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Ubungsblatt 11 zur Einfithrung in die Algebra: Solutions

Aufgabe 1. Fiir jede Teilmenge M der komplexen Zahlenebene C = R & Ri = R? sei

Ge(M) = Menge der Geraden, die zwei verschiedene Punkte von M enthalten
Kr(M) = Menge der Kreise, deren Mittelpunkt in M liegt und deren
Radius gleich dem Abstand zweier Punkte aus M ist.

Wir betrachten dann die folgenden elementaren Konstruktionsschritte:
(x) Schnitt zweier verschiedener Geraden aus Ge(M)
(#) Schnitt einer Geraden aus Ge(M) mit einem Kreis aus Kr(M)
(@) Schnitt zweier verschiedener Kreise aus Kr(M).

Fiir jede Menge M C C sei M’ C C die Menge M vereinigt mit den Schnittpunkten, die man durch
Anwendung von (x), () und (@) erhalten kann. Man nennt die Elemente von M’ die in einem
Schritt aus M konstruierbaren Punkte. Nun definieren wir fiir M C C induktiv die Menge M) der
in n Schritten (n € Ny) aus M konstruierbaren Punkte durch M(®) := M und M®+1) .= (M)
fiir n € Ny. Schliefflich sagen wir, die Punkte aus

a M= J{M™ [ neN}

sind mit Zirkel und Lineal aus M konstruierbar. Zeige durch geometrische Konstruktionen (stich-
punktartig kommentierte Skizzen), dass fiir jedes M C C mit {0,1} C M, die Menge A M einen
Zwischenkorper von C|Q(1) bildet.

Solution

The reasoning in these solutions is easier to follow if you draw a picture to go along with it!
We'll show the following results, which together show that & M is a field that contains Q(1).

zeENMM=>ZeNM

)
)
3) z€ A M = Re(z),Im(z) e A M
)zEAM= -2z M

) 21,22 € AM =21 +20€AM
) z1,22 EAM = 2120 € A M

T zeEAMz£0=1ecn M.

(Note that (3) is not needed to prove our final result, but will be needed in order to prove some
of the other statements)



(1)

The line connecting 0 and 1, that is, the real line R, belongs to Ge(M) by definition. Inter-
secting R with the unit circle, which belongs to Kr(M), we see that —1 € & M . We can
then construct the perpendicular bisector of the interval [1 : 1]. That is, we construct a line
passing through the intersection points of two circles, centered at 1 and —1, of radius 2. We
then intersect this line with the unit circle, and we obtain 1 € A M.

Drop a perpendicular from z to R. This is done by drawing a circle around z of diameter
large enough so that it crosses R at two points. The perpendicular from z to R is then found
by constructing the perpendicular bisector of this point. From the foot of this perpendicular,
say a, draw a circle whose radius is the distance from a to z . Its second intersection with
the straight line through z and a gives 2 € & M

As just verified, we have a = Re(z) € & M. To obtain a = Im(z) € A M, draw the
perpendicular to the imaginary axis through z , and then transfer to R the absolute value of
the foot b of the perpendicular.

Intersect the line through 0 and z with the circle of radius |z| and center 0.

In the case where z; # zo, intersect the circle of center z; and radius |z3| with the circle of
center zo and radius |z1]. One of the intersections is the vertex z; + z2 of the parallelogram
determined by z1, 2o.

In the case z; = 25, intersect the line between 0 and z; with the circle centre z1, radius the
length of the line between 0 and z;. The intersection point not at 0 is z1 + z1.

If 2y = a+1b; and z9 = as + 1by we have
2129 = (a1a2 — b1ba) + (a1b2 + agb )i.

Now 21,29 € ¥ M implies that aq,a2,b1,b2 € A M by (3). So if this claim is true for real
numbers, then it will also be true for arbitrary complex numbers by (4) and (5). Therefore
we must prove that given real numbers r; and rs,

r1,r0 € N M = riry € W M.

We may assume that 71,73 > 0. Consider intersection point of the line through 0 and 1 + 1
with the circle of radius r and centre 0 with positive real part, which we call z. We then
construct the line through z and 1.

We now construct a line parallel to the line through z and 1 going through r1. We do this
by dropping a perpendicular from 71 to the line, then constructing a perpendicular to this
second line through ry.

This line crosses the line between 0 and z at y.

Now we have constructed 2 similar triangles, one with vertices at 0, 1 and z with the length
of the line between 0 and z being r3, and one with vertices at 0, r; and y with the length of
the line between 0 and y being x. These triangles are similar, hence the ratio of x to r; is
equal to the ratio of ro to 1. That is, x = r179. Hence riry € & M

Since 27! = 7 - (22) 71, it suffices in view of the earlier parts to show that if r > 0 lies in

A M, so does 1. We again construct a part of similar triangles.

For the first triangle, we draw a circle of radius 1, and take the intersect point of this circle
with the line through 0 and 1+ i1 whose real part is positive, to give the first vertex, z. We
then form a triangle with vertices at 0, r and x with the length of the line between 0 and x
being 1.

For the second triangle, we construct a parallel line through 1 to the line between x and r.
This intersects the line between 0 and 1 + ¢ at the point y. We then form the triangle with



vertices at 0, 1 and y. This triangle is similar to the previously drawn triangle, and hence
the ratio of r to 1 is equal to the ratio of 1 to the length of the line between 0 and y. Hence
the length of the line between 0 and y is 1/r.

We can hence construct 7~ by the intersection of R and the circle, centre 0, radius the
length of the line between 0 and y.

Aufgabe 2. Sei L|K eine Korpererweiterung und a,b € L mit a® € K und b € K.
(a) Finde ein Polynom f € K[X]\ {0} mit f(a +b) = 0.

(b) Welche Grade kommen fiir das Minimalpolynom irrg(a + b) von a + b iiber K in Frage?
Gebe jeweils ein Beispiel fiir jeden moglichen Grad und ein stichhaltiges Argument fiir jeden
unmoglichen Grad.

Solution

(a) Since
(a4 b)* = a* + 4a>b + 6a%b* + 4ab® + b*

and
(a® +b%)(a + b)? = a* + 2a®b + 2a%b* + 2ab® + b*

we have that a 4+ b is a root of the polynomial
X*—2(a® +b*)X? - 2a%b* + a* + b*
whose coefficients are in K.

(b) Higher degrees than 4 are clearly not possible, as a + b is always a root of the polynomial
X% —2(a+b)X? —2ab + a® + b% over K. Moreover, let F := K(a,b)) 2 K(a+b). [F: K] =
[F: K(a)][K(a) : K], and hence is either 1,2 or 4. We must have that [K(a +b) : K| divides
[F : K]. Hence [K(a +b) : K] # 3.

Degree one is possible. Take a,b € K, then K(a) = K and the minimal polynomial of a + b
is X —a —b. For example, K =R and a =4, b = 4.

Degree two is possible. For example, let K = Q,a = v/2,b = 1. Then the minimal polynomial
of a+bover Kis X2 —-2X —1.

Degree four is possible. We shall see in the next question that X* — 16X?2 4 4 is the minimal
polynomial of v/3 + /5 over Q

Aufgabe 3. Bestimme die Minimalpolynome von v/3 + /5 iiber Q, Q(\/g) und Q(\/ﬁ)
Solution

Consider the tower Q € Q(v/5) € Q(v/5,v/3). As /5 ¢ Q, 22 — 5 is the minimal polynomial of
V5 over Q and we have that [Q(v/5) : Q] = 2. Furthermore, v/3 & Q(1/5), as we now show.

Since the equation 3 = (a + bv/5)? = a? + 5b® — 2ab\/5 implies that a or b must be 0. If b = 0,
this 3 implies that 3 is a square in Q, which is false. If a = 0, this implies that 3/5 is a square in
Q. Assume 3/5 = p?/q¢?, where p and q are coprime. Then 3¢ = 5p?, which is clearly impossible.

It follows, using the product formula, that [Q(v/5,v/3) : Q] = 4.

Consider the tower Q C Q(v/15) € Q(v3 + v/5) € Q(v/3,V5), where the second inclusion
follows from (\/§+ \/5)2 = 8+ 2V/15.

The first inclusion is proper as v/15 ¢ Q and so is the second, as we now show. If Q(v/15) =
Q(V3+ \/5), then v/3 + /5 would be an element of Q(\/ﬁ) and hence so is

V15(V3+V5) = 3V5 +5V3



and hence

§<3¢5+w§_3w§+ VE)) = V3 € Q(VTB).

Since [Q(v/3) : Q] = [Q(v/15) : Q], this implies that Q(v/3) = Q(+/15). Similarly, one can argue
that we would also get Q(v4) = Q(v/15). But Q(v/3) = Q(V/5), as we argued above, hence the
inclusion is proper.

It follows, by considering the possible degrees, that Q(v/3 + v/5) = Q(v/3,V5).

Note that Q(v/5)(v3 + v5) = Q(v3,V5) and Q(v15)(V3 + V5) = Q(v/3,V/5). Hence, the
minimal polynomial of v/3 + /5 is of degree 4 over Q and of degree 2 over Q(v/5) and Q(+/15).

Finally, using 2 (a), we obtain that X* — 16X? +4 is the minimal polynomial of v/3 + v/5 over
Q, X2 —2¢/5X + 2 is the minimal polynomial over Q(v/5) and X2 — 8 — 21/15 over Q(+/15).

Aufgabe 4. Sei L|K eine Korpererweiterung mit 2 # 0 in K und gelte [L : K] = 2.
(a) Zeige, dass es ein x € L gibt mit L = K(z) und 22 € K.
(b) Zeige {V* |be L}NK ={a®|a € K} U {(az)? | a € K} fiir jedes x wie in (a).

Solution

(a) Let « € L\ K, then L = K(a). If X2 +bX + ¢ € K[X], for b,c € K is the minimal
polynomial of « over K. By completing the square, we can rewrite this minimal polynomial

as (X—g)2—§+c.Let1:=(oz+g)eL.ThenK(a):K(x) anda:Q:%—ceK

(b) Note that 1,z is a basis for L as a K—vector space. Let @ € K* be a square in L, then
a = (u+vx)? = u? +2%0? + 2uvz for some u,v € K. Since 2 # 0 in K, it follows that uv = 0.
If u=0 then o € {(az)? |a € K}, if v =0 then o € {a® | a € K}.



