness and clarity to proofs (in the
sense above). In analogy to the case of judgements, a proof is distinctively
given when its parts and their relations are made explicit. At this stage,
we hence pay no attention to the correctness of the proof, only to its ‘struc-
ture’. Distinctiveness about a proof means consciousness of what exactly is
claimed and assumed at each point, from what a claim is supposed to follow,
where assumptions are needed, which objects are currently relevant, which
of the objects appearing are identical, how they are claimed to relate to and
depend on each other etc. In analogy with distinct jugdements, a distinct
proof does not need to be correct. Not even its logical structure must be
sound: A distinctively given argument can well be circular. However, from
a distincive perception of the argument, it will be apparent that it is. What
we have with a distinct perception of a proof can be seen as a ‘proof plan’, a
description of its logical architecture. In particular, distinctiveness includes
consciousness of the sequential structure of the argument. To some extent,
it is necessary whenever we even attempt to formulate it. 7 Naturally, dis-
tinctiveness comes in degrees. An argument can be distinct in certain parts
but not in others. We frequently experience aquaintance with a proof with-
out being able to state exactly where each assumption enters the argument,
where each auxiliar lemma is used etc. Also, quite often in understanding
natural proofs, we encounter some mixture of distinct deductive steps and
imaginative thought experiments.

Concerning clarity, consider the following well-known ‘proof’ that 2 = 1:

Let a, b ∈ R, a = b. As a = b, we have a2 = ab, hence a2 − b2 = ab− b2.
Dividing by (a − b), we get a + b = b. With a = b, it follows that 2b = b.
Dividing by b, we obtain 2 = 1.

Is this proof - seen as a train of thought - lacking distinctiveness? Not
at all. It is completely apparent which of these few steps is supposed to
follow from which assumption or fact earlier obtained. In fact, it is in a form
that closely resembles a formal derivation (in particular, it could easily be

7Indeed, as a working mathematician, one occasionally experiences the perception of a
vague proof idea which seems quite plausible until one attempts to actually write it down.
When one finally does, it becomes apparent that the argument has serious structural
issues, e.g. being circular. This particularly happens when one deals with arguments and
definitions using involved recursions or inductions.
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processed by Naproche), and not much would be necessary to make it com-
pletely formal.
Anyway, it is of course invalid, yet many people, including clever ones, at first
don’t see why. The problem here is obviously not that one does not really
know what is stated in each step, or that one doesn’t know what is supposed
to follow or how; the problem is a misperception of division. Following the
habit that ‘you may cancel out equal terms’, the semantic layer is left for the
sake of a symbolic manipulation. On this level of consideration, one easily
forgets about the condition imposed on such a step. If one takes the effort of
really going back to what division is and why the rule that is supposedly ap-
plied here works, i.e. if one sharpens the underlying intuition of division, and
if one additionally goes back to the meaning of the syntactical object ‘a− b’,
the mistake - division by 0 - is easily discovered. What is now added and
was missing in the beginning is hence a more precise, adequate perception of
the objects and operations appearing in the argument, in other words, a step
towards the fulfillment of the intention given by the expression a − b. We
call this degree of adequacy to which the notions are perceived the ‘clarity’
of the proof perception.

The above proof is hence distinct, yet not clear. Another famous example
is the following:

1 =
√
1 =

√
(−1)(−1) =

√
−1
√
−1 = i · i = i2 = −1

Here, the mistake is obviously a misperception of the complex square root
that probably comes from a prior intuition about square roots in the positive
reals.

Already these primitive examples show that distinctiveness can be present
without clarity.

Of course, we can have both. Every well-understood proof from a thor-
ough textbook is an example. We can also have neither, and if one teaches
mathematics, one will occasionally find examples in homework and exams.
Further examples are most of the many supposed constructions for squaring
the circle, most attempts at an elementary proof of Fermat’s Last Theorem
(see [FF]), disproofs for Gödel’s Incompleteness Theorem, ‘proofs’ for the
countability of R etc.

Clarity of a proof hence means fulfillment of the occuring intentions.
These intentions involve those directed to mathematical objects as well as
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those directed towards logical steps, i.e. inferential claims: For a distinct
understanding of a proof, it suffices to understand that, at a certain point, A
is supposed to follow. This supposed inference is an empty intention directed
at a derivation of A from the information given at this point. The fulfillment
of this intention consists in carrying out this derivation. If a proof is given in
perfect clarity, one knows exactly how to carry out each claimed inferential
step, using the inferences associated with the occuring objects.

Let us briefly discuss the relation of the preceeding account to the view
that proofs serve as fulfillments of mathematical intentions, as e.g. advo-
cated by P. Martin-Löf or R. Tieszen (see Chapter 13 of [Ti1]). At first
sight, our claim that proofs can be present in an unclear manner seems to
conflict with the claim that proofs themselves are ‘fulfillments’ - for that
would make them ‘unfulfilled fulfillments’. This apparent conflict is, how-
ever, merely terminological: In Tieszen’s account of Martin-Löf’s position,
proofs are cognitive processes of ‘engaging in mental acts in which we come to
‘see’ or ‘intuit’ something’ serving as evidence for mathematical claims. The
intention towards a mathematical object would then be fulfilled by evidence
for its existence, i.e. a - possibily preferably constructive - proof of its exis-
tence. From the point of view of a proof checker that we are interested in, on
the other hand, a purported proof is, at first, a linguistic object: It can only
serve as evidence once it has been worked through and understood, a process
that may require considerable amounts of time, patience and cognitive in-
volvement. In particular, it must be correct in order to provide evidence; in
contrast, in our use of the word ‘proof’ as discussed at the start of the current
section, we follow the usual manner of speech to allow for ‘false proofs’.8 The
notion of proof that Tieszen seems to aim at is the way a proof is present
after this process has been carried out. This is explicated on page 277 of [Ti1]:

‘One can get some sense of the concept of ‘evidence’ that I have in mind by
reflecting on what is involved when one does not just mechanically step

through a ‘proof’ with little or no understanding, but when one ‘sees’, given
a (possibily empty) set of assumptions, that a certain proposition must be
true. Anyone who has written or read proofs has, no doubt, at one time or
another experienced the phenomenon of working through a proof in such a
merely mechanical way and knows that the experience is distinct from the
experience in which one sees or understands a proof. (...) To give a rough

8This point is also discussed in [ML], p. 418: ‘And it is because of the fact that we
make mistakes that the notion of validity of a proof is necessary: If proofs were always
right, then of course the very notion of rightness or rectitude would not be needed.’
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description, one might say that some form of ‘insight’ or ‘realization’ is
involved, as is, in some sense, the fact that the proof acquires ‘meaning’ or

semantic content for us upon being understood.’

It is exactly this process of acquiring ‘meaning or semantic content for
us’ that we are concerned with. In the first sentence of the quoted passage
by Tieszen, our notion of proof is present as ‘proof’ in quotation marks.

4 Distinctiveness, Clarity and automatic proof
checking

Having established the two qualities relevant for our approach, we now want
to link them to natural and automatic proof checking. Our thesis is that,
while a full formalization requires a distinct and clear presentation of a proof,
which means that there’s nothing left to do for an automatic checker, dis-
tinctiveness is sufficient for producing an automatically checkable text, but
not for checking the proof ‘by hand’.

4.1 Distinctiveness is sufficient for automatic checkabil-
ity

We start by comparing a short and basic natural (though very thoroughly
written) mathematical argument written up for human readers to its counter-
parts in the Naproche language. The following is a passage from the English
translation of Edmund Landau’s ‘Grundlagen der Analysis’ ([La]) (all vari-
ables denote natural numbers):

Theorem 9: For given x and y, exactly one of the following must be the case:
1) x = y.
2) There exists a u (exactly one, by Theorem 8) such that x = y + u

3) There exists a v (exactly one, by Theorem 8) such that y = x+ v.
Proof: A) By Theorem 7, cases 1) and 2) are incompatible. Similarly, 1) and 3)
are incompatible. The incompatibility of 2) and 3) also follows from Theorem 7;
for otherwise, we would have x = y+ u = (x+ v) + u = x+ (v+ u) = (v + u) + x.
Therefore we can have at most one of the cases 1), 2) and 3).
B) Let x be fixed, and letM be the set of all y for which one (hence, by A), exactly
one) of the cases 1), 2) and 3) obtains.
I) For y = 1, we have by Theorem 3 that either x = 1 = y (case 1) or x = u′ =

1 + u = y + u (case 2). Hence 1 belongs to M .
II) Let y belong to M . Then either (case 1) for y) x = y, hence y′ = y+ 1 = x+ 1
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(case 3) for y′); or
(case 2) for y) x = y+ u, hence if u = 1 then x = y+ 1 = y′ (case 1) for y′); but if
u 6= 1, then, by Theorem 3, u = w′ = 1+w, x = y+(1+w) = (y+1)+w = y′+w

(case 2) for y′); or (case 3) for y) y = x+ v, hence y′ = (x+ v)′ = x+ v′ (case 3)
for y′). In any case, y′ belongs to M . Therefore, we always have one of the cases
1), 2) and 3).

Now compare this to the following variant, a fragment of a text which is
accepted by the current version of Naproche (taken from [CCK]):

Theorem 9: Fix x, y. Then precisely one of the following cases holds:
Case 1: x = y.
Case 2: There is a u such that x = y + u.
Case 3: There is a v such that y = x+ v.
Proof: Case 1 and case 2 are inconsistent and case 1 and case 3 are inconsistent.
Suppose case 2 and case 3 hold. Then x = y + u = (x + v) + u = x + (v + u) =

(v + u) + x.
Contradiction. Thus case 2 and case 3 are inconsistent. So at most one of case 1,
case 2 and case 3 holds.
Now fix x. Define M(y) iff case 1 or case 2 or case 3 holds.
Let y such that y = 1 be given. x = 1 = y or x = u′ = 1 + u = y + u. Thus M(1).
Let y such that M(y) be given. Then there are three cases:
Case 1: x = y. Then y′ = y + 1 = x+ 1. So M(y′).
Case 2: x = y + u. If u = 1, then x = y + 1 = y′, i.e. M(y′). If u 6= 1, then
u = w′ = 1 + w, i.e. x = y + (1 + w) = (y + 1) + w = y′ + w, i.e. M(y′).
Case 3: y = x+ v. Then y′ = (x+ v)′ = x+ v′, i.e. M(y′).
So in all cases M(y′). Thus by induction, for all y M(y). So case 1 or case 2 or
case 3 holds. Qed.

We see some extra complications arise due to the fact that the Naproche
language is a controlled language, so that formulations like ‘For given x and
y’ or ‘incompatible’ need to be replaced by their counterparts ‘Fix x, y’ and
‘inconsistent’ in the Naproche language. This, of course, can easily be over-
come by amending the language accordingly. The passage is given exactly
in the way Naproche can currently read it to avoid the criticism of being
speculative, but we are safe to assume that a line like ‘exactly one of the
following must be the case’ can be processed by a slighly improved version.
Now, what does it take to go from the natural to the Naproche version?
Do we need to understand the proof in some depths or see its correctness?
Certainly not. Rather, we reformulate the proof according to some linguistic
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restrictions. Hence, while a certain difference in the wording is obvious, these
two texts are very similar in content and structure. Given a knowledge of the
current Naproche language, passing from the first version to the second is
trivial: One merely changes some formulations, permanently working along
the original. One can do this with virtually no understanding of the original
text, as long as one keeps the indicators for assuming, deducing and closing
assumptions and uses the same symbol where the same object is meant. One
does not even need to know the meaning of the symbols used. It seems that
any state of mind allowing one to write the first text also allows one to write
the second. In fact, even a faint memory of a vague understanding might
suffice.

This basic example indicates what is necessary for producing an automat-
ically checkable version of a proof: The argument must be given to us as a
sequence of steps in such a way that we can see what is currently claimed and
assumed, which objects are considered, when a new object is introduced and
when something new is claimed about an object introduced earlier (so we will
e.g. use the same symbol). A mere image of some mental movement, which is
indeed often the way one remembers or invents an argument, is not sufficient.
One needs an explicit consciousness of the way primitive intentions are build
together to form judgements and then how these complex intentions are used
to build up the argument. On the other hand, it is not necessary at all to re-
duce everything to formal statements and simple syllogisms. Whether or not
a concrete checker will succeed in a particular case depends of course on how
well the checker captures the semantics of natural mathematical language,
but in principle, arguments at this stage of understanding are open to an
automatic checking process. Hence, to produce an automatically checkable
format, it suffices to have a distinct understanding of the proof.

We consider another example, which deserves special interest, as it is
explicitely given by Rav in [Rav] as an example of an ‘ordinary’ proof, which
he comments thus:

The proof of this theorem as given above is fully rigorous (by currently
accepted standards). It requires, however, on the part of the reader a

certain familiarity with standard mathematical reasoning (...). No formal
logic is involved here; it is a typical reasoning that Aberdein has aptly

characterized as the informal logic of mathematical proof.

He then goes on to describe what to do for obtaining a version of this
proof that can be automatically checked, claiming that this needs, ‘as must
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have been noted, a logician’s know-how’. Here is the proof as given in the
text, including some preliminaries about group theory (we omit Rav’s brack-
eted observations on the proof):

Recall that a group is defined as a set G endowed with a binary operation (to
be written as juxtaposition) having a distinguished identity element, denoted by
‘e’ and satisfying the following first-order axioms:

• (i) (∀x)(∀y)(∀z)[x(yz) = (xy)z]; (associativity)

• (ii) (∀x)(ex = x); (‘e’ is a left-identity)

• (iii) (∀x)(∃y)(yx = e). (every element has a left-inverse)

On the basis of these axioms, one proves that the postulated left-identity is also
a right-identity - in symbols, (∀x)(xe = x) - from which it will follow that the
identity element is unique. Here is the proof:

Let u be an arbitrary element of G. By axiom (iii), there exists t such that (1)
tu = e; once more by axiom (iii), for the t just obtained, there exists s ∈ G such
that (2) st = e. Hence: (3) ue = e(ue) = (eu)e = [(st)u]e = [s(tu)]e = (se)e =
s(ee) = se = s(tu) = (st)u = eu = u. (...) Since u is an arbitrary element of G
and by (3) ue = u, we conclude that (∀x)(xe = x).

Now if there were a second element e′ with the property that (∀x)(e′x = x),
we would conclude from what has just been proven that (∀x)(xe′ = x) also, and
hence e = ee′ = e′. Thus, the identity element is unique. Hence, we have proven
the following:
Theorem: (a) (∀x)(xe = x) (b) (∀y)(∀x)[yx = x =⇒ y = e].

The following Naproche version of this proof, due to Marcos Cramer, is
accepted by the current version of the system:

Suppose that there is a function ∗ and an object e satisfying the following ax-
ioms:
Axiom 1. ∀x∀y∀z(x ∗ (y ∗ z) = (x ∗ y) ∗ z).
Axiom 2. ∀x(e ∗ x = x).
Axiom 3. ∀x∃y(y ∗ x = e).

Theorem A: For all x, we have x ∗ e = x.
Proof: Let u be given. By Axiom 3, there is a t such that t ∗ u = e. By Axiom 3,
there is an s such that s∗t = e. Then u∗e = e∗(u∗e) = (e∗u)∗e = ((s∗t)∗u)∗e =
(s∗ (t∗u))∗e = (s∗e)∗e and (s∗e)∗e = s∗ (e∗e) = s∗e = s∗ (t∗u) = (s∗ t)∗u =
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e ∗ u = u. Thus ∀x(x ∗ e = x). Qed.

Theorem B: If ∀x∀y(x ∗ y = x), then y = e.
Proof: Assume that e1 is such that ∀x(e1 ∗ x = x). Then by Theorem A,
∀x(x ∗ e1 = x). Hence e = e ∗ e1 = e1. Thus e1 = e. Qed.

Again, the transition from the original text to the Naproche text is quite
elementary and needs neither a logician’s expertise nor knowledge of group
theory. It is particularly interesting to note that the equivalence of these
texts can be observed even without a knowledge of the meaning of the cor-
responding terms. This demonstrates again that it is distinctiveness, not
clarity, which is required for the transition as well as for judging the ade-
quacy of such a translation

Let us briefly recall at this point how Naproche proceeds to check a text
like the above: From the text, it builds a representation of the intended log-
ical structure of the proof. These proof representation structures (PRSs)
contain the occuring statements along with their intended relations, as A is
to be assumed, B is to be deduced, C is to be used in the step from A to B
etc. Other than a formal derivation which, by its definition, cannot be false,
a PRS is completely neutral to the correctness or soundness of the repre-
sented argument: What it represents is the distinctively given intentional
structure of a proof. Notably, presuppositions hidden in certain formulations
(e.g. uniqueness in the use of definite articles as in ‘Let n be the smallest
natural number such that...’) are made explicit. In the next step, an attempt
is made to construct a fully formal proof from the PRS: In particular, when
B is, according to the PRS, claimed to follow at a certain step (possibly
with the help of an earlier derived statement A), then an automatic theo-
rem prover is used to attempt to prove B from the available assumptions at
this point, where indicators like explicit citations of earlier statements help
to direct the proof search. In particular, the automatic prover will attempt
to apply definitions of the occuring notions as well as results in which they
appear: It will, when a notion T occurs, quite naturally try to use the ‘infer-
ence package’ associated with T for creating the actual deductions claimed to
exist. It will, in other words, attempt to do something analogous to fulfilling
the intentions given in the distinctive representation of the proof.
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4.2 Distinctiveness is not sufficient for natural checking

The degree of understanding obtained by distinctly disclosing the structure
of an argument is not sufficient for performing a proof check. In fact, we
can have perfect distinctiveness and still be completely agnostic concerning
correctness. This is already indicated by our examples above. One reason
for this is that, in a natural argument, we do not have a fixed, manageable
supply of inference rules justifying each step. When checking a step, we often
use some mental representation (‘image’) of the objects under consideration.
This representation is different from a formal definition and usually precedes
it. 9 However, these images are imperfect in directing us towards the objects
we mean and may carry false preconceptions concerning these objects. If,
for example, concept B is a generalization of concept A, there is a certain
tendency of assuming properties of A for B. There is a vast amount of fre-
quent mistakes compatible with a distinct presentation. A strong source of
mistakes is some kind of a closed world assumption that excludes objects we
can’t really imagine. This danger remains even after we come to know about
counterexamples. Imagining e.g. a continuous function from R to R as a
‘drawable line’ is often very helpful, but it also misdirects us in many cases.
For another example, in spite of strong and repeated efforts, some students
in set theory courses never acknowledge the existence of infinite ordinals and
keep subtracting 1 from arbitrary ordinals . The idea of a non-zero ‘number’
without a predecessor is apparently hard to accept.
Such preconceptions derived from a misinterpretation of mental images are
a common source of mistakes even in actual mathematical research practice.
[MO1] contains a long and occasionally amusing list of common mispercep-
tions in mathematics, most of which are instances of such a misinterpretation.
We will get back to this below when we consider classical examples of false
proofs.
Of course, this kind of perception of mathematical objects is all but a dis-
pensible source of mistakes: In fact, it is exactly this ability that steers the
process of proving and creating mathematics, thereby making the human
mathematician so vastly superiour to any existing automatic prover.

Let us now briefly reconstruct this example-driven account in the more
general terminology set up above for this purpose. Given a distinct pre-
sentation, we only see what is claimed to happen, a ‘proof intention’. We
can at this point already spot some mistakes, e.g. circularity, or that the

9Historically, at least. The deductive style dominant in mathematical textbooks con-
fronts the student with the inverse problem: Namely making sense of a seemingly unmo-
tivated given formal definition.
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statement actually proved is not the statement claimed; but we cannot check
the proof: A ‘proof map’, as helpful as it is for finding one’s way through a
more involved argument, does not require for its creation an understanding
or checking of the proof. To check a proof, it is necessary to fulfill these
inferential intentions; but for this, clarity is needed.

5 Distinctiveness, Clarity and Formalization
In this section, we consider the question what kind of understanding is nec-
essary for carrying out a full formalization of a proof in a common system
of first-order logic like, say, natural deduction. We argue that Rav is indeed
right in claiming that such an understanding allows checking and that, in
fact, the checking is almost inevitably carried out in the process of obtaining
such an understanding.

To do this, let us reflect on the process of formalization. A formal proof is
one in which the manipulation of symbols is justified without any reference to
a meaning of these symbols. It is clear how a certain symbol may be treated
without knowing what it means, without even taking into account that it
might mean anything. This is achieved by replacing semantic reference by
formal definitions. For instance, the meaning of the word ‘ball’, represent-
ing a certain geometric shape, will be replaced by rules that allow certain
syntactical operations once a string of the form ball(x) shows up. Still, the
formal definition must capture the natural meaning if the formal proof is to
be of any semantic relevance, not just a symbolic game. So the formal defi-
nitions have to be adequate in a way. How do we arrive at adequate formal
definitions? Obviously by observing the role a certain object plays in proofs
and then formulating precisely what about this object is used. The first step
in formalizing a notion is hence to perform an eidetic reduction. Then, the
notion of the object is replaced by the statements used about it. (See [Ti1]
and [Ti2] for thorough discussions of phenomenological aspects involved in
the forming and clarification of mathematical concepts.)
If we replace an informal by a purely formal proof, we have to make all
implicit references to the content explicit to eliminate them in the formaliza-
tion. This means that the role of the object in the argument must be clear.
Consequently, to obtain a fully formal derivation from an informal proof, we
must have distinctiveness and clarity. But when all hidden information is
made explicit as part of a complete understanding of the argument, i.e. if
all intentions are fulfilled, mistakes will inevitably become apparent. The
only questionable part remaining is then the connection between the original
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semantic references and the formal definitions 10. But in established areas of
mathematics, these definitions have stood the test of time, and even though,
particularly in new areas, there are debates about the adequacy of definitions
and though the focus occasionally shifts from one definition to another pro-
viding a deeper understanding of the subject (often indicated by amending
the original notion with expressions like ‘normal’, ‘acceptable’, ‘good’ etc.),
this issue virtually doesn’t come up in mathematical practice. Even if it does,
it is usually considered to affect the degree to which the result is interesting,
not the correctness of the proof. 11

Considering a distinct proof presentation, a good automatic prover will be
able to draw from formal definitions what we draw from correct intuition.
Note that we make no claim on the question whether formal definitions can
exhaust semantic content, nor do we need such a claim. The process of re-
placing steps refering to understanding and perception of abstract objects
by derivations from formal definitions is what corresponds to the activity of
fulfilling intentions involved in the course of a clarification. Conceptually and
mentally, this may well be a very different operation. However, as explained
above, Gödel’s completeness theorem ensures that, whenever an argument
can be brought to clarity, there will be a derivation from the definitions. This
is the reason why an automatic proof checker, using an enhanced formalism
as described above, can give us information on the possibility of clarification.
For a more concrete picture of what information this kind of automatic check-
ing can give us, let us suppose that we have given a certain proof B to our
proof-checker (e.g. Naproche) and got a negative feedback, i.e. that our
assumptions were found to be contradictory or that some supposed conse-
quence could not be reproduced by the system. We are thereby made aware
of a particular proof step that needs further explanation, and it is here that
we may become aware of an actual mistake in our intended proof. This can
already be seen in the most basic examples above, e.g. the ‘proof’ that 2 = 1:
Here, the demand to divide by (a − b) will trigger the presupposition that
(a − b) 6= 0 as an intermediate proof goal which will then be given to the

10An excellent example of the delicate dialectics involved in forming definitions of in-
tuitive concepts is the notion of polyhedron in Euler’s polyhedron formula as discussed
in [La]. Sometimes, this is the really hard part in creating new mathematics. Another
prominent example is the way how the intuitive notion of computability was formalized
by the concept of the Turing machine.

11Suppose, for example, that someone came up with a non-recursive function that one
can evaluate without investing original thought so that one is inclined to accept the eval-
uation of this function as an instance of ‘calculation’, thus disproving the Church-Turing
thesis. As a consequence, recursiveness would lose its status as an exact formulation of
the intuitive concept of calculation. But this would not affect the correctness of recursion
theory.
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automatic theorem prover. It is then a matter of seconds that we will be
informed that this proof goal was found to contradict the assumptions which
will make it very obvious what goes wrong in the intended proof. Here, we
thus have a clear example how automatic proof checking can lead to an epis-
temic gain.
It is not so obvious what information there is to be drawn from the opposite
scenario, e.g. a positive feedback from the system. Certainly, we are in-
formed that the proof goal is actually formally provable as it should be, but
that doesn’t imply that our proof was correct. Getting information about
our proof from a positive feedback would need a close connection between
our natural way to think about missing proof steps and the automatic the-
orem prover, which is certainly a fascinating subject for further study, but
currently far remote from reality. This point will be discussed in section 7.

6 An Historical Example
In this section, we apply the notions obtained above to a famous historical
example of a false proof. Our goal is to demonstrate that this proof shows
a sufficient degree of distinctiveness for a formalization in a Naproche-like
system and hence that automatic checking could indeed have contributed in
this case to the development of mathematics. This example further demon-
strates that even incomplete distinctivication can be sufficient for automatic
checking and that actual mistakes may occur already in the margin between
the degree of distinctiveness necessary for formalization and complete dis-
tinctiveness.

Example (Cauchy 1821)12

Claim: Let (fi|i ∈ N) be a convergent sequence of continuous functions from R to
R, and let s be its limit. Then s is continuous.
Proof : Define sn(x) := Σn

i=1fi(x), rn(x) := Σ∞i=n+1fn(x). Also, let ε > 0. Then,
as each fi is continuous and finite sums of continuous functions are continuous, we
have ∃δ∀a(|a| < δ =⇒ |sn(x+ a)− sn(x)| < ε).
As the series (fi|i ∈ N) converges at x, there is N ∈ N such that, for all n > N , we
have |rn(x)| < ε.
Also, the series converges at x+ a, so there is N such that, for all n > N , we have

12This formulation is sometimes disputed as not correctly capturing the argument
Cauchy had in mind. Some claim that Cauchy meant the variables implicit in his text to
not only range over what is now known as the set of reals, but also over infinitesimals.
However, the formulation we offer captures the way the proof was and still is understood
and at first sight considered correct by many readers, so we will not pursue this historical
question further.
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|rn(x+ a)| < ε.
So we get: |s(x + a) − s(x)| = |sn(x + a) + rn(x + a) − sn(x) − rn(x)| ≤ |sn(x +

a)− sn(x)|+ |rn(x)|+ |rn(x+ a)| ≤ 3ε.
Hence s is continuous.

This example is taken from [Ri] and closer analyzed in the appendix of
[La]. The mistake becomes obvious when one focuses on the dependencies
between the occuring quantities: The δ shown to exist in line 3 of the proof
depends on ε, x and n. The N from line 4, on the other hand, only depends
on ε and x. However, the N used in line 6 obviously also depends on a.
Hence N is in a subtle way used in two different meanings. The dependence
on a can only be eliminated if there is someM bigger than N(ε, x+a) for all
|a| < δ(ε, x, n). This property means that (fi|i ∈ N) is uniformly convergent.
which is much stronger than mere convergence.
Simple as this mistake may seem, it has a long success story (see again [La]):
The (wrong) statement it supposedly proves was considered trivially true for
quite a while by eminent mathematicians, and when the first counterexam-
ples occured, they were considered either as pathologies that shouldn’t be
taken seriously as functions or violently re-interpreted as examples. It was
no other then Cauchy who first felt the urge to give a proof and published
the above argument in his monograph [Cau]. It took several decades before
the mistake was spotted and the statement was corrected by strengthening
the assumption to uniform convergence.
Reproducing the understanding of this argument shows what is going on: In
the arguing for the existence of N , one gets the imagination of a ‘sufficiently
large number’ and then reuses the object in a new context in an inappropriate
way because hidden properties of the object - its dependencies on others in
its construction - are ignored. That is, while the train of thought described
here gives distinct intentions to certain objects N and N ′ which are then
identified, a fulfillment of these intentions is not possible.
Now, suppressing the arguments on which an object depends is quite com-
mon in mathematical writings. A formalizer, of course, must reconstruct
this information. The way a Naproche-like system models a text can easily
allow for such a convention. Apart from that, the text is certainly not lack-
ing distinctiveness. It also uses only very little natural language and not in
any complicated way. It would be quite feasible to enrich the vocabulary of
e.g. Naproche to process it in the precise form given here. But when the
formalization is carried out, the proof breaks down. It will be very interest-
ing to actually carry this out on concrete systems once they are sufficiently
developed.
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7 Discussion
We have explained above how automatic checking with Naproche-like sys-
tems can lead to an epistemic gain concerning a proof. We will now take a
close look at the assumptions on which our account relies, thereby sharpen-
ing the picture when such gains can be expected and when not.
Under what circumstances, then, do we get new information from Naproche
and what is that information? Certainly, it is informative if Naproche spots
a non-intended contradiction - in this case, the proof contains a mistake. The
false proofs of 1 = 2 and −1 = 1 above are examples where a tacit assump-
tion contradicts the information given, which an automatic proof checker can
spot and report. But what does it mean in general when Naproche fails to
confirm a proof? And what does it mean for the correctness of the proof if
it succeeds? An informal proof, as found in a mathematical journal, a math
exam or a math olympiad is roughly seen as correct when it convinces the
critical expert: I.e. when it provides a person with the right background
with the information needed to construct a complete, detailed argument.
This notion of ‘right background’ is highly context-dependent: An original
research paper at the frontier of some area of core mathematics may leave
proof steps to the reader as ‘clear’ that would require from the average be-
ginner student several years of study and concentrated work to complete; on
the other hand, proof exercises for beginner students of mathematics often
require details even - occasionally especially - for steps that are supposedly
immediately clear. This is only one respect in which the correctness of proof
texts is a delicate notion, involving sociological aspects like what background
knowledge and what heuristic power is to be expected by the audience ad-
dressed. The criterion realized in Naproche in its current implementation
is comparably weak, namely whether each claim can be formally deduced
from the information given at that point with limited ressources (typically
within 3 seconds processing time). This is a very rough model of the infer-
ences regarded as admissible for bridging proof steps by human readers to
whom formally extremely complex inferences may be clear based on spatial
intuition, analogy with previous arguments etc. Consequently, a failure of
Naproche to confirm a proof does not necessarily mean that this proof is not
a rational and sensible way of convincing the reader of the correctness of
the conclusion.Conversely, at least in principle, we could have false positive
results. If the checking succeeds, then a formal proof of the conjecture in
question was generated, so a correct proof is confirmed to exist; but this
does not necessarily mean that the original informal proof was correct by
the standards for informal proofs. Suppose e.g. that, in a proof of a state-
ment A, the end-result A is deduced as an intermediate step in the process
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of bridging a gap in that proof; in this case, the formalization should cer-
tainly not be seen as a confirmation that the original argument was sound.
Similarly, if the work needed to confirm a certain inference in a proof is
much more complex than the whole proof itself, one has a reason to doubt
the proof. This becomes particularly obvious when one thinks of tutorial
contexts: When asked to prove something, some students try to trick the
corrector by making some deductions from the information given forwards,
some steps backwards from the goal and then simply writing the results next
to each other, claiming that the latter follows from the former. Even though
this claim may be right, these texts fail to show that the author knew how to
do it, and usually, the step left out is as complicated as the original problem
itself. It is an interesting field of further study to see what kind of inferences
may be ‘left to the reader’ and build formal models of those. More generally,
the notion of correctness for informal proofs, in contrast to that for informal
proofs, certainly deserves further attention.

Still, granting these objections and as decent as our currently existing
software may be, the experience with Naproche and our analysis thereof
above should suffice to demonstrate that there is more to get from auto-
matic proof checking than Rav (and many others) might expect. However,
one should not forget that this kind of checking relies on various convenient
circumstances; for example, it assumes a stable formal framework which in
particular allows to replace the understanding of a term by a formal defi-
nition for all purposes of deduction. Where such a framework is missing,
the emulation of fulfillment of mathematical intentions by automatic proving
will not work. Such a framework is, of course, not always present; rather, it
typically occurs as a rather late stage in the development of a mathematical
theory. The clarification and development of notions is an important part of
mathematics, and proofs play a role as a part of this process (as e.g. Lakatos
has impressively demonstrated in [Lak]). A similar caveat holds with re-
spect to the use of axiomatic systems: Not always is the content of a theory
canonically codified in an axiomatic system; furthermore, axiomatic systems
codifying a theory can be complemented when defects become apparent in
its usage. (A well-known examples is Zermelo’s proof of the well-ordering
principle introducing the axiom of choice.)

A vast majority of contemporary mathematical work, however, does in-
deed work in such stable environments where we have formal definitions and
a universally accepted axiomatic background. Still, there are parts of mathe-
maticians proof practice (arguably the philosophically most interesting ones)
that evade automatic checking in the sense explained above. For those, there
may indeed be fundamental reasons to expect that automatic checking will
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not be helpful. Let us look at one example: Namely Turing’s work ([Tu])
on the Entscheidungsproblem, which was widely accepted as settling this
problem. It depends on a technical part (the Entscheidungsproblem is not
solvable by a Turing machine) as well as a concept analysis (Turing machine
computability captures the informal notion of computability, as intended in
the formulation of the Entscheidungsproblem). The first part is, technical
difficulties aside, open to automatic checking. But the second part seems to
be of an entirely different nature: Can a machine even in principle help us to
decide whether some formalization of a certain intuitive notion is adequate?
Apparently, we can’t have told the machine what such a notion means with-
out knowing it ourselves. If, by some other means (like automatic learning)
we had a machine answering ‘yes’ or ‘no’ to such questions, how could we
know it is right? The machine would have to take part in the discussion aris-
ing, providing experiences, thought experiments exploring the borders of the
informal notion etc. In some cases, the underlying informal understanding
of such notions will be rooted far outside of mathematics in what may be
called the life-world. Is the set of reals an adequate model for a ‘line’ or for
time? Does Turing computability indeed capture computability in the intu-
itive sense? Does ZFC provide a reasonable understanding of what it means
to be a set and are the set-theoretical formalizations of mathematical notions
adequate to them? These questions play a crucial role in the acceptance of
various formal proofs as answers to mathematical questions, and they are
only non-mathematical when one arbitrarily limits the scope of mathematics
to formalism. In all of these cases, one can easily imagine how the discussion
about them will touch on aspects of human thinking and experience far out-
side of mathematics. These notions are human notions, made by humans for
humans. Human understanding is the ultimate criterion for their adequacy,
so that no outer authority like a computer can tell us what they mean. It
is hence quite plausible that we cannot write a program of which we are
justified to believe that it gives correct answers to questions concerning the
adequacy of a concept analysis, but there is nothing mysterious about this
‘non-mechanical nature of the mind’: It is a mere consequence of the specific
evidence type of (human) concept clarification. 13

13Even more, taking the speculation a bit further, being able to meaningfully and con-
vincingly participate in this kind of discourse is a plausible criterion for not calling some-
thing a ‘machine’ any more. (Moreover, the definiteness of a machine’s response, which is
a main motivation for striving for automatization in the first place, is lost when a machine
becomes merely another participant of a discourse.) Of course, the rules of a discourse are
made by its participants; so in the end, the possibility of computers becoming influential
even in the conceptual part of mathematics might boil down to the question whether we
are willing to accept a computer as a participant in such a debate on equal terms. However,



29

To briefly summarize our discussion: There are indeed important as-
pects and parts of mathematician’s proof practice that are likely beyond
automatic checking in principle, and definitely in the current state or any
state to be expected in the foreseeable future. The great consensus on the
Church-Turing-Thesis and the general acceptance of Turing’s work as a so-
lution to the Entscheidungsproblem (or Matiyasevich’s work on diophantine
equations as a solution to the 10th problem, see [Ma]) is something that Az-
zouni’s derivation-indicator-view can hardly explain. But many great math-
ematician’s have done their work in stable frameworks and a great deal of
mathematics takes part in those: Here, automatic proof checking can lead
to epistemic gains. And here, Naproche-like systems work, demonstrating
that the derivation-indicator view is not as easily discarded by arguments
like those of Rav.

8 Conclusions and Further Work
We hope to have made it plausible that phenomenological considerations and
the corresponding shift of focus can be fruitfully applied to questions con-
cerning the philosophy of mathematical practice with a relevance to mathe-
matical research itself. Namely, we have argued that, in spite of the claims
against it, automatic proof checking can lead to an epistemic gain about an
argument in providing evidence that the indicated intentional acts can be
carried out in a distinct and clear manner. The reason for this was that
human proof checking needs clarity about a proof, while automatic checking
can be performed once a certain degree of distinctiveness is obtained. For
this argument, we crucially used the phenomenological turn from proofs in
the way they are usually considered to the ways in which they occur.
A phenomenological theory of proof perception has, to our knowledge, not
yet been given. It would certainly be interesting in its own right. As one
consequence, it would contain a thorough study of proof mistakes, which,
on the one hand, might become relevant in pedagogical considerations, but
would also sharpen our understanding of what automatic proof checkers can
add to our trust in a proof and how they can do this.
A concrete application of such considerations would be the development of
proving tools suitable for Naproche-like systems. Such a prover is supposed
to bridge steps in natural proofs which are assumed to be supplied by the
reader. In a sense, these proofs are hence ‘easy’ and ‘short’. Of course, such
steps often take place in e.g. spatial or temporal intuition rather than formal
reasoning. There is therefore no obvious relation between a ‘simple, short

we now have reached a level of speculation at which it is better to stop.
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argument’ and the number of lines in a corresponding derivation. 14 A next
step is hence to consider common elementary operations that are performed
in supplying such proof steps and give formal background theories to replace
them. The goal of this would be to make the automatic prover’s activity
more resemblant to an actual human reader. (Suppose e.g. that the auto-
matic prover proves an auxiliary lemma in a proof in a very complicated way,
obtaining the final theorem as an intermediate step. We would certainly not
call this a valid reconstruction of the argument.) This could help to con-
siderably increase the contribution of natural-language oriented automatic
proof-checkers: In areas like elementary number theory, where crucial appeal
to intuition is rare and proofs can be translated rather naturally, a Naproche
reconstruction of an informal proof will usually correspond well to the proof
intended. Even if it doesn’t, we gain trust in the theorem from a positive
checking, as we obtain a formal proof, whether it adequatly captures the
original proof or not. But of course, the goal of a proof checker is not just
to check whether the theorem claimed to be proved is provable, but whether
the purported proof actually is one. For succeeding at this task, the checker
would have to become ‘pragmatically closer’ to the intended human reader.
Once sufficient background theories are build up, one should actually carry
out the examples given above and others to see what Naproche does with
them. Will it find the ‘right’ mistake? This asks for a systematic study of
wrong proofs in e.g. flawed research papers, wrong student’s solutions etc.
Such a reconsideration of well-known mistakes can serve both as a source
of inspiration for the development of natural proof-checkers and as powerful
demonstration of what has been achieved.
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