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Übungsblatt 14 zur Einführung in die Algebra: Solutions

Aufgabe 1. Sei K ein Körper der Charakteristik p > 0, so dass der Frobenius-Homorphismus
Φp : K → K kein Automorphismus ist. Sei a ∈ K\Φp(K). Zeige, dass Xp − a ∈ K[X] irreduzibel
und nicht separabel ist.

Solution

Since f ′ = pXp−1 = 0, we have clearly that f is not separable. It remains we show irreducibility
of f := Xp − a in K[X]. Obviously, f /∈ K× = K[X]×. Now let f = Xp − a, and suppose that
f = gh, where g,h ∈ K[X] are monic. We show that g = 1 or h = 1. Choosing b ∈ K with bp = a,
we have f = (Xp − a) = (Xp − bp) = (X − b)p since charK[X] = charK = p ∈ P. Using that
K[X] is factorial, we get g = (X − b)i and h = (X − b)j for some i,j ∈ N0 such that i+ j = p. We
have to show that i = 0 or j = 0, i.e. i ∈ {0,p}. It suffices to show that (i,p) = (p). But since p is
prime, the only other possibility would be (i,p) = 1. In that case however, we would find s,t ∈ Z
with 1 = si + tp leading to b = bsi+tp = (bi)s(bp)t = (bi)sat ∈ K (since g,f ∈ K[X]), which is a
contradiction to a /∈ Φp(K).

Aufgabe 2. Sei x ∈ R mit x4 = 2 und L = Q(i,x). Finde alle Zwischenkörper von L|Q.

Solution

Let f = X4 − 2 ∈ Q[X]. Obviously

a1 := 4
√

2, a2 := − 4
√

2, a3 := i
4
√

2 and a4 := −i
4
√

2

are the pairwise distinct zeros of f in C. The splitting field of f over Q is therefore Q(a1,a2,a3,a4) =
Q(i, 4
√

2) = Q(i,x) = L. In particular, L|Q is normal and therefore a Galois extension (since
char Q = 0).

We now determine [L : Q]. Since f is irreducible over Q = qf(Z) by Eisenstein, we have
[Q( 4
√

2) : Q] = 4. The minimum polynomial of i over Q( 4
√

2) is X2 + 1, since i /∈ Q( 4
√

2) ⊆ R. So
[Q(i, 4
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2) : Q( 4

√
2)] = 2. Hence [Q(i, 4
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2) : Q] = [Q(i, 4

√
2) : Q( 4
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2)][Q( 4

√
2) : Q] = 2 · 4 = 8, and

hence #Aut(Q(i, 4
√

2)|Q) = [Q(i, 4
√

2) : Q] = 8.
Let G := Aut(Q(i, 4

√
2)|Q) ⊆ S4. We have (3 4) ∈ G (as a1 = a1, a2 = a2 and a3 = a4

under complex conjugation). Since f is irreducible in Q[X] (and therefore each two zeros of f are
conjugated over Q) there is also ϕ ∈ G with ϕ( 4

√
2) = i

4
√

2. Then ϕ(a3) = ϕ(i 4
√

2) = ϕ(i)ϕ( 4
√

2) =
(±i)(i 4

√
2) = ∓ 4

√
2 ∈ {a1,a2} and hence at least one of (1 3)(2 4) and (1 3 2 4) lies in G. Since

the product of these two permutations is (3 4) which is already known to lie in G, it follows that
actually both of these permutations lie in G. Products of the three already found permutations
yield

{1, (1 2), (3 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 3 2 4), (1 4 2 3)}.

We know #G = 8, and hence this set is the whole Galois group.
The different subgroups of G are:

• 〈1〉 (order 1);

• 〈(1 2)〉, 〈(3 4)〉, 〈(1 2)(3 4)〉, 〈(1 3)(2 4)〉, 〈(1 4)(2 3)〉 (order 2);



• 〈(1 3 2 4)〉, 〈(1 4 3 2)〉, 〈(1 2), (3 4)〉 (order 4);

• G (order 8).

Intermediate fields of degree 1 over Q:

• The fixed field of the subgroup of order 8 is Q.

Intermediate fields of degree 2 over Q: The subgroups of order 4 have index 2 in G. Hence
their fixed fields have degree 2 over LG = Q.

• Setting ϕ := (1 3 2 4),

ϕ(i) = ϕ(
a3

a1
) =

ϕ(a3)
ϕ(a1)

=
a2

a3
= −1

i
= i,

shows that the fixed field of 〈(1 3 2 4)〉 is Q(i).

• Similarly, setting ϕ := (1 4 3 2),

ϕ(
√

2i) = −ϕ(a1a3) = ϕ(a1)ϕ(a3) = a4a2 = i

√
2 =
√

2i

shows that the fixed field of 〈(1 3 2 4)〉 is Q(
√

2i).

• Finally, setting ϕ := (1 2)(3 4),

ϕ(
√

2) = ϕ(−a1a2) = −ϕ(a1)ϕ(a2) = −a2a1 =
√

2

shows that the fixed field of 〈(1 2)(3 4)〉 is Q(
√

2).

Intermediate fields of degree 4 over Q:
The subgroups of order 2 have index 4 in G. Hence their fixed fields have degree 4 over LG = Q.

• Obviously a3 lies in the fixed field of 〈(1 2)〉. But since [Q(a3) : Q] = 4 by the irreducibility
of f , we have that the fixed field of 〈(1 2)〉 actually equals Q(a3) = Q(i 4

√
2).

• Analogously, the fixed field of 〈(3 4)〉 is Q(a1) = Q( 4
√

2).

• To determine the fixed field of 〈(1 2)(3 4)〉, we note that
√

2 = −a1a2 and i = a3
a1

lie in it.
Now since [Q(

√
2,i) : Q] = 4, we have that it actually equals Q(

√
2,i).

• To determine the fixed field of 〈(1 3)(2 4)〉, we note that (1+ i) 4
√

2 = a1 +a3 lies in it. To see
that the fixed field equals Q((1+i) 4

√
2), we have however to show that [Q((1+i) 4

√
2) : Q] = 4.

One way to do this, is to verify that (1 + i) 4
√

2 is a zero of X4 + 8 and X4 + 8 is irreducible
over Q. That X4 + 8 is irreducible over Q can be checked by direct computation (assume
X4 + 8 factors and get a contradiction).

• To determine the fixed field of 〈(1 4)(2 3)〉, we note that (1− i) 4
√

2 = a1 + a4 lies in it. Since
this is the complex conjugate of (1 + i) 4

√
2, it follows from the above that the fixed field

actually equals Q((1− i) 4
√

2).

Intermediate fields of degree 8 over Q:

• The fixed field of the subgroup of order 1 is L = Q(i, 4
√

2).

Resume: The different intermediate fields of L|Q (and therefore the subfields of L) are

Q, Q(i), Q(
√

2i), Q(
√

2), Q(i 4
√

2), Q( 4
√

2), Q(
√

2,i), Q((1 + i) 4
√

2), Q((1− i) 4
√

2) and Q(i, 4
√

2).

Aufgabe 3. Sei K(x)|K eine algebraische Körpererweiterung von ungeradem Grad. Zeige K(x2) =
K(x).



Solution

Clearly x is a root of X2−x2 ∈ K(x2)[X], hence [K(x) : K(x2)] 6 2. By the tower law we have
that

[K(x) : K] = [K(x) : K(x2)] · [K(x2) : K],

which is odd by hypothesis. Therefore [K(x) : K(x2)] = 1.

Aufgabe 4.

(i) Zeige, dass die Galoisgruppe des Zerfällungskörpers eines irreduziblen separablen Polynoms
vom Grad 3 über einem Körper isomorph zu S3 oder C3 ist

(ii) Bestimme die Galoisgruppe des Zerfällungskörpers von X3 −X − 1 über Q.

Solution

(i) Let K be a field and let f ∈ K[X] be an irreducible polynomial of degree 3. Let L be
a splitting field of L. L|K is normal and separable, and [L : K] = |Aut(L|K)| 6 6 and
Aut(L|K) ⊆ S3.

Let a,b,c be the roots of f in L. Since f is irreducible, we have that [K(a) : K] = 3. Hence
we have a tower of fields K ⊆ K(a) ⊆ L with [L : K] 6 6 and [K(a) : K] = 3. By the tower
law we have [L : K(a)] = 1 or 2. We consider both cases.

If [L : K(a)] = 2, then [L : K] = 6, and so Aut(L|K) has 6 elements. But Aut(L|K) ⊆ S3

and |S3| = 6, hence Aut(L|K) = S3.

If [L : K(a)] = 1, then [L : K] = 3 and Aut(L|K) has 3 elements. However, there is only one
group of order 3, up to isomorphism, and that is C3.

(ii) Let f = X3−X−1 ∈ Q[X] and L be a splitting field of f over Q. Since the characteristic of
Q is 0, the extension L|Q is separable. We now show that f is irreducible. If not, f having
the degree 3, it would have a zero a

b ∈ Q with a,b ∈ Q \ {0}. We can assume without loss
of generality that (a,b) = (1) in Z. Since f(a

b ) = 0 it follows that a3 − ab2 − b3 = 0, and
hence that a3 = b2(a+ b). Let p be a prime number such that p|a. Then p must divide a+ b
and therefore b, a contradiction. Hence a = ±1. Let q be a prime number with q|b. Then it
follows that q|a, again a contradiction, hence b = ±1. Therefore a

b = ±1, but f(±1) 6= 0,
and hence f must be irreducible.

We now find the zeros of f . We know that f has at least one real zero, x1, as it is a polynomial

of odd degree. Since f ′ = 3X2 − 1, we see that f is increasing in the range (−∞, −
√

1
3 ],

decreasing in the range [−
√

1
3 ,

√
1
3 ] and increasing again in the range [

√
1
3 ,∞). We also have

that f(−
√

1
3 ) < 0, and hence f has only one real zero, x1. The two other zeros, x2 and x3

must be in C\R. In particular we have

Q ( Q(x1) ( Q(x1,x2,x3),

where Q(x1,x2,x3) is the splitting field of f .

Since f is irreducible over Q, we have that [Q(x1) : Q] = 3. Since Q(x1) ( Q(x1,x2,x3),
we have that [Q(x1,x2,x3) : Q(x1)] > 2, and by the tower law we must have [Q(x1,x2,x3) :
Q(x1)] = 2 as [Q(x1,x2,x3) : Q] 6 6. It follows that |Aut(Q(x1,x2,x3)|Q)| = 6 and hence, by
the first part of the question, Aut(Q(x1,x2,x3)|Q) ∼= S3.

Aufgabe 5. Sei x ∈ C eine Nullstelle von X6 + 3. Zeige, dass Q(x)|Q eine Galoiserweiterung ist.



Lösungsvorschlag:

Wegen char Q = 0 reicht es zu zeigen, daß Q(x)|Q normal ist. Hierzu zeigen wir, daß Q(x) = L,
wobei L ⊆ C den Zerfällungskörper von X6 + 3 über Q bezeichne. Es ist klar, daß Q(x) ⊆ L. Zu
zeigen ist daher nur [Q(x) : Q] = [L : Q]. Da X6 + 3 nach Eisenstein irreduzibel über Q = qf(Z)
ist, gilt [Q(x) : Q] = 6. Zu zeigen bleibt daher nur [L : Q] = 6.

Die paarweise verschiedenen Nullstellen von X6 + 3 in C sind offenbar ζk
i

6
√

3 (k ∈ {0, . . . ,5})
mit ζ := e

2πi

6 . Daher gilt L = Q(i 6
√

3,ζ). Da i
6
√

3 genauso wie x eine Nullstelle von X6 + 3 ist, gilt
wie oben [Q(i 6

√
3) : Q] = 6. Zu zeigen ist daher ζ ∈ Q(i 6

√
3).

Wir versuchen daher, ζ näher zu bestimmen. Offenbar bildet ζ zusammen mit den Punkten
0 und 1 ein Dreieck in der komplexen Zahlenebene, dessen vom Ursprung ausgehenden Seiten
gleichlang sind (Länge 1). Dieses Dreieck hat also neben dem Innenwinkel 180◦

6 = 60◦ noch zwei
gleichgroße Innenwinkel. Man überlegt sich leicht daß die Innenwinkelsumme in einem Dreieck
180◦ beträgt, woraus folgt, daß alle Innenwinkel dieses Dreiecks 60◦ betragen. Damit ist aber
dieses Dreieck gleichseitig, woraus man ζ = 1

2 + bi für ein b ∈ R folgt. Es folgt 1
4 + b2 = |ζ| = 1

und daher b =
√

3
2 . Wegen 2bi =

√
3i = −(i 6

√
3)3 folgt somit ζ ∈ Q(i 6

√
3) wie gewünscht.


