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Übungsblatt 8 zur Einführung in die Algebra: Solutions

Aufgabe 1.

(a) Zeige, dass 4X3 − 15X2 + 60X + 180 ∈ Q[X] irreduzibel ist.

(b) Zeige, dass X3 + 3X2 + 5X + 5 ∈ Q[X] irreduzibel ist.

(c) Zeige, dass X4 + 2X2 + 4 ∈ Q[X] irreduzibel ist.

Solution
(a) This is irreducible in Z[X] and Q[X] by Eisenstein’s Criterion. It is a primitive polynomial

in Z[X], and we apply the Criterion with the prime p taken to be 5: for 5 does not divide the
leading coefficient but it divides all the others, and its square, 25, does not divide 180.

(b)Call the polynomial f . Eisenstein’s Criterion does not apply since there is no suitable prime.
Substituting X − 1 for X gives the polynomial X3 + 2X + 2 to which Eisenstein does apply, with
p = 2. We deduce that f(X − 1) is irreducible in Q[X]. Applying the automorphism of Q[X]
sending X toX + 1 it follows that f = f(X + 1− 1) is irreducible in Q[X].

(c) For any rational number a/b, we have

(a/b)4 + 2(a/b)2 + 4 > 0 + 2 · 0 + 4 = 4 > 0

so f has no rational roots, and hence no linear factors in Q[X]. Since it is of degree 4, the lack
of roots also implies that it has no cubic factors either, since if p = qr for some q,r ∈ Q[X], and
deg(q) = 3, then deg(r) = deg(p) − deg(r) = 4 − 3 = 1. But r cannot have degree 1, as f has no
linear factors, and hence q has no factors of degree 3.

It remains to show that the polynomial has no quadratic factors. Assume to the contrary that p
has quadratic factors g,h ∈ Q[X] such that p = gh. Without loss of generality we assume that g is
primitive in Z[X]. Then Gauss’ Lemma implies that we also have h ∈ Z[X] . So q = aX2 + bX + c
and r = dX2 + eX + f where a, b, c, d, e, f ∈ Z.

If we multiply q, r , we can collect like terms to obtain

p = qr = adX4 + (ae+ bd)X3 + (af + be+ cd)X2 + (bf + ce)X + cf.

Two polynomials are equal if and only if their coefficients are equal, so

1 = ad

0 = ae+ bd

2 = af + be+ cd

0 = bf + ce

4 = cf.

Since a, d are integers and ad = 1, we may assume that a = d = 1. The system now becomes

0 = e+ b

2 = f + be+ c

0 = bf + ce

4 = cf.



Observe that b = −e , so we have

2 = f − b2 + c (1)
0 = bf − bc (2)
4 = cf. (3)

From equation (2), we know that b = 0 or f = c. We consider two cases
Case 1 : If f = c , equation (3) tells us that c = ±2. Substituting this into equation (1) we see

that b2 = 2 or b2 = −4, neither of which has an integer solution. Since b must be an integer, f 6= c.
Case 2 : If b = 0, equation (1) tells us that f + c = 2, or f = 2− c. Substituting into equation

(3), we have

4 = c(2− c)
4 = 2c− c2

c2 − 2c+ 4 = 0.

The quadratic formula shows that this has no integer solution for c . Since c must be an integer,
b 6= 0.

Neither case gives a solution for the coefficients. Hence p cannot factor as the product of two
quadratic polynomials. Thus p is irreducible in Z[X]. By Gauss’ Lemma, q is irreducible in Q[X].

Aufgabe 2. Sei
√
−3 :=

√
3i ∈ C, R := Z[

√
−3] und K = qf(R).

(a) Zeige
R = {a+ b

√
−3 | a,b ∈ Z}

und
K = {a+ b

√
−3 | a,b ∈ Q}.

(b) Untersuche die Irreduzibilität von X2 +X + 1 in R[X] und in K[X].

(c) Zeige, dass R nicht faktoriell ist.

Solution
Let f = X2 +X + 1.
(a) That R = {a+ b

√
−3 | a,b ∈ Z} is clear from the definition.

Take a,b ∈ Z such that x := a+ b
√
−3 6= 0. To show that K = {a+ b

√
−3 | a,b ∈ Q}, we must

show that x is invertible in {a+ b
√
−3 | a,b ∈ Q}. Take y = a−b

√
−3

a2+3b2 . If this is well defined, then it
is clearly the inverse of x and an element of {a+ b

√
−3 | a,b ∈ Q}. It is well defined if a2 + 3b2 6= 0,

which is clearly the case if either a or b is non-zero, and if a = b = 0, then x = 0.
(b) Over K (the fraction field of R), f factors as

f =
(
X − −1 +

√
−3

2

) (
X − −1−

√
−3

2

)
.

We will now show that f is irreducible in R. Since f is of degree 2, it is irreducible if and only
if it has a root. Assume a root exists, of the form α = a+ b

√
−3 with a,b ∈ Z. Then

0 = f(α) = (a+ b
√
−3)2 + a+ b

√
−3 + 1 = (a2 − 3b2 + a+ 1) + (2ab− b2)

√
−3 = 0

Hence a2 − 3b2 + a+ 1 = 0 and 2ab− b2 = 0. From 2ab− b2 = 0 we get either b = 0 or 2a− b = 0.
Case b = 0. In this case we get that a2 + a + 1 = 0 from the first equation. But we already

know that X2 +X + 1 has no roots in Z.
Case 2a = b. In this case we get that −11a2 +a+ 1 = 0. We can easily check with the equation

for roots of a quadratic polynomial that −11X2 +X + 1 = 0 has no roots in Z.
In both cases we get a contradiction, hence f is irreducible over Z[

√
−3].



(c) f is irreducible over R, but not over its field of fractions K. Since degf > 1 this would
be a contradiction to Gauss’ Lemma if R was a unique factorization domain (faktorieller Ring).
Therefore R is not a unique factorization domain.

Aufgabe 3. Sei K ein Körper und v : K → Z ∪ {∞} eine diskrete Bewertung auf K mit zugehö-
rigem Bewertungsring Ov und maximalem Ideal mv.

Sei π ∈ K mit v(π) = 1.

(a) Zeige, dass k 7→ (πk) eine Bijektion zwischen N0 und der Menge der Ideale I 6= {0} von Ov

definiert.

(b) Zeige, dass π bis auf Assoziiertheit das einzige irreduzible Element in Ov ist.

Solution
(a) We will show that all non-zero ideals of Ov are of the form (πn) for some 0 6= n ∈ N0 and

that (πn) 6= (πm) for all n,m ∈ N0 with n 6= m. Then the bijection is clear.
Note first that for all elements a ∈ K×, v(a) + v(a−1) = v(a · a−1) = v(0) and hence

v(a) = −v(a−1),

and moreover, it is easy to show that

v(an) = nv(a)

for n ∈ Z.
Take 0 6= a ∈ Ov. If v(a) = 0 then a ∈ O×v and trivially we have that a = uπ0 for some u ∈ O×v .

Assume now that v(a) = n > 0. We have that v(πn) = n, and hence v(a−1πn) = v(a−1)+v(πn) =
0. Therefore a−1πn = u for some u ∈ O×v . Hence a = uπn.

Let I be an non-zero ideal of Ov and assume a ∈ I such that v(a) 6 v(b) for all b ∈ I. If a = 0
then v(a) = ∞ and hence v(b) = ∞ for all b ∈ I, and therefore I = {0}, a contradiction. Hence
a 6= 0.

From the above we have that a = uπn for some n ∈ N0 and u ∈ O×. We also have that for all
b ∈ I,

v(ba−1) = v(b) + v(a−1) > 0,

and hence ba−1 ∈ Ov, therefore b = ac = πnuc ∈ (πn) for some c ∈ Ov. Hence I ⊆ (πn), and
clearly I ⊇ (πn) as a ∈ I.

We now show that (πn) 6= (πm) for all n,m ∈ N0 with n 6= m. Assume that (πn) = (πm). Then
πm = πn · a and πm · b = πn for some a,b ∈ Ov. Taking valuations we see that m = v(πm) =
v(πn)+v(a) = n+v(a). So v(a) = m−n > 0 as a ∈ Ov, hence m > n. Similarly v(b) = n−m > 0,
and hence n > m, and hence n = m.

(b) Assume that π = ab for some a,b ∈ Ov. Then

v(π) = 1 = v(a) + v(b).

But a,b ∈ Ov, and hence v(a),v(b) > 0. So, if v(a) + v(b) = 1, we must have that v(a) = 0 or
v(b) = 0, so either a or b is a unit. Hence π is irreducible.

That π is the only irreducible element up to associativity goes as follows. Suppose p ∈ Ov is
irreducible. Then by the argument in (a), p = uπn for some n ∈ N0 and u ∈ O×v . Since p /∈ O×v , we
have n > 1. Further, since p is irreducible and p = (uπ)(πn−1), we have that πn−1 ∈ O×v , which
implies that n = 1, hence p = uπ, i.e. p ∼= π.


