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Übungsblatt 11 zur Einführung in die Algebra: Solutions

Aufgabe 1. Für jede Teilmenge M der komplexen Zahlenebene C = R⊕ Ri ∼= R2 sei

Ge(M) = Menge der Geraden, die zwei verschiedene Punkte von M enthalten
Kr(M) = Menge der Kreise, deren Mittelpunkt in M liegt und deren

Radius gleich dem Abstand zweier Punkte aus M ist.

Wir betrachten dann die folgenden elementaren Konstruktionsschritte:

(×) Schnitt zweier verschiedener Geraden aus Ge(M)

(�) Schnitt einer Geraden aus Ge(M) mit einem Kreis aus Kr(M)

(##) Schnitt zweier verschiedener Kreise aus Kr(M).

Für jede Menge M ⊆ C sei M ′ ⊆ C die Menge M vereinigt mit den Schnittpunkten, die man durch
Anwendung von (×), (�) und (##) erhalten kann. Man nennt die Elemente von M ′ die in einem
Schritt aus M konstruierbaren Punkte. Nun definieren wir für M ⊆ C induktiv die Menge M (n) der
in n Schritten (n ∈ N0) aus M konstruierbaren Punkte durch M (0) := M und M (n+1) := (M (n))′

für n ∈ N0. Schließlich sagen wir, die Punkte aus

∧̂ M :=
⋃
{M (n) | n ∈ N}

sind mit Zirkel und Lineal aus M konstruierbar. Zeige durch geometrische Konstruktionen (stich-
punktartig kommentierte Skizzen), dass für jedes M ⊆ C mit {0,1} ⊆ M , die Menge ∧̂ M einen
Zwischenkörper von C|Q(i) bildet.

Solution

The reasoning in these solutions is easier to follow if you draw a picture to go along with it!
We’ll show the following results, which together show that ∧̂ M is a field that contains Q(i).

(1) i ∈ ∧̂ M

(2) z ∈ ∧̂ M ⇒ z ∈ ∧̂ M

(3) z ∈ ∧̂ M ⇒ Re(z), Im(z) ∈ ∧̂ M

(4) z ∈ ∧̂ M ⇒ −z ∈ ∧̂ M

(5) z1,z2 ∈ ∧̂ M ⇒ z1 + z2 ∈ ∧̂ M

(6) z1,z2 ∈ ∧̂ M ⇒ z1z2 ∈ ∧̂ M

(7) z ∈ ∧̂ M, z 6= 0⇒ 1
z ∈ ∧̂ M .

(Note that (3) is not needed to prove our final result, but will be needed in order to prove some
of the other statements)



(1) The line connecting 0 and 1, that is, the real line R, belongs to Ge(M) by definition. Inter-
secting R with the unit circle, which belongs to Kr(M), we see that −1 ∈ ∧̂ M . We can
then construct the perpendicular bisector of the interval [1 : 1]. That is, we construct a line
passing through the intersection points of two circles, centered at 1 and −1, of radius 2. We
then intersect this line with the unit circle, and we obtain i ∈ ∧̂ M .

(2) Drop a perpendicular from z to R. This is done by drawing a circle around z of diameter
large enough so that it crosses R at two points. The perpendicular from z to R is then found
by constructing the perpendicular bisector of this point. From the foot of this perpendicular,
say a, draw a circle whose radius is the distance from a to z . Its second intersection with
the straight line through z and a gives z ∈ ∧̂ M

(3) As just verified, we have a = Re(z) ∈ ∧̂ M . To obtain a = Im(z) ∈ ∧̂ M , draw the
perpendicular to the imaginary axis through z , and then transfer to R the absolute value of
the foot b of the perpendicular.

(4) Intersect the line through 0 and z with the circle of radius |z| and center 0.

(5) In the case where z1 6= z2, intersect the circle of center z1 and radius |z2| with the circle of
center z2 and radius |z1|. One of the intersections is the vertex z1 + z2 of the parallelogram
determined by z1, z2.

In the case z1 = z2, intersect the line between 0 and z1 with the circle centre z1, radius the
length of the line between 0 and z1. The intersection point not at 0 is z1 + z1.

(6) If z1 = a+ ib1 and z2 = a2 + ib2 we have

z1z2 = (a1a2 − b1b2) + (a1b2 + a2b1)i.

Now z1,z2 ∈ ∧̂ M implies that a1,a2,b1,b2 ∈ ∧̂ M by (3). So if this claim is true for real
numbers, then it will also be true for arbitrary complex numbers by (4) and (5). Therefore
we must prove that given real numbers r1 and r2,

r1,r2 ∈ ∧̂ M ⇒ r1r2 ∈ ∧̂ M.

We may assume that r1,r2 > 0. Consider intersection point of the line through 0 and 1 + i

with the circle of radius r2 and centre 0 with positive real part, which we call z. We then
construct the line through z and 1.

We now construct a line parallel to the line through z and 1 going through r1. We do this
by dropping a perpendicular from r1 to the line, then constructing a perpendicular to this
second line through r1.

This line crosses the line between 0 and z at y.

Now we have constructed 2 similar triangles, one with vertices at 0, 1 and z with the length
of the line between 0 and z being r2, and one with vertices at 0, r1 and y with the length of
the line between 0 and y being x. These triangles are similar, hence the ratio of x to r1 is
equal to the ratio of r2 to 1. That is, x = r1r2. Hence r1r2 ∈ ∧̂ M

(7) Since z−1 = z · (zz)−1, it suffices in view of the earlier parts to show that if r > 0 lies in
∧̂ M , so does r−1. We again construct a part of similar triangles.

For the first triangle, we draw a circle of radius 1, and take the intersect point of this circle
with the line through 0 and 1 + i whose real part is positive, to give the first vertex, x. We
then form a triangle with vertices at 0, r and x with the length of the line between 0 and x
being 1.

For the second triangle, we construct a parallel line through 1 to the line between x and r.
This intersects the line between 0 and 1 + i at the point y. We then form the triangle with



vertices at 0, 1 and y. This triangle is similar to the previously drawn triangle, and hence
the ratio of r to 1 is equal to the ratio of 1 to the length of the line between 0 and y. Hence
the length of the line between 0 and y is 1/r.

We can hence construct r−1 by the intersection of R and the circle, centre 0, radius the
length of the line between 0 and y.

Aufgabe 2. Sei L|K eine Körpererweiterung und a,b ∈ L mit a2 ∈ K und b2 ∈ K.

(a) Finde ein Polynom f ∈ K[X] \ {0} mit f(a+ b) = 0.

(b) Welche Grade kommen für das Minimalpolynom irrK(a + b) von a + b über K in Frage?
Gebe jeweils ein Beispiel für jeden möglichen Grad und ein stichhaltiges Argument für jeden
unmöglichen Grad.

Solution

(a) Since
(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4

and
(a2 + b2)(a+ b)2 = a4 + 2a3b+ 2a2b2 + 2ab3 + b4

we have that a+ b is a root of the polynomial

X4 − 2(a2 + b2)X2 − 2a2b2 + a4 + b4

whose coefficients are in K.

(b) Higher degrees than 4 are clearly not possible, as a + b is always a root of the polynomial
X4 − 2(a+ b)X2 − 2ab+ a2 + b2 over K. Moreover, let F := K(a,b) ⊇ K(a+ b). [F : K] =
[F : K(a)][K(a) : K], and hence is either 1, 2 or 4. We must have that [K(a+ b) : K] divides
[F : K]. Hence [K(a+ b) : K] 6= 3.

Degree one is possible. Take a,b ∈ K, then K(a) = K and the minimal polynomial of a+ b
is X − a− b. For example, K = R and a = 4, b = 4.

Degree two is possible. For example, let K = Q,a =
√

2, b = 1. Then the minimal polynomial
of a+ b over K is X2 − 2X − 1.

Degree four is possible. We shall see in the next question that X4− 16X2 + 4 is the minimal
polynomial of

√
3 +
√

5 over Q

Aufgabe 3. Bestimme die Minimalpolynome von
√

3 +
√

5 über Q,Q(
√

5) und Q(
√

15).

Solution

Consider the tower Q ⊂ Q(
√

5) ⊂ Q(
√

5,
√

3). As
√

5 /∈ Q, x2 − 5 is the minimal polynomial of√
5 over Q and we have that [Q(

√
5) : Q] = 2. Furthermore,

√
3 6∈ Q(

√
5), as we now show.

Since the equation 3 = (a+ b
√

5)2 = a2 + 5b2 − 2ab
√

5 implies that a or b must be 0. If b = 0,
this 3 implies that 3 is a square in Q, which is false. If a = 0, this implies that 3/5 is a square in
Q. Assume 3/5 = p2/q2, where p and q are coprime. Then 3q2 = 5p2, which is clearly impossible.

It follows, using the product formula, that [Q(
√

5,
√

3) : Q] = 4.
Consider the tower Q ⊂ Q(

√
15) ⊂ Q(

√
3 +
√

5) ⊂ Q(
√

3,
√

5), where the second inclusion
follows from (

√
3 +
√

5)2 = 8 + 2
√

15.
The first inclusion is proper as

√
15 /∈ Q and so is the second, as we now show. If Q(

√
15) =

Q(
√

3 +
√

5), then
√

3 +
√

5 would be an element of Q(
√

15) and hence so is
√

15(
√

3 +
√

5) = 3
√

5 + 5
√

3



and hence
1
2

(3
√

5 + 5
√

3− 3(
√

3 +
√

5)) =
√

3 ∈ Q(
√

15).

Since [Q(
√

3) : Q] = [Q(
√

15) : Q], this implies that Q(
√

3) = Q(
√

15). Similarly, one can argue
that we would also get Q(

√
4) = Q(

√
15). But Q(

√
3) = Q(

√
5), as we argued above, hence the

inclusion is proper.
It follows, by considering the possible degrees, that Q(

√
3 +
√

5) = Q(
√

3,
√

5).
Note that Q(

√
5)(
√

3 +
√

5) = Q(
√

3,
√

5) and Q(
√

15)(
√

3 +
√

5) = Q(
√

3,
√

5). Hence, the
minimal polynomial of

√
3 +
√

5 is of degree 4 over Q and of degree 2 over Q(
√

5) and Q(
√

15).
Finally, using 2 (a), we obtain that X4− 16X2 + 4 is the minimal polynomial of

√
3 +
√

5 over
Q, X2 − 2

√
5X + 2 is the minimal polynomial over Q(

√
5) and X2 − 8− 2

√
15 over Q(

√
15).

Aufgabe 4. Sei L|K eine Körpererweiterung mit 2 6= 0 in K und gelte [L : K] = 2.

(a) Zeige, dass es ein x ∈ L gibt mit L = K(x) und x2 ∈ K.

(b) Zeige {b2 | b ∈ L} ∩K = {a2 | a ∈ K} ∪ {(ax)2 | a ∈ K} für jedes x wie in (a).

Solution

(a) Let α ∈ L \ K, then L = K(α). If X2 + bX + c ∈ K[X], for b,c ∈ K is the minimal
polynomial of α over K. By completing the square, we can rewrite this minimal polynomial
as (X − b

2 )2 − b2

2 + c. Let x = (α+ b
2 ) ∈ L. Then K(α) = K(x) and x2 = b2

4 − c ∈ K

(b) Note that 1, x is a basis for L as a K–vector space. Let α ∈ K× be a square in L, then
α = (u+vx)2 = u2 +x2v2 +2uvx for some u,v ∈ K. Since 2 6= 0 in K, it follows that uv = 0.
If u = 0 then α ∈ {(ax)2 | a ∈ K}, if v = 0 then α ∈ {a2 | a ∈ K}.


