Übungsblatt 11 zur Einführung in die Algebra: Solutions

Aufgabe 1. Für jede Teilmenge M der komplexen Zahlenebene $\mathbb{C}=\mathbb{R}\oplus\mathbb{R}\mathrm{i}\cong\mathbb{R}^2$ sei

Ge(M) = Menge der Geraden, die zwei verschiedene Punkte von M enthalten

 $\mathrm{Kr}(M) \ = \ \mathrm{Menge}$ der Kreise, deren Mittelpunkt in M liegt und deren

Radius gleich dem Abstand zweier Punkte aus M ist.

Wir betrachten dann die folgenden elementaren Konstruktionsschritte:

- (\times) Schnitt zweier verschiedener Geraden aus Ge(M)
- (\emptyset) Schnitt einer Geraden aus Ge(M) mit einem Kreis aus Kr(M)
- (\odot) Schnitt zweier verschiedener Kreise aus Kr(M).

Für jede Menge $M\subseteq\mathbb{C}$ sei $M'\subseteq\mathbb{C}$ die Menge M vereinigt mit den Schnittpunkten, die man durch Anwendung von (\times) , (\varnothing) und (\odot) erhalten kann. Man nennt die Elemente von M' die in einem Schritt aus M konstruierbaren Punkte. Nun definieren wir für $M\subseteq\mathbb{C}$ induktiv die Menge $M^{(n)}$ der in n Schritten $(n\in\mathbb{N}_0)$ aus M konstruierbaren Punkte durch $M^{(0)}:=M$ und $M^{(n+1)}:=(M^{(n)})'$ für $n\in\mathbb{N}_0$. Schließlich sagen wir, die Punkte aus

$$\not\sim M := \bigcup \{ M^{(n)} \mid n \in \mathbb{N} \}$$

sind mit Zirkel und Lineal aus M konstruierbar. Zeige durch geometrische Konstruktionen (stichpunktartig kommentierte Skizzen), dass für jedes $M \subseteq \mathbb{C}$ mit $\{0,1\} \subseteq M$, die Menge $\not\sim M$ einen Zwischenkörper von $\mathbb{C}|\mathbb{Q}(i)$ bildet.

Solution

The reasoning in these solutions is easier to follow if you draw a picture to go along with it! We'll show the following results, which together show that AM is a field that contains $\mathbb{Q}(i)$.

- (1) $i \in A$
- (2) $z \in AM \Rightarrow \overline{z} \in AM$
- (3) $z \in A \longrightarrow Re(z), Im(z) \in A \longrightarrow M$
- $(4) \ z \in A M \Rightarrow -z \in A M$
- (5) $z_1, z_2 \in A M \Rightarrow z_1 + z_2 \in A M$
- $(6) \ z_1, z_2 \in A M \Rightarrow z_1 z_2 \in A M$
- (7) $z \in A M, z \neq 0 \Rightarrow \frac{1}{z} \in A M.$

(Note that (3) is not needed to prove our final result, but will be needed in order to prove some of the other statements)

- (1) The line connecting 0 and 1, that is, the real line \mathbb{R} , belongs to $\operatorname{Ge}(M)$ by definition. Intersecting \mathbb{R} with the unit circle, which belongs to $\operatorname{Kr}(M)$, we see that $-1 \in \mathcal{A}M$. We can then construct the perpendicular bisector of the interval [1:1]. That is, we construct a line passing through the intersection points of two circles, centered at 1 and -1, of radius 2. We then intersect this line with the unit circle, and we obtain $i \in \mathcal{A}M$.
- (2) Drop a perpendicular from z to $\mathbb R$. This is done by drawing a circle around z of diameter large enough so that it crosses $\mathbb R$ at two points. The perpendicular from z to $\mathbb R$ is then found by constructing the perpendicular bisector of this point. From the foot of this perpendicular, say a, draw a circle whose radius is the distance from a to z. Its second intersection with the straight line through z and a gives $\overline{z} \in \mathcal{A} M$
- (3) As just verified, we have $a = \text{Re}(z) \in A$. To obtain $a = \text{Im}(z) \in A$, draw the perpendicular to the imaginary axis through z, and then transfer to \mathbb{R} the absolute value of the foot b of the perpendicular.
- (4) Intersect the line through 0 and z with the circle of radius |z| and center 0.
- (5) In the case where $z_1 \neq z_2$, intersect the circle of center z_1 and radius $|z_2|$ with the circle of center z_2 and radius $|z_1|$. One of the intersections is the vertex $z_1 + z_2$ of the parallelogram determined by z_1, z_2 .

In the case $z_1 = z_2$, intersect the line between 0 and z_1 with the circle centre z_1 , radius the length of the line between 0 and z_1 . The intersection point not at 0 is $z_1 + z_1$.

(6) If $z_1 = a + ib_1$ and $z_2 = a_2 + ib_2$ we have

$$z_1 z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i.$$

Now $z_1, z_2 \in A$ implies that $a_1, a_2, b_1, b_2 \in A$ by (3). So if this claim is true for real numbers, then it will also be true for arbitrary complex numbers by (4) and (5). Therefore we must prove that given real numbers r_1 and r_2 ,

$$r_1, r_2 \in A M \Rightarrow r_1 r_2 \in A M$$
.

We may assume that $r_1, r_2 > 0$. Consider intersection point of the line through 0 and 1 + i with the circle of radius r_2 and centre 0 with positive real part, which we call z. We then construct the line through z and 1.

We now construct a line parallel to the line through z and 1 going through r_1 . We do this by dropping a perpendicular from r_1 to the line, then constructing a perpendicular to this second line through r_1 .

This line crosses the line between 0 and z at y.

Now we have constructed 2 similar triangles, one with vertices at 0, 1 and z with the length of the line between 0 and z being r_2 , and one with vertices at 0, r_1 and y with the length of the line between 0 and y being x. These triangles are similar, hence the ratio of x to r_1 is equal to the ratio of r_2 to 1. That is, $x = r_1 r_2$. Hence $r_1 r_2 \in A$

(7) Since $z^{-1} = \overline{z} \cdot (z\overline{z})^{-1}$, it suffices in view of the earlier parts to show that if r > 0 lies in $\not\sim M$, so does r^{-1} . We again construct a part of similar triangles.

For the first triangle, we draw a circle of radius 1, and take the intersect point of this circle with the line through 0 and 1 + i whose real part is positive, to give the first vertex, x. We then form a triangle with vertices at 0, r and x with the length of the line between 0 and x being 1.

For the second triangle, we construct a parallel line through 1 to the line between x and r. This intersects the line between 0 and 1 + i at the point y. We then form the triangle with

vertices at 0, 1 and y. This triangle is similar to the previously drawn triangle, and hence the ratio of r to 1 is equal to the ratio of 1 to the length of the line between 0 and y. Hence the length of the line between 0 and y is 1/r.

We can hence construct r^{-1} by the intersection of \mathbb{R} and the circle, centre 0, radius the length of the line between 0 and y.

Aufgabe 2. Sei L|K eine Körpererweiterung und $a,b \in L$ mit $a^2 \in K$ und $b^2 \in K$.

- (a) Finde ein Polynom $f \in K[X] \setminus \{0\}$ mit f(a+b) = 0.
- (b) Welche Grade kommen für das Minimalpolynom $\operatorname{irr}_K(a+b)$ von a+b über K in Frage? Gebe jeweils ein Beispiel für jeden möglichen Grad und ein stichhaltiges Argument für jeden unmöglichen Grad.

Solution

(a) Since

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

and

$$(a^2 + b^2)(a + b)^2 = a^4 + 2a^3b + 2a^2b^2 + 2ab^3 + b^4$$

we have that a + b is a root of the polynomial

$$X^4 - 2(a^2 + b^2)X^2 - 2a^2b^2 + a^4 + b^4$$

whose coefficients are in K.

(b) Higher degrees than 4 are clearly not possible, as a+b is always a root of the polynomial $X^4 - 2(a+b)X^2 - 2ab + a^2 + b^2$ over K. Moreover, let $F := K(a,b) \supseteq K(a+b)$. [F:K] = [F:K(a)][K(a):K], and hence is either 1, 2 or 4. We must have that [K(a+b):K] divides [F:K]. Hence $[K(a+b):K] \neq 3$.

Degree one is possible. Take $a,b \in K$, then K(a) = K and the minimal polynomial of a + b is X - a - b. For example, $K = \mathbb{R}$ and a = 4, b = 4.

Degree two is possible. For example, let $K=\mathbb{Q}, a=\sqrt{2}, b=1$. Then the minimal polynomial of a+b over K is X^2-2X-1 .

Degree four is possible. We shall see in the next question that $X^4 - 16X^2 + 4$ is the minimal polynomial of $\sqrt{3} + \sqrt{5}$ over \mathbb{Q}

Aufgabe 3. Bestimme die Minimalpolynome von $\sqrt{3} + \sqrt{5}$ über $\mathbb{Q}, \mathbb{Q}(\sqrt{5})$ und $\mathbb{Q}(\sqrt{15})$.

Solution

Consider the tower $\mathbb{Q} \subset \mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\sqrt{5}, \sqrt{3})$. As $\sqrt{5} \notin \mathbb{Q}$, $x^2 - 5$ is the minimal polynomial of $\sqrt{5}$ over \mathbb{Q} and we have that $[\mathbb{Q}(\sqrt{5}) : \mathbb{Q}] = 2$. Furthermore, $\sqrt{3} \notin \mathbb{Q}(\sqrt{5})$, as we now show.

Since the equation $3 = (a + b\sqrt{5})^2 = a^2 + 5b^2 - 2ab\sqrt{5}$ implies that a or b must be 0. If b = 0, this 3 implies that 3 is a square in \mathbb{Q} , which is false. If a = 0, this implies that 3/5 is a square in \mathbb{Q} . Assume $3/5 = p^2/q^2$, where p and q are coprime. Then $3q^2 = 5p^2$, which is clearly impossible. It follows, using the product formula, that $[\mathbb{Q}(\sqrt{5}, \sqrt{3}) : \mathbb{Q}] = 4$.

It follows, using the product formula, that $[\mathbb{Q}(\sqrt{5},\sqrt{3}):\mathbb{Q}]=4$. Consider the tower $\mathbb{Q}\subset\mathbb{Q}(\sqrt{15})\subset\mathbb{Q}(\sqrt{3}+\sqrt{5})\subset\mathbb{Q}(\sqrt{3},\sqrt{5})$, where the second inclusion follows from $(\sqrt{3}+\sqrt{5})^2=8+2\sqrt{15}$.

The first inclusion is proper as $\sqrt{15} \notin \mathbb{Q}$ and so is the second, as we now show. If $\mathbb{Q}(\sqrt{15}) = \mathbb{Q}(\sqrt{3} + \sqrt{5})$, then $\sqrt{3} + \sqrt{5}$ would be an element of $\mathbb{Q}(\sqrt{15})$ and hence so is

$$\sqrt{15}(\sqrt{3} + \sqrt{5}) = 3\sqrt{5} + 5\sqrt{3}$$

and hence

$$\frac{1}{2}(3\sqrt{5} + 5\sqrt{3} - 3(\sqrt{3} + \sqrt{5})) = \sqrt{3} \in \mathbb{Q}(\sqrt{15}).$$

Since $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{15}):\mathbb{Q}]$, this implies that $\mathbb{Q}(\sqrt{3}) = \mathbb{Q}(\sqrt{15})$. Similarly, one can argue that we would also get $\mathbb{Q}(\sqrt{4}) = \mathbb{Q}(\sqrt{15})$. But $\mathbb{Q}(\sqrt{3}) = \mathbb{Q}(\sqrt{5})$, as we argued above, hence the inclusion is proper.

It follows, by considering the possible degrees, that $\mathbb{Q}(\sqrt{3} + \sqrt{5}) = \mathbb{Q}(\sqrt{3}, \sqrt{5})$.

Note that $\mathbb{Q}(\sqrt{5})(\sqrt{3}+\sqrt{5})=\mathbb{Q}(\sqrt{3},\sqrt{5})$ and $\mathbb{Q}(\sqrt{15})(\sqrt{3}+\sqrt{5})=\mathbb{Q}(\sqrt{3},\sqrt{5})$. Hence, the minimal polynomial of $\sqrt{3}+\sqrt{5}$ is of degree 4 over \mathbb{Q} and of degree 2 over $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{15})$.

Finally, using 2 (a), we obtain that $X^4 - 16X^2 + 4$ is the minimal polynomial of $\sqrt{3} + \sqrt{5}$ over \mathbb{Q} , $X^2 - 2\sqrt{5}X + 2$ is the minimal polynomial over $\mathbb{Q}(\sqrt{5})$ and $X^2 - 8 - 2\sqrt{15}$ over $\mathbb{Q}(\sqrt{15})$.

Aufgabe 4. Sei L|K eine Körpererweiterung mit $2 \neq 0$ in K und gelte [L:K] = 2.

- (a) Zeige, dass es ein $x \in L$ gibt mit L = K(x) und $x^2 \in K$.
- (b) Zeige $\{b^2 \mid b \in L\} \cap K = \{a^2 \mid a \in K\} \cup \{(ax)^2 \mid a \in K\} \text{ für jedes } x \text{ wie in (a)}.$

Solution

- (a) Let $\alpha \in L \setminus K$, then $L = K(\alpha)$. If $X^2 + bX + c \in K[X]$, for $b,c \in K$ is the minimal polynomial of α over K. By completing the square, we can rewrite this minimal polynomial as $(X \frac{b}{2})^2 \frac{b^2}{2} + c$. Let $x = (\alpha + \frac{b}{2}) \in L$. Then $K(\alpha) = K(x)$ and $x^2 = \frac{b^2}{4} c \in K$
- (b) Note that 1, x is a basis for L as a K-vector space. Let $\alpha \in K^{\times}$ be a square in L, then $\alpha = (u+vx)^2 = u^2 + x^2v^2 + 2uvx$ for some $u,v \in K$. Since $2 \neq 0$ in K, it follows that uv = 0. If u = 0 then $\alpha \in \{(ax)^2 \mid a \in K\}$, if v = 0 then $\alpha \in \{a^2 \mid a \in K\}$.