Übungsblatt 8 zur Einführung in die Algebra: Solutions

Aufgabe 1.

- (a) Zeige, dass $4X^3 15X^2 + 60X + 180 \in \mathbb{Q}[X]$ irreduzibel ist.
- (b) Zeige, dass $X^3 + 3X^2 + 5X + 5 \in \mathbb{Q}[X]$ irreduzibel ist.
- (c) Zeige, dass $X^4 + 2X^2 + 4 \in \mathbb{Q}[X]$ irreduzibel ist.

Solution

- (a) This is irreducible in $\mathbb{Z}[X]$ and $\mathbb{Q}[X]$ by Eisenstein's Criterion. It is a primitive polynomial in $\mathbb{Z}[X]$, and we apply the Criterion with the prime p taken to be 5: for 5 does not divide the leading coefficient but it divides all the others, and its square, 25, does not divide 180.
- (b) Call the polynomial f. Eisenstein's Criterion does not apply since there is no suitable prime. Substituting X-1 for X gives the polynomial X^3+2X+2 to which Eisenstein does apply, with p=2. We deduce that f(X-1) is irreducible in $\mathbb{Q}[X]$. Applying the automorphism of $\mathbb{Q}[X]$ sending X to X+1 it follows that f=f(X+1-1) is irreducible in $\mathbb{Q}[X]$.
 - (c) For any rational number a/b, we have

$$(a/b)^4 + 2(a/b)^2 + 4 \ge 0 + 2 \cdot 0 + 4 = 4 > 0$$

so f has no rational roots, and hence no linear factors in $\mathbb{Q}[X]$. Since it is of degree 4, the lack of roots also implies that it has no cubic factors either, since if p=qr for some $q,r\in\mathbb{Q}[X]$, and $\deg(q)=3$, then $\deg(r)=\deg(p)-\deg(r)=4-3=1$. But r cannot have degree 1, as f has no linear factors, and hence q has no factors of degree 3.

It remains to show that the polynomial has no quadratic factors. Assume to the contrary that p has quadratic factors $g,h\in\mathbb{Q}[X]$ such that p=gh. Without loss of generality we assume that g is primitive in $\mathbb{Z}[X]$. Then Gauss' Lemma implies that we also have $h\in\mathbb{Z}[X]$. So $q=aX^2+bX+c$ and $r=dX^2+eX+f$ where $a,b,c,d,e,f\in\mathbb{Z}$.

If we multiply q,r , we can collect like terms to obtain

$$p = qr = adX^4 + (ae + bd)X^3 + (af + be + cd)X^2 + (bf + ce)X + cf.$$

Two polynomials are equal if and only if their coefficients are equal, so

$$1 = ad$$

$$0 = ae + bd$$

$$2 = af + be + cd$$

$$0 = bf + ce$$

$$4 = cf.$$

Since a, d are integers and ad = 1, we may assume that a = d = 1. The system now becomes

$$\begin{array}{rcl} 0 & = & e+b \\ 2 & = & f+be+c \\ 0 & = & bf+ce \\ 4 & = & cf. \end{array}$$

Observe that b = -e, so we have

$$2 = f - b^2 + c \tag{1}$$

$$0 = bf - bc (2)$$

$$4 = cf. (3)$$

From equation (2), we know that b = 0 or f = c. We consider two cases

Case 1: If f = c, equation (3) tells us that $c = \pm 2$. Substituting this into equation (1) we see that $b^2 = 2$ or $b^2 = -4$, neither of which has an integer solution. Since b must be an integer, $f \neq c$. Case 2: If b = 0, equation (1) tells us that f + c = 2, or f = 2 - c. Substituting into equation (3), we have

$$\begin{array}{rcl} 4 & = & c(2-c) \\ 4 & = & 2c-c^2 \\ c^2 - 2c + 4 & = & 0. \end{array}$$

The quadratic formula shows that this has no integer solution for c . Since c must be an integer, $b \neq 0$.

Neither case gives a solution for the coefficients. Hence p cannot factor as the product of two quadratic polynomials. Thus p is irreducible in $\mathbb{Z}[X]$. By Gauss' Lemma, q is irreducible in $\mathbb{Q}[X]$.

Aufgabe 2. Sei $\sqrt{-3} := \sqrt{3}i \in \mathbb{C}$, $R := \mathbb{Z}[\sqrt{-3}]$ und K = qf(R).

(a) Zeige

$$R = \{a + b\sqrt{-3} \mid a, b \in \mathbb{Z}\}\$$

und

$$K = \{a + b\sqrt{-3} \mid a, b \in \mathbb{Q}\}.$$

- (b) Untersuche die Irreduzibilität von $X^2 + X + 1$ in R[X] und in K[X].
- (c) Zeige, dass R nicht faktoriell ist.

Solution

Let
$$f = X^2 + X + 1$$
.

(a) That $R = \{a + b\sqrt{-3} \mid a, b \in \mathbb{Z}\}$ is clear from the definition.

Take $a,b \in \mathbb{Z}$ such that $x := a + b\sqrt{-3} \neq 0$. To show that $K = \{a + b\sqrt{-3} \mid a,b \in \mathbb{Q}\}$, we must show that x is invertible in $\{a + b\sqrt{-3} \mid a,b \in \mathbb{Q}\}$. Take $y = \frac{a - b\sqrt{-3}}{a^2 + 3b^2}$. If this is well defined, then it is clearly the inverse of x and an element of $\{a + b\sqrt{-3} \mid a,b \in \mathbb{Q}\}$. It is well defined if $a^2 + 3b^2 \neq 0$, which is clearly the case if either a or b is non-zero, and if a = b = 0, then x = 0.

(b) Over K (the fraction field of R), f factors as

$$f = \left(X - \frac{-1 + \sqrt{-3}}{2}\right) \left(X - \frac{-1 - \sqrt{-3}}{2}\right).$$

We will now show that f is irreducible in R. Since f is of degree 2, it is irreducible if and only if it has a root. Assume a root exists, of the form $\alpha = a + b\sqrt{-3}$ with $a,b \in \mathbb{Z}$. Then

$$0 = f(\alpha) = (a + b\sqrt{-3})^2 + a + b\sqrt{-3} + 1 = (a^2 - 3b^2 + a + 1) + (2ab - b^2)\sqrt{-3} = 0$$

Hence $a^2 - 3b^2 + a + 1 = 0$ and $2ab - b^2 = 0$. From $2ab - b^2 = 0$ we get either b = 0 or 2a - b = 0. Case b = 0. In this case we get that $a^2 + a + 1 = 0$ from the first equation. But we already know that $X^2 + X + 1$ has no roots in \mathbb{Z} .

Case 2a = b. In this case we get that $-11a^2 + a + 1 = 0$. We can easily check with the equation for roots of a quadratic polynomial that $-11X^2 + X + 1 = 0$ has no roots in \mathbb{Z} .

In both cases we get a contradiction, hence f is irreducible over $\mathbb{Z}[\sqrt{-3}]$.

(c) f is irreducible over R, but not over its field of fractions K. Since $\deg f \geqslant 1$ this would be a contradiction to Gauss' Lemma if R was a unique factorization domain (faktorieller Ring). Therefore R is not a unique factorization domain.

Aufgabe 3. Sei K ein Körper und $v: K \to \mathbb{Z} \cup \{\infty\}$ eine diskrete Bewertung auf K mit zugehörigem Bewertungsring \mathcal{O}_v und maximalem Ideal \mathfrak{m}_v .

Sei $\pi \in K$ mit $v(\pi) = 1$.

- (a) Zeige, dass $k \mapsto (\pi^k)$ eine Bijektion zwischen \mathbb{N}_0 und der Menge der Ideale $I \neq \{0\}$ von \mathcal{O}_v
- (b) Zeige, dass π bis auf Assoziiertheit das einzige irreduzible Element in \mathcal{O}_v ist.

Solution

(a) We will show that all non-zero ideals of \mathcal{O}_v are of the form (π^n) for some $0 \neq n \in \mathbb{N}_0$ and that $(\pi^n) \neq (\pi^m)$ for all $n, m \in \mathbb{N}_0$ with $n \neq m$. Then the bijection is clear.

Note first that for all elements $a \in K^{\times}$, $v(a) + v(a^{-1}) = v(a \cdot a^{-1}) = v(0)$ and hence

$$v(a) = -v(a^{-1}),$$

and moreover, it is easy to show that

$$v(a^n) = nv(a)$$

for $n \in \mathbb{Z}$.

Take $0 \neq a \in \mathcal{O}_v$. If v(a) = 0 then $a \in \mathcal{O}_v^{\times}$ and trivially we have that $a = u\pi^0$ for some $u \in \mathcal{O}_v^{\times}$. Assume now that v(a) = n > 0. We have that $v(\pi^n) = n$, and hence $v(a^{-1}\pi^n) = v(a^{-1}) + v(\pi^n) = 0$. Therefore $a^{-1}\pi^n = u$ for some $u \in \mathcal{O}_v^{\times}$. Hence $a = u\pi^n$.

Let I be an non-zero ideal of \mathcal{O}_v and assume $a \in I$ such that $v(a) \leq v(b)$ for all $b \in I$. If a = 0 then $v(a) = \infty$ and hence $v(b) = \infty$ for all $b \in I$, and therefore $I = \{0\}$, a contradiction. Hence $a \neq 0$.

From the above we have that $a = u\pi^n$ for some $n \in \mathbb{N}_0$ and $u \in \mathcal{O}^{\times}$. We also have that for all $b \in I$.

$$v(ba^{-1}) = v(b) + v(a^{-1}) \ge 0,$$

and hence $ba^{-1} \in \mathcal{O}_v$, therefore $b = ac = \pi^n uc \in (\pi^n)$ for some $c \in \mathcal{O}_v$. Hence $I \subseteq (\pi^n)$, and clearly $I \supseteq (\pi^n)$ as $a \in I$.

We now show that $(\pi^n) \neq (\pi^m)$ for all $n, m \in \mathbb{N}_0$ with $n \neq m$. Assume that $(\pi^n) = (\pi^m)$. Then $\pi^m = \pi^n \cdot a$ and $\pi^m \cdot b = \pi^n$ for some $a, b \in \mathcal{O}_v$. Taking valuations we see that $m = v(\pi^m) = v(\pi^n) + v(a) = n + v(a)$. So $v(a) = m - n \geq 0$ as $a \in \mathcal{O}_v$, hence $m \geq n$. Similarly $v(b) = n - m \geq 0$, and hence $n \geq m$, and hence n = m.

(b) Assume that $\pi = ab$ for some $a,b \in \mathcal{O}_v$. Then

$$v(\pi) = 1 = v(a) + v(b).$$

But $a,b \in \mathcal{O}_v$, and hence $v(a),v(b) \ge 0$. So, if v(a)+v(b)=1, we must have that v(a)=0 or v(b)=0, so either a or b is a unit. Hence π is irreducible.

That π is the only irreducible element up to associativity goes as follows. Suppose $p \in \mathcal{O}_v$ is irreducible. Then by the argument in (a), $p = u\pi^n$ for some $n \in \mathbb{N}_0$ and $u \in \mathcal{O}_v^{\times}$. Since $p \notin \mathcal{O}_v^{\times}$, we have $n \geq 1$. Further, since p is irreducible and $p = (u\pi)(\pi^{n-1})$, we have that $\pi^{n-1} \in \mathcal{O}_v^{\times}$, which implies that n = 1, hence $p = u\pi$, i.e. $p \cong \pi$.