Ubungsblatt 14 zur Einführung in die Algebra: Solutions

Aufgabe 1. Sei K ein Körper der Charakteristik p > 0, so dass der Frobenius-Homorphismus $\Phi_p : K \to K$ kein Automorphismus ist. Sei $a \in K \setminus \Phi_p(K)$. Zeige, dass $X^p - a \in K[X]$ irreduzibel und nicht separabel ist.

Solution

Since $f' = pX^{p-1} = 0$, we have clearly that f is not separable. It remains we show irreducibility of $f := X^p - a$ in K[X]. Obviously, $f \notin K^{\times} = K[X]^{\times}$. Now let $f = X^p - a$, and suppose that f = gh, where $g,h \in K[X]$ are monic. We show that g = 1 or h = 1. Choosing $b \in \overline{K}$ with $b^p = a$, we have $f = (X^p - a) = (X^p - b^p) = (X - b)^p$ since char $K[X] = \text{char } K = p \in \mathbb{P}$. Using that K[X] is factorial, we get $g = (X - b)^i$ and $h = (X - b)^j$ for some $i, j \in \mathbb{N}_0$ such that i + j = p. We have to show that i = 0 or j = 0, i.e. $i \in \{0, p\}$. It suffices to show that (i, p) = (p). But since p is prime, the only other possibility would be (i, p) = 1. In that case however, we would find $s, t \in \mathbb{Z}$ with 1 = si + tp leading to $b = b^{si+tp} = (b^i)^s (b^p)^t = (b^i)^s a^t \in K$ (since $g, f \in K[X]$), which is a contradiction to $a \notin \Phi_p(K)$.

Aufgabe 2. Sei $x \in \mathbb{R}$ mit $x^4 = 2$ und $L = \mathbb{Q}(i,x)$. Finde alle Zwischenkörper von $L|\mathbb{Q}$.

Solution

Let $f = X^4 - 2 \in \mathbb{Q}[X]$. Obviously

 $a_1 := \sqrt[4]{2}, \quad a_2 := -\sqrt[4]{2}, \quad a_3 := i\sqrt[4]{2} \quad \text{and} \quad a_4 := -i\sqrt[4]{2}$

are the pairwise distinct zeros of f in \mathbb{C} . The splitting field of f over \mathbb{Q} is therefore $\mathbb{Q}(a_1, a_2, a_3, a_4) = \mathbb{Q}(\mathfrak{i}, \sqrt[4]{2}) = \mathbb{Q}(\mathfrak{i}, x) = L$. In particular, $L|\mathbb{Q}$ is normal and therefore a Galois extension (since char $\mathbb{Q} = 0$).

We now determine $[L : \mathbb{Q}]$. Since f is irreducible over $\mathbb{Q} = qf(\mathbb{Z})$ by Eisenstein, we have $[\mathbb{Q}(\sqrt[4]{2}) : \mathbb{Q}] = 4$. The minimum polynomial of i over $\mathbb{Q}(\sqrt[4]{2})$ is $X^2 + 1$, since $i \notin \mathbb{Q}(\sqrt[4]{2}) \subseteq \mathbb{R}$. So $[\mathbb{Q}(i,\sqrt[4]{2}) : \mathbb{Q}(\sqrt[4]{2})] = 2$. Hence $[\mathbb{Q}(i,\sqrt[4]{2}) : \mathbb{Q}] = [\mathbb{Q}(i,\sqrt[4]{2}) : \mathbb{Q}(\sqrt[4]{2})] : \mathbb{Q}[\sqrt[4]{2}) : \mathbb{Q}] = 2 \cdot 4 = 8$, and hence $\#\operatorname{Aut}(\mathbb{Q}(i,\sqrt[4]{2})|\mathbb{Q}) = [\mathbb{Q}(i,\sqrt[4]{2}) : \mathbb{Q}] = 8$.

Let $G := \operatorname{Aut}(\mathbb{Q}(\mathfrak{i},\sqrt[4]{2})|\mathbb{Q}) \subseteq S_4$. We have $(3 \ 4) \in G$ (as $\overline{a_1} = a_1$, $\overline{a_2} = a_2$ and $\overline{a_3} = a_4$ under complex conjugation). Since f is irreducible in $\mathbb{Q}[X]$ (and therefore each two zeros of f are conjugated over \mathbb{Q}) there is also $\varphi \in G$ with $\varphi(\sqrt[4]{2}) = \mathfrak{i}\sqrt[4]{2}$. Then $\varphi(a_3) = \varphi(\mathfrak{i}\sqrt[4]{2}) = \varphi(\mathfrak{i})\varphi(\sqrt[4]{2}) =$ $(\pm\mathfrak{i})(\mathfrak{i}\sqrt[4]{2}) = \mp\sqrt[4]{2} \in \{a_1,a_2\}$ and hence at least one of $(1 \ 3)(2 \ 4)$ and $(1 \ 3 \ 2 \ 4)$ lies in G. Since the product of these two permutations is $(3 \ 4)$ which is already known to lie in G, it follows that actually both of these permutations lie in G. Products of the three already found permutations yield

 $\{1, (1 2), (3 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 3 2 4), (1 4 2 3)\}.$

We know #G = 8, and hence this set is the whole Galois group.

The different subgroups of G are:

- $\langle 1 \rangle$ (order 1);
- $\langle (1 \ 2) \rangle$, $\langle (3 \ 4) \rangle$, $\langle (1 \ 2)(3 \ 4) \rangle$, $\langle (1 \ 3)(2 \ 4) \rangle$, $\langle (1 \ 4)(2 \ 3) \rangle$ (order 2);

- $\langle (1 \ 3 \ 2 \ 4) \rangle$, $\langle (1 \ 4 \ 3 \ 2) \rangle$, $\langle (1 \ 2), (3 \ 4) \rangle$ (order 4);
- G (order 8).

Intermediate fields of degree 1 over \mathbb{Q} :

• The fixed field of the subgroup of order 8 is \mathbb{Q} .

Intermediate fields of degree 2 over \mathbb{Q} : The subgroups of order 4 have index 2 in G. Hence their fixed fields have degree 2 over $L^G = \mathbb{Q}$.

• Setting $\varphi := (1 \ 3 \ 2 \ 4),$

$$\varphi(\mathbf{i}) = \varphi(\frac{a_3}{a_1}) = \frac{\varphi(a_3)}{\varphi(a_1)} = \frac{a_2}{a_3} = -\frac{1}{\mathbf{i}} = \mathbf{i},$$

shows that the fixed field of $\langle (1 \ 3 \ 2 \ 4) \rangle$ is $\mathbb{Q}(i)$.

• Similarly, setting $\varphi := (1 \ 4 \ 3 \ 2),$

$$\varphi(\sqrt{2}\mathfrak{i}) = -\varphi(a_1a_3) = \varphi(a_1)\varphi(a_3) = a_4a_2 = \mathfrak{i}\sqrt{2} = \sqrt{2}\mathfrak{i}$$

shows that the fixed field of $\langle (1 \ 3 \ 2 \ 4) \rangle$ is $\mathbb{Q}(\sqrt{2}i)$.

• Finally, setting $\varphi := (1 \ 2)(3 \ 4)$,

$$\varphi(\sqrt{2}) = \varphi(-a_1a_2) = -\varphi(a_1)\varphi(a_2) = -a_2a_1 = \sqrt{2}$$

shows that the fixed field of $\langle (1 \ 2)(3 \ 4) \rangle$ is $\mathbb{Q}(\sqrt{2})$.

Intermediate fields of degree 4 over \mathbb{Q} :

The subgroups of order 2 have index 4 in G. Hence their fixed fields have degree 4 over $L^G = \mathbb{Q}$.

- Obviously a_3 lies in the fixed field of $\langle (1 \ 2) \rangle$. But since $[\mathbb{Q}(a_3) : \mathbb{Q}] = 4$ by the irreducibility of f, we have that the fixed field of $\langle (1 \ 2) \rangle$ actually equals $\mathbb{Q}(a_3) = \mathbb{Q}(i\sqrt[4]{2})$.
- Analogously, the fixed field of $\langle (3 \ 4) \rangle$ is $\mathbb{Q}(a_1) = \mathbb{Q}(\sqrt[4]{2})$.
- To determine the fixed field of ⟨(1 2)(3 4)⟩, we note that √2 = −a₁a₂ and i = ^{a₃}/_{a₁} lie in it. Now since [Q(√2,i) : Q] = 4, we have that it actually equals Q(√2,i).
- To determine the fixed field of $\langle (1 \ 3)(2 \ 4) \rangle$, we note that $(1 + i) \sqrt[4]{2} = a_1 + a_3$ lies in it. To see that the fixed field equals $\mathbb{Q}((1+i)\sqrt[4]{2})$, we have however to show that $[\mathbb{Q}((1+i)\sqrt[4]{2}):\mathbb{Q}] = 4$. One way to do this, is to verify that $(1 + i)\sqrt[4]{2}$ is a zero of $X^4 + 8$ and $X^4 + 8$ is irreducible over \mathbb{Q} . That $X^4 + 8$ is irreducible over \mathbb{Q} can be checked by direct computation (assume $X^4 + 8$ factors and get a contradiction).
- To determine the fixed field of $\langle (1 \ 4)(2 \ 3) \rangle$, we note that $(1 i)\sqrt[4]{2} = a_1 + a_4$ lies in it. Since this is the complex conjugate of $(1 + i)\sqrt[4]{2}$, it follows from the above that the fixed field actually equals $\mathbb{Q}((1 i)\sqrt[4]{2})$.

Intermediate fields of degree 8 over \mathbb{Q} :

• The fixed field of the subgroup of order 1 is $L = \mathbb{Q}(i, \sqrt[4]{2})$.

Resume: The different intermediate fields of $L|\mathbb{Q}$ (and therefore the subfields of L) are

 $\mathbb{Q}, \quad \mathbb{Q}(\mathfrak{i}), \ \mathbb{Q}(\sqrt{2}\mathfrak{i}), \ \mathbb{Q}(\sqrt{2}\mathfrak{i}), \ \mathbb{Q}(\sqrt{2}), \ \mathbb{Q}(\mathfrak{i}\sqrt[4]{2}), \ \mathbb{Q}(\sqrt{2}\mathfrak{i}), \ \mathbb{Q}((1+\mathfrak{i})\sqrt[4]{2}), \ \mathbb{Q}((1-\mathfrak{i})\sqrt[4]{2}) \text{ and } \ \mathbb{Q}(\mathfrak{i}\sqrt[4]{2}).$

Aufgabe 3. Sei K(x)|K eine algebraische Körpererweiterung von ungeradem Grad. Zeige $K(x^2) = K(x)$.

Solution

Clearly x is a root of $X^2 - x^2 \in K(x^2)[X]$, hence $[K(x) : K(x^2)] \leq 2$. By the tower law we have that

$$[K(x):K] = [K(x):K(x^2)] \cdot [K(x^2):K],$$

which is odd by hypothesis. Therefore $[K(x) : K(x^2)] = 1$.

Aufgabe 4.

- (i) Zeige, dass die Galoisgruppe des Zerfällungskörpers eines irreduziblen separablen Polynoms vom Grad 3 über einem Körper isomorph zu S_3 oder C_3 ist
- (ii) Bestimme die Galoisgruppe des Zerfällungskörpers von $X^3 X 1$ über \mathbb{Q} .

Solution

(i) Let K be a field and let $f \in K[X]$ be an irreducible polynomial of degree 3. Let L be a splitting field of L. L|K is normal and separable, and $[L : K] = |\operatorname{Aut}(L|K)| \leq 6$ and $\operatorname{Aut}(L|K) \subseteq S_3$.

Let a,b,c be the roots of f in L. Since f is irreducible, we have that [K(a):K] = 3. Hence we have a tower of fields $K \subseteq K(a) \subseteq L$ with $[L:K] \leq 6$ and [K(a):K] = 3. By the tower law we have [L:K(a)] = 1 or 2. We consider both cases.

If [L: K(a)] = 2, then [L: K] = 6, and so $\operatorname{Aut}(L|K)$ has 6 elements. But $\operatorname{Aut}(L|K) \subseteq S_3$ and $|S_3| = 6$, hence $\operatorname{Aut}(L|K) = S_3$.

If [L: K(a)] = 1, then [L: K] = 3 and Aut(L|K) has 3 elements. However, there is only one group of order 3, up to isomorphism, and that is C_3 .

(ii) Let $f = X^3 - X - 1 \in \mathbb{Q}[X]$ and L be a splitting field of f over \mathbb{Q} . Since the characteristic of \mathbb{Q} is 0, the extension $L|\mathbb{Q}$ is separable. We now show that f is irreducible. If not, f having the degree 3, it would have a zero $\frac{a}{b} \in \mathbb{Q}$ with $a, b \in \mathbb{Q} \setminus \{0\}$. We can assume without loss of generality that (a,b) = (1) in \mathbb{Z} . Since $f(\frac{a}{b}) = 0$ it follows that $a^3 - ab^2 - b^3 = 0$, and hence that $a^3 = b^2(a+b)$. Let p be a prime number such that p|a. Then p must divide a + b and therefore b, a contradiction. Hence $a = \pm 1$. Let q be a prime number with q|b. Then it follows that q|a, again a contradiction, hence $b = \pm 1$. Therefore $\frac{a}{b} = \pm 1$, but $f(\pm 1) \neq 0$, and hence f must be irreducible.

We now find the zeros of f. We know that f has at least one real zero, x_1 , as it is a polynomial of odd degree. Since $f' = 3X^2 - 1$, we see that f is increasing in the range $(-\infty, -\sqrt{\frac{1}{3}}]$, decreasing in the range $\left[-\sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}}\right]$ and increasing again in the range $\left[\sqrt{\frac{1}{3}}, \infty\right)$. We also have that $f(-\sqrt{\frac{1}{3}}) < 0$, and hence f has only one real zero, x_1 . The two other zeros, x_2 and x_3 must be in $\mathbb{C}\backslash\mathbb{R}$. In particular we have

$$\mathbb{Q} \subsetneq \mathbb{Q}(x_1) \subsetneq \mathbb{Q}(x_1, x_2, x_3),$$

where $\mathbb{Q}(x_1, x_2, x_3)$ is the splitting field of f.

Since f is irreducible over \mathbb{Q} , we have that $[\mathbb{Q}(x_1) : \mathbb{Q}] = 3$. Since $\mathbb{Q}(x_1) \subsetneq \mathbb{Q}(x_1, x_2, x_3)$, we have that $[\mathbb{Q}(x_1, x_2, x_3) : \mathbb{Q}(x_1)] \ge 2$, and by the tower law we must have $[\mathbb{Q}(x_1, x_2, x_3) : \mathbb{Q}(x_1)] = 2$ as $[\mathbb{Q}(x_1, x_2, x_3) : \mathbb{Q}] \le 6$. It follows that $|\operatorname{Aut}(\mathbb{Q}(x_1, x_2, x_3)|\mathbb{Q})| = 6$ and hence, by the first part of the question, $\operatorname{Aut}(\mathbb{Q}(x_1, x_2, x_3)|\mathbb{Q}) \cong S_3$.

Aufgabe 5. Sei $x \in \mathbb{C}$ eine Nullstelle von $X^6 + 3$. Zeige, dass $\mathbb{Q}(x)|\mathbb{Q}$ eine Galoiserweiterung ist.

Lösungsvorschlag:

Wegen char $\mathbb{Q} = 0$ reicht es zu zeigen, daß $\mathbb{Q}(x)|\mathbb{Q}$ normal ist. Hierzu zeigen wir, daß $\mathbb{Q}(x) = L$, wobei $L \subseteq \mathbb{C}$ den Zerfällungskörper von $X^6 + 3$ über \mathbb{Q} bezeichne. Es ist klar, daß $\mathbb{Q}(x) \subseteq L$. Zu zeigen ist daher nur $[\mathbb{Q}(x) : \mathbb{Q}] = [L : \mathbb{Q}]$. Da $X^6 + 3$ nach Eisenstein irreduzibel über $\mathbb{Q} = qf(\mathbb{Z})$ ist, gilt $[\mathbb{Q}(x) : \mathbb{Q}] = 6$. Zu zeigen bleibt daher nur $[L : \mathbb{Q}] = 6$. Die paarweise verschiedenen Nullstellen von $X^6 + 3$ in \mathbb{C} sind offenbar $\zeta^k i \sqrt[6]{3}$ $(k \in \{0, \ldots, 5\})$

Die paarweise verschiedenen Nullstellen von $X^6 + 3$ in \mathbb{C} sind offenbar $\zeta^k i \sqrt[6]{3}$ $(k \in \{0, \dots, 5\})$ mit $\zeta := e^{\frac{2\pi i}{6}}$. Daher gilt $L = \mathbb{Q}(i \sqrt[6]{3}, \zeta)$. Da $i \sqrt[6]{3}$ genauso wie x eine Nullstelle von $X^6 + 3$ ist, gilt wie oben $[\mathbb{Q}(i \sqrt[6]{3}) : \mathbb{Q}] = 6$. Zu zeigen ist daher $\zeta \in \mathbb{Q}(i \sqrt[6]{3})$.

Wir versuchen daher, ζ näher zu bestimmen. Offenbar bildet ζ zusammen mit den Punkten 0 und 1 ein Dreieck in der komplexen Zahlenebene, dessen vom Ursprung ausgehenden Seiten gleichlang sind (Länge 1). Dieses Dreieck hat also neben dem Innenwinkel $\frac{180^{\circ}}{6} = 60^{\circ}$ noch zwei gleichgroße Innenwinkel. Man überlegt sich leicht daß die Innenwinkelsumme in einem Dreieck 180° beträgt, woraus folgt, daß alle Innenwinkel dieses Dreiecks 60° betragen. Damit ist aber dieses Dreieck gleichseitig, woraus man $\zeta = \frac{1}{2} + bi$ für ein $b \in \mathbb{R}$ folgt. Es folgt $\frac{1}{4} + b^2 = |\zeta| = 1$ und daher $b = \frac{\sqrt{3}}{2}$. Wegen $2bi = \sqrt{3}i = -(i\sqrt[6]{3})^3$ folgt somit $\zeta \in \mathbb{Q}(i\sqrt[6]{3})$ wie gewünscht.