Übungsblatt 14 zur Einführung in die Algebra: Solutions

Aufgabe 1. Sei K ein Körper der Charakteristik $p>0$, so dass der Frobenius-Homorphismus $\Phi_{p}: K \rightarrow K$ kein Automorphismus ist. Sei $a \in K \backslash \Phi_{p}(K)$. Zeige, dass $X^{p}-a \in K[X]$ irreduzibel und nicht separabel ist.

Solution

Since $f^{\prime}=p X^{p-1}=0$, we have clearly that f is not separable. It remains we show irreducibility of $f:=X^{p}-a$ in $K[X]$. Obviously, $f \notin K^{\times}=K[X]^{\times}$. Now let $f=X^{p}-a$, and suppose that $f=g h$, where $g, h \in K[X]$ are monic. We show that $g=1$ or $h=1$. Choosing $b \in \bar{K}$ with $b^{p}=a$, we have $f=\left(X^{p}-a\right)=\left(X^{p}-b^{p}\right)=(X-b)^{p}$ since char $K[X]=$ char $K=p \in \mathbb{P}$. Using that $K[X]$ is factorial, we get $g=(X-b)^{i}$ and $h=(X-b)^{j}$ for some $i, j \in \mathbb{N}_{0}$ such that $i+j=p$. We have to show that $i=0$ or $j=0$, i.e. $i \in\{0, p\}$. It suffices to show that $(i, p)=(p)$. But since p is prime, the only other possibility would be $(i, p)=1$. In that case however, we would find $s, t \in \mathbb{Z}$ with $1=s i+t p$ leading to $b=b^{s i+t p}=\left(b^{i}\right)^{s}\left(b^{p}\right)^{t}=\left(b^{i}\right)^{s} a^{t} \in K$ (since $g, f \in K[X]$), which is a contradiction to $a \notin \Phi_{p}(K)$.

Aufgabe 2. Sei $x \in \mathbb{R}$ mit $x^{4}=2$ und $L=\mathbb{Q}(\mathfrak{i}, x)$. Finde alle Zwischenkörper von $L \mid \mathbb{Q}$.

Solution

Let $f=X^{4}-2 \in \mathbb{Q}[X]$. Obviously

$$
a_{1}:=\sqrt[4]{2}, \quad a_{2}:=-\sqrt[4]{2}, \quad a_{3}:=\dot{\mathrm{i}} \sqrt[4]{2} \quad \text { and } \quad a_{4}:=-\dot{\mathrm{i}} \sqrt[4]{2}
$$

are the pairwise distinct zeros of f in \mathbb{C}. The splitting field of f over \mathbb{Q} is therefore $\mathbb{Q}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=$ $\mathbb{Q}(\dot{\mathrm{i}}, \sqrt[4]{2})=\mathbb{Q}(\mathrm{i}, x)=L$. In particular, $L \mid \mathbb{Q}$ is normal and therefore a Galois extension (since $\operatorname{char} \mathbb{Q}=0)$.

We now determine $[L: \mathbb{Q}]$. Since f is irreducible over $\mathbb{Q}=\mathrm{qf}(\mathbb{Z})$ by Eisenstein, we have $[\mathbb{Q}(\sqrt[4]{2}): \mathbb{Q}]=4$. The minimum polynomial of ii over $\mathbb{Q}(\sqrt[4]{2})$ is $X^{2}+1$, since $\dot{\operatorname{i}} \notin \mathbb{Q}(\sqrt[4]{2}) \subseteq \mathbb{R}$. So $[\mathbb{Q}(\dot{i}, \sqrt[4]{2}): \mathbb{Q}(\sqrt[4]{2})]=2$. Hence $[\mathbb{Q}(i, \sqrt[4]{2}): \mathbb{Q}]=[\mathbb{Q}(i, \sqrt[4]{2}): \mathbb{Q}(\sqrt[4]{2})][\mathbb{Q}(\sqrt[4]{2}): \mathbb{Q}]=2 \cdot 4=8$, and hence $\# \operatorname{Aut}(\mathbb{Q}(\dot{\mathrm{i}}, \sqrt[4]{2}) \mid \mathbb{Q})=[\mathbb{Q}(\dot{\mathrm{i}}, \sqrt[4]{2}): \mathbb{Q}]=8$.

Let $G:=\operatorname{Aut}(\mathbb{Q}(\dot{\mathrm{i}}, \sqrt[4]{2}) \mid \mathbb{Q}) \subseteq S_{4}$. We have $(34) \in G\left(\right.$ as $\overline{a_{1}}=a_{1}, \overline{a_{2}}=a_{2}$ and $\overline{a_{3}}=a_{4}$ under complex conjugation). Since f is irreducible in $\mathbb{Q}[X]$ (and therefore each two zeros of f are conjugated over $\mathbb{Q})$ there is also $\varphi \in G$ with $\varphi(\sqrt[4]{2})=\dot{\mathrm{i}} \sqrt[4]{2}$. Then $\varphi\left(a_{3}\right)=\varphi(\mathrm{i} \sqrt[4]{2})=\varphi(\mathrm{i}) \varphi(\sqrt[4]{2})=$ $(\pm \dot{i})(\dot{\mathrm{i}} \sqrt[4]{2})=\mp \sqrt[4]{2} \in\left\{a_{1}, a_{2}\right\}$ and hence at least one of $\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right)$ and $\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$ lies in G. Since the product of these two permutations is (34) which is already known to lie in G, it follows that actually both of these permutations lie in G. Products of the three already found permutations yield

$$
\{1,(12),(34),(12)(34),(13)(24),(14)(23),(1324),(1423)\} .
$$

We know $\# G=8$, and hence this set is the whole Galois group.
The different subgroups of G are:

- $\langle 1\rangle($ order 1$)$;
- $\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{ll}3 & 4\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{ll}1 & 4\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\right\rangle$ (order 2$)$;
- $\left\langle\left(\begin{array}{lll}1 & 3 & 2\end{array} 4\right)\right\rangle,\left\langle\left(\begin{array}{lll}1 & 4 & 3\end{array} 2\right)\right\rangle,\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}3 & 4\end{array}\right)\right\rangle($ order 4$)$;
- G (order 8).

Intermediate fields of degree 1 over \mathbb{Q} :

- The fixed field of the subgroup of order 8 is \mathbb{Q}.

Intermediate fields of degree 2 over \mathbb{Q} : The subgroups of order 4 have index 2 in G. Hence their fixed fields have degree 2 over $L^{G}=\mathbb{Q}$.

- $\operatorname{Setting} \varphi:=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$,

$$
\varphi(\dot{\mathrm{i}})=\varphi\left(\frac{a_{3}}{a_{1}}\right)=\frac{\varphi\left(a_{3}\right)}{\varphi\left(a_{1}\right)}=\frac{a_{2}}{a_{3}}=-\frac{1}{\dot{\mathrm{i}}}=\dot{\mathrm{i}},
$$

shows that the fixed field of $\left\langle\left(\begin{array}{ll}1 & 3\end{array} 24\right)\right\rangle$ is $\mathbb{Q}(i)$.

- Similarly, setting $\varphi:=\left(\begin{array}{lll}1 & 4 & 3\end{array}\right)$,

$$
\varphi(\sqrt{2} \dot{\mathfrak{i}})=-\varphi\left(a_{1} a_{3}\right)=\varphi\left(a_{1}\right) \varphi\left(a_{3}\right)=a_{4} a_{2}=\dot{\mathbb{i}} \sqrt{2}=\sqrt{2} \dot{\mathbb{i}}
$$

shows that the fixed field of $\left\langle\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\rangle$ is $\mathbb{Q}(\sqrt{2} \dot{i})$.

- Finally, setting $\varphi:=(12)(34)$,

$$
\varphi(\sqrt{2})=\varphi\left(-a_{1} a_{2}\right)=-\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)=-a_{2} a_{1}=\sqrt{2}
$$

shows that the fixed field of $\langle(12)(34)\rangle$ is $\mathbb{Q}(\sqrt{2})$.

Intermediate fields of degree 4 over \mathbb{Q} :

The subgroups of order 2 have index 4 in G. Hence their fixed fields have degree 4 over $L^{G}=\mathbb{Q}$.

- Obviously a_{3} lies in the fixed field of $\langle(12)\rangle$. But since $\left[\mathbb{Q}\left(a_{3}\right): \mathbb{Q}\right]=4$ by the irreducibility of f, we have that the fixed field of $\langle(12)\rangle$ actually equals $\mathbb{Q}\left(a_{3}\right)=\mathbb{Q}($ i $\sqrt[4]{2})$.
- Analogously, the fixed field of $\langle(34)\rangle$ is $\mathbb{Q}\left(a_{1}\right)=\mathbb{Q}(\sqrt[4]{2})$.
- To determine the fixed field of $\langle(12)(34)\rangle$, we note that $\sqrt{2}=-a_{1} a_{2}$ and $\dot{\mathrm{i}}=\frac{a_{3}}{a_{1}}$ lie in it. Now since $[\mathbb{Q}(\sqrt{2}, i \mathrm{i}): \mathbb{Q}]=4$, we have that it actually equals $\mathbb{Q}(\sqrt{2}, \mathrm{i})$.
- To determine the fixed field of $\langle(13)(24)\rangle$, we note that $(1+\dot{i}) \sqrt[4]{2}=a_{1}+a_{3}$ lies in it. To see that the fixed field equals $\mathbb{Q}((1+\dot{\mathrm{i}}) \sqrt[4]{2})$, we have however to show that $[\mathbb{Q}((1+\dot{\mathrm{i}}) \sqrt[4]{2}): \mathbb{Q}]=4$. One way to do this, is to verify that $(1+\mathfrak{i}) \sqrt[4]{2}$ is a zero of $X^{4}+8$ and $X^{4}+8$ is irreducible over \mathbb{Q}. That $X^{4}+8$ is irreducible over \mathbb{Q} can be checked by direct computation (assume $X^{4}+8$ factors and get a contradiction).
- To determine the fixed field of $\langle(14)(23)\rangle$, we note that $(1-\mathrm{i}) \sqrt[4]{2}=a_{1}+a_{4}$ lies in it. Since this is the complex conjugate of $(1+\dot{\mathrm{i}}) \sqrt[4]{2}$, it follows from the above that the fixed field actually equals $\mathbb{Q}((1-i)) \sqrt[4]{2})$.

Intermediate fields of degree 8 over \mathbb{Q} :

- The fixed field of the subgroup of order 1 is $L=\mathbb{Q}(i \mathfrak{i}, \sqrt[4]{2})$.

Resume: The different intermediate fields of $L \mid \mathbb{Q}$ (and therefore the subfields of L) are
$\mathbb{Q}, \mathbb{Q}(\mathrm{i}), \mathbb{Q}(\sqrt{2} \mathrm{i}), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\mathrm{i} \sqrt[4]{2}), \mathbb{Q}(\sqrt[4]{2}), \mathbb{Q}(\sqrt{2}, \mathrm{i}), \mathbb{Q}((1+\mathrm{i}) \sqrt[4]{2}), \mathbb{Q}((1-\mathrm{i}) \sqrt[4]{2})$ and $\mathbb{Q}(\mathrm{i}, \sqrt[4]{2})$.

Aufgabe 3. Sei $K(x) \mid K$ eine algebraische Körpererweiterung von ungeradem Grad. Zeige $K\left(x^{2}\right)=$ $K(x)$.

Solution

Clearly x is a root of $X^{2}-x^{2} \in K\left(x^{2}\right)[X]$, hence $\left[K(x): K\left(x^{2}\right)\right] \leqslant 2$. By the tower law we have that

$$
[K(x): K]=\left[K(x): K\left(x^{2}\right)\right] \cdot\left[K\left(x^{2}\right): K\right]
$$

which is odd by hypothesis. Therefore $\left[K(x): K\left(x^{2}\right)\right]=1$.

Aufgabe 4.

(i) Zeige, dass die Galoisgruppe des Zerfällungskörpers eines irreduziblen separablen Polynoms vom Grad 3 über einem Körper isomorph zu S_{3} oder C_{3} ist
(ii) Bestimme die Galoisgruppe des Zerfällungskörpers von $X^{3}-X-1$ über \mathbb{Q}.

Solution

(i) Let K be a field and let $f \in K[X]$ be an irreducible polynomial of degree 3 . Let L be a splitting field of $L . L \mid K$ is normal and separable, and $[L: K]=|\operatorname{Aut}(L \mid K)| \leqslant 6$ and $\operatorname{Aut}(L \mid K) \subseteq S_{3}$.
Let a, b, c be the roots of f in L. Since f is irreducible, we have that $[K(a): K]=3$. Hence we have a tower of fields $K \subseteq K(a) \subseteq L$ with $[L: K] \leqslant 6$ and $[K(a): K]=3$. By the tower law we have $[L: K(a)]=1$ or 2 . We consider both cases.
If $[L: K(a)]=2$, then $[L: K]=6$, and so $\operatorname{Aut}(L \mid K)$ has 6 elements. But $\operatorname{Aut}(L \mid K) \subseteq S_{3}$ and $\left|S_{3}\right|=6$, hence $\operatorname{Aut}(L \mid K)=S_{3}$.
If $[L: K(a)]=1$, then $[L: K]=3$ and $\operatorname{Aut}(L \mid K)$ has 3 elements. However, there is only one group of order 3, up to isomorphism, and that is C_{3}.
(ii) Let $f=X^{3}-X-1 \in \mathbb{Q}[X]$ and L be a splitting field of f over \mathbb{Q}. Since the characteristic of \mathbb{Q} is 0 , the extension $L \mid \mathbb{Q}$ is separable. We now show that f is irreducible. If not, f having the degree 3 , it would have a zero $\frac{a}{b} \in \mathbb{Q}$ with $a, b \in \mathbb{Q} \backslash\{0\}$. We can assume without loss of generality that $(a, b)=(1)$ in \mathbb{Z}. Since $f\left(\frac{a}{b}\right)=0$ it follows that $a^{3}-a b^{2}-b^{3}=0$, and hence that $a^{3}=b^{2}(a+b)$. Let p be a prime number such that $p \mid a$. Then p must divide $a+b$ and therefore b, a contradiction. Hence $a= \pm 1$. Let q be a prime number with $q \mid b$. Then it follows that $q \mid a$, again a contradiction, hence $b= \pm 1$. Therefore $\frac{a}{b}= \pm 1$, but $f(\pm 1) \neq 0$, and hence f must be irreducible.
We now find the zeros of f. We know that f has at least one real zero, x_{1}, as it is a polynomial of odd degree. Since $f^{\prime}=3 X^{2}-1$, we see that f is increasing in the range $\left(-\infty,-\sqrt{\frac{1}{3}}\right]$, decreasing in the range $\left[-\sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}}\right]$ and increasing again in the range $\left[\sqrt{\frac{1}{3}}, \infty\right)$. We also have that $f\left(-\sqrt{\frac{1}{3}}\right)<0$, and hence f has only one real zero, x_{1}. The two other zeros, x_{2} and x_{3} must be in $\mathbb{C} \backslash \mathbb{R}$. In particular we have

$$
\mathbb{Q} \subsetneq \mathbb{Q}\left(x_{1}\right) \subsetneq \mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right),
$$

where $\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$ is the splitting field of f.
Since f is irreducible over \mathbb{Q}, we have that $\left[\mathbb{Q}\left(x_{1}\right): \mathbb{Q}\right]=3$. Since $\mathbb{Q}\left(x_{1}\right) \subsetneq \mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$, we have that $\left[\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right): \mathbb{Q}\left(x_{1}\right)\right] \geqslant 2$, and by the tower law we must have $\left[\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)\right.$: $\left.\mathbb{Q}\left(x_{1}\right)\right]=2$ as $\left[\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right): \mathbb{Q}\right] \leqslant 6$. It follows that $\left|\operatorname{Aut}\left(\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right) \mid \mathbb{Q}\right)\right|=6$ and hence, by the first part of the question, $\operatorname{Aut}\left(\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right) \mid \mathbb{Q}\right) \cong S_{3}$.

Aufgabe 5. Sei $x \in \mathbb{C}$ eine Nullstelle von $X^{6}+3$. Zeige, dass $\mathbb{Q}(x) \mid \mathbb{Q}$ eine Galoiserweiterung ist.

Lösungsvorschlag:

Wegen char $\mathbb{Q}=0$ reicht es zu zeigen, daß $\mathbb{Q}(x) \mid \mathbb{Q}$ normal ist. Hierzu zeigen wir, daß $\mathbb{Q}(x)=L$, wobei $L \subseteq \mathbb{C}$ den Zerfällungskörper von $X^{6}+3$ über \mathbb{Q} bezeichne. Es ist klar, daß $\mathbb{Q}(x) \subseteq L . \mathrm{Zu}$ zeigen ist daher nur $[\mathbb{Q}(x): \mathbb{Q}]=[L: \mathbb{Q}]$. Da $X^{6}+3$ nach Eisenstein irreduzibel über $\mathbb{Q}=\mathrm{qf}(\mathbb{Z})$ ist, gilt $[\mathbb{Q}(x): \mathbb{Q}]=6 . \mathrm{Zu}$ zeigen bleibt daher nur $[L: \mathbb{Q}]=6$.

Die paarweise verschiedenen Nullstellen von $X^{6}+3$ in \mathbb{C} sind offenbar ζ^{k} ㅂ $\sqrt[6]{3}(k \in\{0, \ldots, 5\})$ mit $\zeta:=e^{\frac{2 \pi \mathrm{i}}{6}}$. Daher gilt $L=\mathbb{Q}(\dot{\mathrm{i}} \sqrt[6]{3}, \zeta)$. Da i $\sqrt[6]{3}$ genauso wie x eine Nullstelle von $X^{6}+3$ ist, gilt wie oben $[\mathbb{Q}(\mathrm{i} \sqrt[6]{3}): \mathbb{Q}]=6$. Zu zeigen ist daher $\zeta \in \mathbb{Q}(\mathrm{i} \sqrt[6]{3})$.

Wir versuchen daher, ζ näher zu bestimmen. Offenbar bildet ζ zusammen mit den Punkten 0 und 1 ein Dreieck in der komplexen Zahlenebene, dessen vom Ursprung ausgehenden Seiten gleichlang sind (Länge 1). Dieses Dreieck hat also neben dem Innenwinkel $\frac{180^{\circ}}{6}=60^{\circ}$ noch zwei gleichgroße Innenwinkel. Man überlegt sich leicht daß die Innenwinkelsumme in einem Dreieck 180° beträgt, woraus folgt, daß alle Innenwinkel dieses Dreiecks 60° betragen. Damit ist aber dieses Dreieck gleichseitig, woraus man $\zeta=\frac{1}{2}+b$ ì für ein $b \in \mathbb{R}$ folgt. Es folgt $\frac{1}{4}+b^{2}=|\zeta|=1$ und daher $b=\frac{\sqrt{3}}{2}$. Wegen $2 b \dot{\mathrm{i}}=\sqrt{3} \dot{\mathrm{i}}=-(\mathrm{i} \sqrt[6]{3})^{3}$ folgt somit $\zeta \in \mathbb{Q}(\dot{\mathrm{i}} \sqrt[6]{3})$ wie gewünscht.

